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Abstract. We present PEP, which is a new construction of a tweak-
able strong pseudo-random permutation. PEP uses a hash-encrypt-hash
approach which has been recently used in the construction of HCTR.
This approach is different from the encrypt-mask-encrypt approach of
constructions such as CMC, EME and EME∗. The general hash-encrypt-
hash approach was earlier used by Naor-Reingold to provide a generic
construction technique for an SPRP (but not a tweakable SPRP). PEP
can be seen as the development of the Naor-Reingold approach into a
fully specified mode of operation with a concrete security reduction for
a tweakable strong pseudo-random permutation. HCTR is also based on
the Naor-Reingold approach but its security bound is weaker than PEP.
Compared to previous known constructions, PEP is the only known con-
struction of tweakable SPRP which uses a single key, is efficiently paral-
lelizable and can handle an arbitrary number of blocks.

Keywords: mode of operation, tweakable encryption, strong pseudo-
random permutation.

1 Introduction

A block cipher is a fundamental primitive in cryptography. A block cipher by
itself can encrypt only fixed length strings. Applications in general require en-
cryption of long and arbitrary length strings. A mode of operation of a block
cipher is used to extend the domain of applicability from fixed length strings
to long and variable length strings. The mode of operation must be secure in
the sense that if the underlying block cipher satisfies a certain notion of security,
then the extended domain mode of operation also satisfies an appropriate notion
of security.

A formal model of security for a block cipher is a pseudo-random permuta-
tion [9] which is formalized as a keyed family of permutations. Pseudo-random-
ness of the permutation family requires a computationally bounded adversary
to be unable to distinguish between a random permutation and a permutation
picked at random from the family. Strong pseudo-random permutations (SPRPs)
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require computational indistinguishability even when the adversary has access
to the inverse permutation.

A mode of encryption usually provides two security assurances – privacy and
authenticity. For example, OCB [14] is a mode of operation (providing both pri-
vacy and authenticity) which extends the domain of a block-cipher to arbitrary
strings. An SPRP which can encrypt arbitrary length strings, can be viewed as
a mode of operation with a somewhat different goal. Such a mode of operation
is length preserving and no tag is produced. Hence, authentication is of limited
nature. A change in the ciphertext cannot be detected but the decryption of the
tampered ciphertext will result in a plaintext which is indistinguishable from
a random string. Additional redundancy in the message introduced by higher
level applications might even allow the detection of the tampering. This point is
discussed in details by Bellare and Rogaway [1].

Tweakable encryption was introduced by Liskov, Rivest and Wagner [8] which
added an extra input called tweak to a block cipher. This allows simplification of
several applications. The paper [8] introduced both tweakable PRP and SPRP. In
the adversarial model for tweakable SPRP, the adversary queries the encryption
(resp. decryption) oracle with a tweak and the plaintext (resp. ciphertext). The
adversary is allowed to repeat the tweaks in its queries to the encryption and
the decryption oracles. A tweakable SPRP provides a mode of operation having
all the advantages of an SPRP with the additional flexibility of having a tweak.
The constructions CMC [4], EME [5], EME∗ [3] and HCTR [17] are proved to
be tweakable SPRPs under the assumption that the underlying block cipher is
an SPRP. As mentioned in [4], such a primitive is well suited for disk encryption
where the tweak can be considered to be the sector address.

Our Contributions: We present a new construction of a tweakable SPRP called
PEP (for Polynomial hash-Encrypt-Polynomial hash). PEP uses a block cipher
which can encrypt an n-bit string to construct an encryption algorithm which
can encrypt mn-bit strings for any m ≥ 1. It uses two Wegman-Carter [16]
style polynomial hashes over the binary field GF (2n). (Similar hashes have been
earlier used in GCM [10] and HCTR.) The new construction is proved to be a
tweakable SPRP assuming that the underlying block cipher is an SPRP. Below
we mention some interesting features of PEP.

1. PEP is a fully specified mode of operation providing a tweakable SPRP. The
security proof for PEP provides a concrete security bound which is the usual
quadratic birthday bound earlier obtained for CMC, EME and EME∗. The
security bound of HCTR is weaker and the security degradation is cubic.

