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Abstract. A verifiably encrypted signature can convince the verifier
that a given cipher-text is the encryption of a signature on a given mes-
sage. It is often used as a building block to construct optimistic fair
exchange. Recently, Gu et.al gave an ID-based verifiably encrypted sig-
nature scheme and claimed that their scheme was secure in random or-
acle model. Unfortunately, in this works, we show that their scheme is
insecure. And we can mount to universal forgery attack in their model.
In other words, any one is able to forge a verifiably encrypted signa-
ture on arbitrary message m. Subsequently, a novel verifiably encrypted
signature scheme (VES) is proposed and the scheme is proven secure in
random oracle model. Moreover, the size of verifiably encrypted signature
in our scheme is shorter than that of Gu et.al ’s signature.

1 Introduction

A verifiably encrypted signature, which was proposed by N.Asokan [7], provides
a way to encrypt a signature under a designated public key and subsequently
prove that the resulting ciphertext indeed contains such a signature. It enables to
construct optimistic fair exchange [4,5] over the Internet, and relies on a trusted
third party call Adjudicator, in optimistic way, that the adjudication is only
needed in cases where a participant attempts to cheat the other or simply crashes.
Another key feature of VES is that a participant can always force a fair and
timely termination, without the cooperation of the other participants. Neither
party can be left hanging or cheated so long as the adjudicator is available.

A valid VES can convince the verifier that a given cipher-text is the encryption
of a signature on a given message. Alice creates a VES on a message by using her
private key and an Adjudicator’s public key. Bob is convinced that the encrypted
signature is indeed of Alice, which he verifies using the public key of Alice and
the Adjudicator. Even though Bob does not have the capability of decrypting
the VES, the verification is performed without revealing any information about
Alice’s signature. If a dispute, the adjudicator can extract Alice’s signature from
VES on the message.

Since the concept of VES was included,J.Camenish[6] and G.Ateniese [7] pro-
posed a verifiable encryption signature based on the discrete logarithm problem,
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respectively. In 2003, Boheh et.al [8] and Zhang et.al [9] proposed a verifiably
encryption signature with security proofs in random oracle based on bilinear
Pairings, respectively. In ICDCIT 2005, M.Choudary Gorantla et.al [2] proposed
a novel verifiably encrypted signature without random oracle. Recently, by com-
bining ID-based public key cryptography with verifiably encrypted signature,
Gu et.al [1] proposed a ID-based verifiably encrypted signature scheme based
on Hess’ signature scheme (Gu et.al scheme for short), and claimed that their
scheme was secure in random oracle model. Unfortunately, in this work, we show
that Gu et.al scheme is universal forgeable. Namely, any one can forge a verifiably
encrypted signature on arbitrary a message. Subsequently, we propose a novel
secure verifiably encrypted signature scheme, and the scheme is proven secure
in random oracle model. Moreover, the size of verifiably encrypted signature in
our scheme is shorter than that of Gu et.al ’s signature.

The rest of the paper is organized as follows. In section 2, we review some
preliminaries . In section 3, we briefly recall Gu et.al scheme and show that the
scheme is insecure in section 4. In section 5, we propose our VES scheme and
prove it to be secure in section 6. Finally, we draw this paper.

2 Preliminaries

In the section, we first briefly describe bilinear Parings and some related math-
ematical problems, which form the basis of security for our scheme.

Let (G1, +) and (G2, ·) be two cyclic groups of order q. Let e : G1×G1 → G2

be a map which the following properties.

– Bilinear: ∀P, Q ∈ G1, and a, b ∈ Zq, e(aP, bP ) = e(P, P )ab

– Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) �= 1,in other
words, the map doesn’t send all pair in G1 ×G1 to the identity in G2.

– Computable: There is an efficient algorithm to compute e(P, Q) for any
P, Q ∈ G1.

Such a bilinear map is called an admissible bilinear pairing. The Weil Parings
and Tate Pairings of elliptic curves are able to construct an efficient admissible
pairings.

The security of our proposed scheme is related to the computational Diffie-
Hellman problem (CDHP), which is given below.

Definition 1. (Computational Diffie-Hellman Problem) Let a, b be chosen from
Zq at random and P be chosen from G1 at random. Given (P, aP, bP ), compute
abP ∈ G1.