2. The total computation cost of PEP for encrypting an m-block message con-
sists of m + 5 block cipher calls for m ≥ 2 (m + 3 for m = 1), and (4m − 6)
multiplications in GF (2n). In contrast, CMC requires 2m + 1 block cipher
calls; EME∗ requires (2m+m/n+1) block cipher calls; and HCTR requires
m block cipher calls and 2(m + 1) many GF (2n) multiplications. The ex-
act comparison of the computation costs between PEP and CMC depends
upon several factors such as the implementation platform (hardware or soft-
ware), availability of suitable co-processors (for software implementation),
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availability of parallel encryption blocks (for hardware implementation) and
most importantly on the actual block cipher being used and the efficiency of
its implementation.

3. Currently, PEP fills a gap in the known constructions. It is the only known
construction of tweakable SPRP which uses a single key, is efficiently par-
allelizable and can handle arbitrary number of message blocks. Table 1 in
Section 3 provides a detailed comparison of PEP with the other tweakable
SPRPs.

Related Constructions: To the best of our knowledge, the first suggestion for
constructing an SPRP was made by Naor and Reingold in [11]. They suggested
the hash-encrypt-hash approach used in PEP. However, as discussed in [4], the
description in [11] is at a top level and also the later work [12] does not fully
specify a mode of operation. Perhaps more importantly, the work [12] does not
consider tweakable SPRP since it predates the introduction of tweakable primi-
tives in [8].

The NR approach was rejected in [4] as not being capable of efficient instantia-
tion. The work in [4] and also the later constructions [5,3] follow a encrypt-mask-
encrypt strategy, i.e., there are two layers of encryptions with a layer of masking
in between. CMC [4] provides the first efficient, fully specified construction of
a tweakable SPRP. Parallel versions of the encrypt-mask-encrypt strategy have
been proposed as EME and EME∗.

Interestingly, the NR approach made a recent comeback in the HCTR con-
struction. The HCTR construction combines the NR type invertible hash func-
tions with the counter mode of operation. This results in an efficient tweakable
SPRP which can handle any message having length ≥ n bits. The drawback of
HCTR is its weaker security bound and the requirement of having two keys.
Currently, PEP can be viewed as the development of the NR approach to the
construction of tweakable SPRP.

2 Specification of PEP

We construct the tweakable enciphering scheme PEP from a block cipher E :
K × {0, 1}n → {0, 1}n and call it PEP[E]. The key space of PEP[E] is same as
that of the underlying block cipher E and the tweak space is T = {0, 1}n. The
message space consists of all binary strings of size mn where m ≥ 1.

Finite Field Arithmetic: An n-bit string can also be viewed as an element in
GF (2n). Thus, we will consider each n-bit string in the specification of PEP as
a polynomial over GF (2) modulo a fixed primitive polynomial τ(x) of degree n.
For each n-bit string Z that occur in the description of PEP, we will use Z(x) to
denote the corresponding polynomial in GF (2n). The expressions p(x)M1 (resp.
xEN), represent the n-bit string obtained by multiplying the polynomials p(x)
and M1 (resp. x and EN) modulo τ(x). Also for two n-bit strings Z1 and Z2, the
expression Z1(x)Z2(x) denotes the n-bit string obtained by multiplying Z1(x)
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and Z2(x) modulo τ(x). Finally, by R−1(x) we will denote the multiplicative
inverse of R(x) modulo τ(x) when R(x) �= 0.

Definition 1. Let m ≥ 3 and pm,1(x), . . . , pm,m(x) be a sequence of polynomials
over GF (2) each having degree at most n−1. We call such a sequence an allowed
sequence with respect to a primitive polynomial τ(x) of degree n if the following
two conditions hold.

1.
⊕m

i=1 pm,i(x) ≡ 0 mod τ(x).
2. For 1 ≤ i < j ≤ m, (pm,i(x) ⊕ pm,j(x)) �≡ 0 mod τ(x).