The success probability of any probabilistic polynomial-time A in solving CDH
problem in G1 is defined to be

SuccCDH
A,G1

= Pr[A(P, aP, bP ) = abP : a, b ∈ Zp]

The CDH assumption states that for every probabilistic polynomial-time algo-
rithm A, SuccCDH

A,G1
is negligible.
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Definition 2. A verifiably encrypted signature scheme consists of the following
algorithms: KeyGen, Sign, Verify, AdjKenGen, VESig Generate, VESig Verify
and Adjudicate. The algorithms are described below.

– Key Generation, Signing, Verification. As in standard signature
schemes.

– Adjudicator Key. Generate a public-private key pair (QA, sA) for the
adjudicator.

– VESig Generation. Give a private key D, a message M , and an adjudica-
tor’s QA, compute a verifiably encrypted signature δ on M .

– VESig Verification. Given a public key Q, a message M , an adjudicator’s
public key QA and a verifiably encrypted signature δ, verify that δ is a valid
verifiably encrypted signature on M under public key Q.

– Adjudication. Given an adjudicator’s key pairs (QA, sA), a public key Q,
and a verifiably encrypted signature δ on some message M , extract and
output δ1, an ordinary signature on M under public key Q.

A verifiably encrypted signature scheme should satisfy the following properties;

– Unfogeability: It is difficult to forge a valid verifiably encrypted signature in
polynomial time.The advantage in existentially forging a verifiably encrypted
signature of an algorithm F , given access to a verifiably-encrypted-signature
creation oracle S and an adjudication oracle A, along with a hash oracle, is

AdvV SFf
def= Pr

⎡
⎢⎢⎢⎣

V ESigV erify(PK, APK, M, w) = valid

(PK, SK) R← KeyGen,

(APK, ASK) R← AdjKeyGen,

(M, w) R← FS,A(PK, APK)

⎤
⎥⎥⎥⎦

The probability is taken over the coin tosses of the key-generation algorithms,
of the oracles, and of the forger. The forger is additionally limited in where
its forgery on M must not previously have been queried.

– Opacity: Given a verifiably encrypted signature, it is difficult to extract
the ordinary signature on the same message from the verifiably encrypted
signature time without the help of the Adjudicator. The advantage in ex-
tracting a verifiably encrypted signature of an algorithm ε , given access to a
verifiably-encrypted-signature creation oracle S and an adjudication oracle
A, along with a hash oracle, is

AdvV SFε
def= Pr

⎡
⎢⎢⎢⎣

V erify(PK, M, σ) = valid

(PK, SK) R← KeyGen,

(APK, ASK) R← AdjKeyGen,

(M, σ) R← εS,A(PK, APK)

⎤
⎥⎥⎥⎦

The probability is taken over the coin tosses of the key-generation algorithms,
of the oracles, and of the forger. The extraction must be nontrivial: the
adversary must not have queried the adjudication oracle A at M .
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3 Review of Gu et.al VES Scheme

In the section, we briefly recall Gu et.al ’s scheme. Please the interested reader
refer to [1] for general reference. Private keys are generated for entities by a
trusted third party called a private key generator (PKG for short ).

Let (G1, +) and (G2, ·) be two cyclic groups of order q, P be a generator of G1,
e : G1 × G1 −→ G2 be an admissible bilinear pairing. Gu-Zhu scheme consists
of the following algorithms:

– Setup: Given (G1, G2, q, e, P ), randomly choose a number s ∈ Z∗
q and

set Ppub = sP . Then choose three hash functions H1 : {0, 1}∗ −→ G∗
1,

H2 : {0, 1}∗ −→ Z∗
q and H3 : G2 −→ Zq. The system parameters Ω =

(G1, G2, q, e, P, Ppub, H1, H2, H3). The master key is s.
– Extract: Given an identity IDX ∈ {0, 1}∗, compute QX = H1(IDX) ∈

G1,DX = sQX . PKG uses this algorithm to extract the user’s private key
DX , and gives DX to the user by a secure channel.

– Sign: Given a private key DX of a user and a message m, pick k ∈ Z∗
q at

random, and output a signature (r, U), where r = e(P, P )k, h = H2(m, r)
and U = hDX + kP .

– Verify: Given a signature (r, U) of an identity IDX on a message m, com-
pute h = H2(m, r) and check whether the following equation holds

r = e(U, P ) · e(H1(IDX), Ppub)−h

– VE-Sign: Given a secret key DX , a message m ∈ {0, 1}∗ and an adjudica-
tor’s identity IDA.
1. choose k1, k2 ∈ Z∗

q at random.
2. compute r = e(P, P )k1 , h = H2(m, r), h′ = H3(e(QA, Ppub)k2)
3. compute U1 = h′P, U2 = k2P, V = hDX + (k1 + h′k2)P + h′QA

4. output the verifiably encrypted signature (r, V, U1, U2).
– VE-Verify: Given a verifiably encrypted signature (r, V, U1, U2) of a mes-

sage m, compute h = H2(m, r), and accept this signature if and only if

e(P, V ) = r · e(hPpub, QX) · e(U1, QA + U2) (1)

– Adjudication: Given the adjudicator’s secret key DA, and a valid verifiably
encrypted signature (r, V, U1, U2) on the message m, compute U = V −
H3(e(DA, U2))(QA + U2), finally, output the original signature (r, U).

4 Security Analysis

Gu et.al claimed that their scheme[1] was secure in random oracle model. In this
section, we will show the scheme is universally forgeable by analyzing its security.
Note that any one can forge a verifiable encryption signature on arbitrary a
message without the private key DX of the user with the identity IDX . To forge
a verifiably encryption signature of the user with the identity IDX , The forging
procedures are as follows:
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1. Given arbitrary a message m, randomly choose r2 ∈ Zq, then compute r =
e(P, r2QX),h = H2(m, r) and QX = H1(IDX) .

2. randomly choose r3 ∈ Zq and set U2 = −QA + r3QX .
3. randomly choose r4 ∈ Zq and compute U1 = −(hPpub+r4P )+P

r3
4. set V = (1 + r2 − r4)QX

Then the forged verifiably encryption signature is (r, V, U1, U2).
If the forged signature (r, V, U1, U2) satisfies the verification equation (1) of the

above verifiably encryption signature, then it means that the forged signature
is valid. In the following, we show that the above forgery attack satisfies the
verification equation (1). Since

r · e(hPpub, QX) · e(U1, QA + U2) = r · e(hPpub, QX) · e(U1, QA + (−QA + r3QX))

= r · e(hPpub, QX) · e(U1, r3QX)

= r · e(hPpub, QX) · e(−(hPpub + r4P ) + P

r3
, r3QX)

= r · e(hPpub, QX) · e(−(hPpub + r4P ) + P, QX)

= e(P, (1 + r2 − r4)QX)

= e(P,V )

Thus, our forged verifiably encryption signature can satisfy the verifying phase
of Gu et.al ’s scheme. It implies that our forgery attack is successful. An impor-
tant reason to such attack is that any one that possesses of the user’s original
signature (U, r) on the message m, can produce a verifiably encrypted signature
on the message m. Thus, if the Hess’s signature is forgeable, then we can forge a
verifiably encrypted signature; but if Gu et.al scheme is forgeable, then it don’t
mean the Hess’s signature scheme is forgeable. Therefore, the Hess’s signature
scheme is not equivalent to Gu et.al scheme.

According to the verification, we can know that Gu et.al ’s scheme is insecure,
any one can forge a verifiably encryption signature on arbitrary a message m.
The reason to mount to the attack is that the relation between U1 and U2 cannot
be reflected in the verification phase of verifiably encryption signature. U1 and
U2 is mutually independent in the verifying equation.