From the definition, it is clear that for an allowed sequence to exist, we must
have m ≥ 3. The parameter m in the specification of PEP will represent the
number of blocks to be encrypted (or decrypted). Later we show how to easily
define such an allowed sequence. Since τ(x) is fixed, we will simply write “allowed
sequence” instead of “allowed sequence with respect to τ(x)”.

The notation bin(m) denotes the n-bit binary representation of the integer
m. For example, bin(1) = 0n−11 and bin(2) = 0n−210. The specification of PEP
consists of three cases: m = 1; m = 2; and m ≥ 3. The cases m = 1 and m = 2
are shown in Figure 2. Figure 3 shows the encryption of a 4-block message. The
complete encryption and decryption algorithms are shown in Figure 1.

Remark: For decryption to be possible, we need R(x) to have a multiplicative
inverse modulo τ(x). Since R(x) is a polynomial of degree at most n − 1, the
only value for which R(x) does not have such an inverse is R(x) = 0. For such
an R, the protocol is not defined. Note that R = EK(T ). Assuming EK() to
be a random permutation, the probability R = 0 is 1/2n. Since n ≥ 128, the
probability of getting a T for which the protocol is not defined is negligible.

Basic intuition behind the construction: The basic idea of the construction is
to compute a polynomial hash (Wegman-Carter [16]) of the message. (Similar
hashes are used in the GCM mode of operation [10] and HCTR.) This hash is
XOR-ed with EN to obtain the element MPP whose expression is the following.

MPP = EN ⊕
m⊕

i=1

Pi(x)Ri−1(x). (1)

The mask M1 is obtained by encrypting MPP . Since we are aiming at an
SPRP, we should ensure that each ciphertext bit depends upon all the plaintext
bits. To do this, the mask M1 is “mixed” to the message blocks to obtain the
PPPi’s. While doing this we must be careful. During decryption, we will obtain
the PPPi’s after the decryption layer. Thus, we should be able to compute
MPP from the PPPi’s. To ensure that this can be done, we do two things.
First we convert the Pi’s to PPi’s by multiplying with Ri−1. The second thing is
to “distribute” M1 among the PPi’s while obtaining the PPPi’s so as to ensure
that

m⊕

i=1

PPPi =
m⊕

i=1

PPi =
m⊕

i=1

Pi(x)Ri−1(x) = MPP ⊕ EN. (2)
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This follows from the first property of allowed sequences, namely,
⊕m

i=1 pm,i(x) ≡
0 mod τ(x) and hence MPP can be computed either as

⊕m
i=1 PPi ⊕ EN or as⊕m

i=1 PPPi ⊕ EN . Since allowed sequences exist only for m ≥ 3, we need to
tackle the cases m = 1 and m = 2 separately. In the case m = 1, there is no
requirement to “distribute” M1 among the message blocks while in the case of
m = 2, this is a bit tricky to do. In the last case, we distribute M1 as M1⊕EN and
M1⊕EEN . Note that the XOR of these two elements is EN ⊕EEN (and not 0).
However, both EN and EEN can be computed from the tweak and the length
of the message and hence MPP = PP1 ⊕ PP2 ⊕ EN = PPP1 ⊕ PPP2 ⊕ EEN
and can be computed both during encryption and decryption.

The computation after the encryption layer is similar to the computation
before the encryption layer. This is because we are constructing an SPRP and
the view from the decryption end will be similar to the view from the encryption
end. In the decryption query, we work with L(x) = R−1(x) while computing the
polynomial hash. This is required to ensure the consistency of decryption. This
leads to decryption requiring one extra inversion operation making it slightly
more costlier than encryption.

2.1 Construction of Allowed Sequence of Polynomials

In this section, we provide one construction of allowed sequence. We do not claim
this to be the only possibility; there may be others.

Let τ(x) be a primitive polynomial of degree n. Let mmax be a positive integer
such that τ(x) does not divide any trinomial of degree less than mmax. Estimates
of mmax have been studied in the context of attacks on the nonlinear combiner
model for stream ciphers [7]. (To use a primitive polynomial τ(x) in such stream
ciphers, it is necessary that τ(x) does not divide a low degree trinomial.) This
study indicates that mmax is around 2n/3. Given τ(x), there are algorithms for
computing sparse multiples of τ(x). See [15] for a discussion on this issue.

We will be constructing an allowed sequence of length mmax and hence we will
not be able to encrypt a message having more than mmax blocks. For n = 128,
we have 2n/3 ≈ 242.6 and hence mmax is also around 242.6. The ability to encrypt
messages having at most 242.6 many blocks is sufficient for all practical purposes.

Let m = 3t ≤ mmax, with t ≥ 1. We define a sequence of polynomials
τ3t,1(x), . . . , τ3t,3t(x) in the following manner.

τ3t,i(x) = xi for 1 ≤ i ≤ 2t;
τ3t,2t+i(x) = x2i−1 ⊕ x2i for 1 ≤ i ≤ t.

}

(3)

Let 3 ≤ m ≤ mmax. We define a sequence of polynomials pm,1(x), . . . , pm,m(x)
in the following manner.

m = 3t: Define pm,i(x) = τm,i(x).

m = 3t + 1: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3,
pm,4(x) = x3 ⊕ 1 and pm,4+i(x) = x3τ3(t−1),i(x), for 1 ≤ i ≤ m.
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Algorithm ET
K(P1, P2, . . . , Pm)

R = EK(T );
EN = EK(R ⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

PPP1 = P1 ⊕ EN ;
CCC1 = EK(PPP1);
C1 = CCC1 ⊕ xEEN ;
return C1;

endif

if m == 2, then
PP1 = P1; PP2 = R(x)P2(x);
MPP = PP1 ⊕ PP2 ⊕ EN ;
M1 = EK(MPP );
PPP1 = PP1 ⊕ M1 ⊕ EN ;
PPP2 = PP2 ⊕ M1 ⊕ EEN ;
CCC1 = EK(PPP1);
CCC2 = EK(PPP2);
MCC = CCC1 ⊕ CCC2 ⊕ EN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕ M2 ⊕ EN ;
CC2 = CCC2 ⊕ M2 ⊕ EEN ;
C1 = CC1; C2 = R(x)CC2(x);
return C1, C2;

endif
if m ≥ 3, then

R1 = 1; PP1 = P1; MPP = PP1;
for i = 2 to m do

Ri(x) = R(x)Ri−1(x);
PPi(x) = Ri(x)Pi(x);
MPP = MPP ⊕ PPi;

end for
MPP = MPP ⊕ EN ;
M1 = EK(MPP ); MCC = 0n;
for i = 1 to m do

PPPi = PPi ⊕ pm,i(x)M1(x);
CCCi = EK(PPPi);
MCC = MCC ⊕ CCCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕ pm,1(x)M2(x);
R1 = 1; C1 = CC1;
for i = 2 to m do

CCi = CCCi ⊕ pm,i(x)M2(x);
Ri(x) = R(x)Ri−1(x);
Ci(x) = Ri(x)CCi(x);

end for
return C1, C2, . . . , Cm;

endif

Algorithm DT
K(C1, C2, . . . , Cm)

R = EK(T );
EN = EK(R ⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

CCC1 = C1 ⊕ xEEN ;
PPP1 = DK(CCC1);
P1 = PPP1 ⊕ EN ;
return P1;

endif
L(x) = R(x)−1;
if m == 2, then

CC1 = C1; CC2 = L(x)C2(x);
MCC = CC1 ⊕ CC2 ⊕ EEN ;
M2 = EK(MCC);
CCC1 = CC1 ⊕ M2 ⊕ EN ;
CCC2 = CC2 ⊕ M2 ⊕ EEN ;
PPP1 = DK(CCC1);
PPP2 = DK(CCC2);
MPP = PPP1 ⊕ PPP2 ⊕ EEN ;
M1 = EK(MPP );
PP1 = PPP1 ⊕ M1 ⊕ EN ;
PP2 = PPP2 ⊕ M1 ⊕ EEN ;
P1 = PP1; P2 = L(x)PP2(x);
return P1, P2;

endif
if m ≥ 3, then

L1 = 1; CC1 = C1; MCC = CC1;
for i = 2 to m do

Li(x) = L(x)Li−1(x);
CCi = Li(x)Ci(x);
MCC = MCC ⊕ CCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC); MPP = 0n;
for i = 1 to m do