5 Our Proposed Scheme

In the section, we will propose a novel ID-based verifiably encryption signature
scheme. We assume that (G1, +) and (G2, ·) be two cyclic groups of order q, P
be a generator of G1, e : G1 ×G1 −→ G2 be an admissible bilinear pairing. The
detail procedure is as follows:

Setup: Given (G1, G2, q, e, P ), randomly choose a number s ∈ Z∗
q and set Ppub =

sP . The adjudicator randomly chooses a sA as his private key and compute his
public key QA = sAP . Then choose three hash functions H1 : {0, 1}∗ −→ G∗

1,
H2 : {0, 1}∗ −→ Z∗

q and H3 : G1 × G2 −→ Zq. The system parameters Ω =
(G1, G2, q, e, P, Ppub, H1, H2, H3). The master key is s.
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Extract: Given an identity IDX ∈ {0, 1}∗ of a user, compute QX = H1(IDX) ∈
G1,DX = sQX . PKG uses this algorithm to extract the user’s private key DX ,
and gives DX to the user by a secure channel.
Sign phase: Given a private key DX of a user and message m, pick k ∈ Z∗

q at
random, and compute

r1 = e(P, kP )
h = H2(m, r1)
U = hDX + kP

then, (r1, U) is the signature on the message m.
Verify phase: Given a signature (r1, U) of an identity IDX for a message m,
compute h = H2(m, r) and accept the signature if and only if

r = e(U, P ) · e(H1(IDX), Ppub)−h

VE-Sign: Given a secret key DX , a message m ∈ {0, 1}∗ and an adjudicator’s
public key QA. He computes as follows:

– choose two random numbers k1, k2 ∈ Zq.
– compute r = e(P, P )k1 , h = H2(m, r · e(k2P, P ))
– compute U2 = k2P, V = hDX + k1P + k2H3(U2, r)QA.
– output the verifiably encrypted signature (r, V, U2) on the message m.

VE-Verify: Given a verifiable encrypted signature (r, V, U2) of a message m, a
verifier first computes h = H2(m, r · e(U2, P )), and accepts the signature if and
only if

e(P, V ) = r · e(hPpub, QX) · e(U2, H3(U2, r)QA)

Adjudication: Given a verifiably encrypted signature (r, U2, V ) on a message
m, the adjudicator can extract as follows: he computes U = V −sAH3(U2, r)U2+
U2 = V − (sAH3(U2, r) − 1)U2, r1 = r · e(U2, P ). Then (U, r1) is the extracted
signature on the message m.

6 Analysis

In this section, we first justify the validity of the scheme and subsequently the
security of the scheme.
[Correction]
It is obvious, the detail analysis is given in full paper.
[Security Analysis]
In the subsection, we will analyze the security of our proposed scheme and show
the scheme is secure against existential forgery and extraction .

Theorem 1. Let G1 and G2 be cyclic groups of prime order p with a com-
putable bilinear map e : G1 × G1 −→ G2, P be a generator of group G1.
Suppose that the Hess’s signature scheme[13] is (t′, q′H , q′S , ε′)− secure against
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existential forgery. Then the our proposed verifiably encrypted signature scheme
is (t, qH1 , qH2 , qH3 , qV S , qA, ε)− secure against existential forgery, where t ≤ t′ −
((3qV S + qA + 1)cG1 + (qV S + qA + 1)cG2).

Proof. Suppose that there exists a verifiably-encrypted-signature forger algo-
rithm V , then we can construct a forger algorithm F for the Hess signature
scheme. (Note that: the Hess signature is proven secure in random oracle model,
please interested reader refer [11]to the complete content).

The Hess-signature forger F is given a public key IDX , and has access to
a signing oracle for IDX and two hash oracles. It simulates the challenger and
runs interacts with V as follows:

– Setup: A challenger C runs Setup of Hess signature scheme, and gives the
corresponding system parameters (G1, G2, q, e, P, Ppub, H1, H2) to F . And
algorithm F chooses a sA ∈ Zq at random and computes PA = sAP . Let
(sA, PA) serve as the adjudicator’s key pairs. Select a hash function H3 :
G1 × G2 −→ Zq. Let (G1, G2, q, e, P, Ppub, H1, H2, H3, (sA, PA)) be input
of V .

– H1(·), H2(·), E(·) − Oracle : When algorithm V request a H1(·),(or H2(·),
E(·)) query, Algorithm F makes a query to its own hash oracle H1(·),(or
H2(·), E(·)), receiving some value, with which it responds to V ’s query.