CCCi = CCi ⊕ pm,i(x)M2(x);
PPPi = DK(CCCi);
MPP = MPP ⊕ PPPi;

end for
MPP = MPP ⊕ EN ;
M1 = EK(MPP );
PP1 = PPP1 ⊕ pm,1(x)M1(x);
L1 = 1; P1 = PP1;
for i = 2 to m do

PPi = PPPi ⊕ pm,i(x)M1;
Li(x) = L(x)Li−1(x);
Pi(x) = Li(x)PPi(x);

end for
return P1, P2, . . . , Pm;

endif

Fig. 1. Encryption and Decryption using PEP

m = 3t + 2: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3,
pm,4(x) = x3⊕x4, pm,5(x) = x4⊕1 and pm,5+i(x) = x4τ3(t−1),i(x), for 1 ≤ i ≤ m.

From the definition, note that for m1 �= m2, we may have pm1,i(x) �= pm2,i(x).
Later we show that due to its simple form, multiplication by pm,i(x) is quite
efficient.

Proposition 1. The sequence of polynomials pm,1(x), . . . , pm,m(x) is an allowed
sequence.
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Fig. 2. (a) Enciphering one plaintext block with PEP, (b) Enciphering two plaintext
blocks with PEP
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Fig. 3. Enciphering four plaintext blocks with PEP. R = EK(T ), EN = EK(R ⊕
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i=1 Ri−1(x)PPi(x) ⊕ EN), M2 =
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�4

i=1 CCCi ⊕ EEN).

Proof : From the definition of τ3t,i(x) it is easy to verify that
⊕3t

i=1 τ3t,i(x) = 0.
From this it is easy to see that

⊕m
i=1 pm,i(x) = 0. This establishes the first

condition for allowed sequences.
For the second condition, we must show that pm,i(x)⊕pm,j(x) �≡ 0 mod τ(x).

There are three cases to consider.
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Both pm,i(x) and pm,j(x) are monomials: By construction the degrees of both
pm,i(x) and pm,j(x) are at most mmax < 2n − 1. Hence, by the primitivity of
τ(x) we have the required condition.

Both pm,i(x) and pm,j(x) are 2-nomials: By construction pm,i(x) = xi1 ⊕ xi1+1

and pm,j(x) = xj1 ⊕xj1+1. Assume without loss of generality that i1 < j1. Then,
pm,i(x)⊕pm,j(x) = xi1 (1⊕x)(1⊕xj1−i1). Again, the primitivity of τ(x) ensures
the required condition.

One of pm,i(x) and pm,j(x) is a monomial and the other is a 2-nomial: In this
case, pm,i(x) ⊕ pm,j(x) is a trinomial of degree at most mmax. The definition of
mmax ensures the required condition.

This completes the proof. 	


2.2 Computation of pm,i(x)M1(x)

In the encryption and decryption algorithms, we need to compute pm,i(x)M1(x)
and pm,i(x)M2(x). We show how these may be efficiently computed. For this it
is sufficient to show how to efficiently compute τ3t,i(x)M1 and τ3t,i(x)M2.

The polynomials τ3t,i(x) satisfy the following recurrences:

τ3t,i(x) = xτ3t,i−1(x) for 2 ≤ i ≤ 2t;
τ3t,2t+1 = τ3t,1(x) ⊕ τ3t,2(x);
τ3t,i(x) = x2τ3t,i−1(x) for 2t + 2 ≤ i ≤ 3t.

Define M1,3t,i = τ3t,i(x)M1. Then using the above recurrences, we have

M1,3t,i(x) = xM1,3t,i−1for 2 ≤ i ≤ 2t;
M1,3t,2t+1 = M1,3t,1(x) ⊕ M1,3t,2;
M1,3t,i(x) = x2M1,3t,i−1for 2t + 2 ≤ i ≤ 3t.

Using these recurrences, it is easy to compute all the τ3t,i(x)M1’s; the require-
ment is to multiply by either x or x2 and perform a bitwise XOR. Multiplying
by x and x2 is much more efficient than a general multiplication modulo τ(x).
A similar computation will yield the products τ3t,i(x)M2.