– H3− Oracle: for a query (U2i , ri) to H3, F first checks whether H3(U2i , ri)
is defined. if it exists, then return the corresponding value. If not, randomly
choose h′

i ∈ Zq, and set H3(U2i , ri)) = h′
i and return h′

i to V .
– VESig Oracle: When algorithm V requests a signature on some string

M under the user with the identity IDX and the adjudicator’ public PA,
algorithm F queries its signing oracle with input (IDX , M) and obtains the
reply (U, r). Then F computes as follows:
1. randomly choose k1 ∈ Zq.
2. compute r′ = r · e(P,−k1P ) and U ′

2 = k1P .
3. then compute V ′ = U − k1P + k1H3(U ′

2, r
′)QA

Finally, the algorithm F returns (r′, U ′
2, V

′) to VESignature on the string
M .

– Adjudication Oracle: Algorithm V requests adjudication for (r, U2, V ),
a verifiably encrypted signature on a message M under the user with the
identity IDX and adjudicator key PA. Algorithm F checks that the verifiably
encrypted signature is valid, then computes as follows:

U = V − sA ·H(U2, r)U2 + U2, r1 = r · e(U2, P ) (2)

– Output: Finally, if V outputs a valid and nontrivial verifiably encrypted
signature (r∗1 , U∗, V ∗) on a message M∗ in non-negligible probability. F sets
U∗ = V ∗ − sA ·H(U∗

2 , r∗)U∗
2 + U∗

2 , r∗1 = r∗ · e(U∗
2 , P ), which is a valid Hess

signature on the message M∗.

It remains only to analyze the success probability and running time of F .
Algorithm F succeeds when V does, that is, with probability at least ε.
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Algorithm F ’s running time is the same as V ’s running time plus the time it
takes to respond to qH1 , qH2 , qH3 hash queries, qV S verifiably-encrypted signa-
ture queries, and qA adjudication queries, and the time to transform V ’s final
verifiably-encrypted signature forgery into a Hess signature forgery. Hash queries
impose no overhead. Each verifiably-encrypted signature query requires F to
perform three point multiplications in G1 and an exponentiation in G2. Each
adjudication query requires F to perform an point multiplication in G1 and an
exponentiation in G2. The output phase also requires an exponentiation and an
point multiplication. We assume that exponentiation in G2 takes time cG2 , and
point multiplication in G1 takes time cG1 . Hence, the total running time is at
most t + (3qV S + qA + 1)cG1 + (qV S + qA + 1)cG2 . �

Theorem 2. Let G1 and G2 be cyclic groups of prime order p with a computable
bilinear map e : G1×G1 −→ G2, P be a generator of group G1. QA is the adju-
dicator’s public key. Suppose that the CDH problem isn’t solved in a polynomial
time, then our verifiably encrypted signature is secure against extraction.

Proof. We say that a VES (Verifiably Encrypted Signature) on a message M is
secure against extraction, if an adversaryA cannot extract the original signature
(U, r1) on the message from a VES (r, U2, V ). Let us recall the CDH problem
as follows. Given a randomly chosen P ∈ G1, as well as aP, bP (for unknown
randomly chosen a, b ∈ Zq), compute abP . To show the proof, we suppose that
there is a polynomial algorithm A that can extract the original signature (U, r1)
from a VES (r, U2, V ). The algorithm A is given the inputs: an ID of the user,
IDX , a message M , a public key PPub of the system and an adjudicator’s public
key QA. Finally, it outputs a valid the original signature (U, r1), where

Pr[V erification(m, (U, r1), IDX , PPub) = accept] = 1

In the following, we show how to use this algorithm to solve the CDH problem.
In our setting, we know the public information PPub, IDX , QA. From this

public information, we can obtain QX = H1(IDX). Since P is a generator in
G1, then we can rewrite the following parameters as

QX = aP, PPub = bP

Now, we construct an algorithm F to solve the CDH problem. Algorithm F will
control A and replace A’s interaction with the user (the signer) by simulation.
Firstly, F generates a list of ID of its choice, together with a random si associ-
ated with it. The idea of the game is illustrated as follows. The purpose of F is
to inject the information above (aP, bP ) during the simulation. Without loss of
generality, we only show the interaction where A interacts with F for the infor-
mation that F wants. There is a probability that F will fail, i.e. when A queries
the private key for IDX , which will match with the published PPub, and when A
queries Adjudicator Oracle by a VES under the user with identity IDX and
the adjudicator’s public key QA. Since F hasn’t this information, then F will
halt the game. A will be run twice with a different random query set, but from
the same list ID’s generated at the first place. The attack is successful, when A
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outputs two signatures from the given parameters by forking Lemma[10]. The
game is described as follows:

H1-Hash Oracle: When A queries H1(·) oracle with the input IDi, F checks

whether H1(IDi) is defined or not. If not, he defines H1(IDi) =
{

aP, i=X
siP, i �= X

and returns H1(IDi) to A.
H2−Hash Oracle: When querying (mi, ri) to H2(·), if hi = H2(mi, ri) exists,
then F returns hi; otherwise, randomly chooses hi ∈ Zq to return it.
H3−Hash Oracle: When querying (U2i , r̃i) to H3(·), if h3i = H3(Ui2 , r̃i) exists,
then F returns h3i ; otherwise, randomly chooses h3i ∈ Zq to return it.
Extract−Oracle: When querying IDi to Extract oracle, if i = X , F halts it.
Otherwise, F sets Di = siPPub as the reply to A.
VSignature Oracle: For input a user’s identity IDi, an adjudicator’s public
key QA and a message mi, F responses as follows:

– if i = X , then F
1. randomly chooses li, hi, k2i∈Zq to compute ri =e(liP, P )e(hiPPub, QX)−1

and U2i = k2iP .
2. Compute r′i = ri · e(U2i , P ), if H2(mi, r

′
i) is defined, then abort it. Oth-

erwise sets H2(mi, ri) = hi.
3. finally, set Vi = liP + k2iH3(U2i , r)QA

4. Add (li, hi, k2i , Vi, U2i , ri) to VSignature list and return (Vi, U2i , ri).
– Otherwise, F produces the VEsignature by VE-Sign algorithm of our pro-

posed scheme. Since he has the private key asiP = aH(IDi) of the user with
the identity IDi.

Adjudicator Oracle: when requesting (ri, Vi, U2i , IDi, QA) to adjudicator or-
acle, if i �= X , F computes as follows:

1. randomly pick a ki ∈ Zq and compute r1i = e(P, kiP ).
2. compute hi = H2(mi, r1i) and Ui = hiDX + kiP where DX = si · aP

(Note that F has the private key of the user with the identity IDi) and return
(Ui, r1i , hi). Otherwise, he aborts it.
Output: Finally, F outputs the original signature (U∗, r∗1 , h∗ = H2(M, r∗1))
under the user with identity IDX and the adjudicator’s public key QA.

By replays with the same random tape but different choice of oracle H2(·),
as done in the Forking Lemma[10], we can obtain two valid signatures
(m∗, U∗, r∗1 , h∗) and (m∗, U ′∗, r∗1 , h′∗) which satisfy

r∗ = e(U∗, P ) · e(H1(IDX), PPub)−h∗
= e(U ′∗, P ) · e(H1(IDX), PPub)−h′∗

Since H1(IDX) = aP, PPub = bP , we can obtain

e(U∗, P ) · e(H1(IDX), PPub)−h∗
= e(U ′∗, P ) · e(H1(IDX), PPub)−h′∗ ⇐⇒

e(U∗, P ) · e(aP, bP )−h∗
= e(U ′∗, P ) · e(aP, bP )−h′∗ ⇐⇒

e(U∗ − U ′∗, P ) = e(aP, bP )h∗−h′∗ ⇐⇒
abP =

1
h∗ − h′∗ (U∗ − U ′∗)
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Then, given (aP, bP ), we can compute abP . However, it is well-known that the
CDHP is a hard problem. Thus, it means that our proposed scheme is secure
against extraction. �

7 Conclusion

Verifiably encrypted signatures are the special extension of general signature
primitive, and are often used in online contract signing to provide fair exchange.
It plays an important role in the e-commerce. In this works, we first show that Gu
et.al scheme is insecure, then we propose a novel verifiably encrypted signature
and prove our proposed scheme to be secure in random oracle model. It is an
open problem how to construct a ID-based verifiably encrypted signature without
random oracle model.
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