3 Features of PEP

Here we discuss some of the important features and limitations of PEP.

Message Length: PEP does not produce any ciphertext expansion as it does not
produce any tag. The tweak is not considered to be a part of the ciphertext.
This is similar to CMC, EME, EME∗ and HCTR. The current version of PEP
can only handle messages whose length is a multiple of n. This is similar to
CMC. EME can handle messages of lengths mn, with 1 ≤ m ≤ n, while EME∗

and HCTR can handle messages of lengths ≥ n. Modification of PEP to handle
messages of lengths ≥ n is a future task.
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There is a (theoretical) restriction on the number of blocks in a particular
message to be encrypted by PEP. The number of blocks in any one message
to be encrypted by PEP is at most mmax. For n = 128, this implies that a
single message can contain at most around 242.6 blocks, which is sufficient for
all practical purposes (see Section 2.1).

Single Block Cipher Key: PEP uses the same key for all the block cipher calls.
CMC and EME require a single key. On the other hand, EME∗ requires three
keys and HCTR requires two keys. A single block cipher key saves key storage
space and key setup costs.

Tweak: Encryption under PEP requires an n-bit tweak. The tweak need not
be random, unpredictable or secret. The adversary is allowed to repeat a tweak
in queries to the encryption and decryption oracles. The tweak is required for
decryption and hence has to be available at both the receiver and the sender
ends. This may be achieved by maintaining a shared counter between the two
parties or it may be such that it can be understood from the context. An example
of the later is the sector address in disk encryption applications.

Online/Offline: An encryption scheme is called online if it can output a stream
of ciphertext bits as a stream of plaintext bits arrive. PEP is not online. PEP
incorporates the effect of the whole plaintext on each ciphertext bit. Hence,
construction of PEP does not allow it to output a single block of ciphertext
unless it has seen the total message. We note that no construction of SPRP
(tweakable or otherwise) can be online for the same reason as PEP.

Consider the encryption algorithm of PEP for m ≥ 3. The algorithm consists
of three separate for loops. The first loop computes the PPi’s and the quantity⊕m

i=1 Ri(x)Pi(x). The values of the PPi’s need to be stored for use by the
second loop. The second loop computes the PPPi’s and the CCCi’s and also
the quantity

⊕m
i=1 CCCi. The PPPi’s do not need to be stored but the value of

the CCCi’s need to be stored for use by the third loop. The third loop produces
the CCi’s and the Ci’s which completes the encryption. (Decryption also has a
similar structure).

To summarize, the algorithm makes a pass over the Pi’s to produce the PPi’s
which are stored; makes a pass over the PPi’s to produce the CCCi’s which
are also stored; and finally makes a pass over the CCCi’s to produce the Ci’s.
This makes it a three pass algorithm. Note that the PPi’s can be written over
the Pi’s and the CCCi’s can be written over the PPi’s. Thus, the intermediate
quantities PPi’s and the CCCi’s do not require any extra storage.

HCTR is also a hash-encrypt-hash type construction and requires three passes
for reasons similar to that of PEP. The algorithmic descriptions of CMC, EME
and EME∗ as given in the respective papers suggest these algorithms to be three-
pass algorithms. On the other hand, a careful consideration of the algorithms
show that all of these algorithms can be implemented using two passes over
the data. Basically, these algorithms are of the form encrypt-mask-encrypt. The
first encryption layer needs to be completed in one pass over the data. Then
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the mask is computed. The actual masking of the intermediate values and the
second encryption layer can be combined in a single pass.

Note that any algorithm requiring more than one pass cannot be online and
also at least one set of intermediate variables need to be stored. If we overwrite
the Pi’s then no extra storage is required for either two or three pass algorithms.
On the other hand, if we wish to preserve the Pi’s, then the same amount of
extra space is required by both two and three pass algorithms. Further, a two
pass algorithm is not necessarily more efficient than a three pass algorithm. We
have to compare the total amount of computation done by the two algorithms
to determine relative efficiency. We consider this issue next.

Computation Cost: PEP performs two polynomial hashes and one layer of block
cipher encryption. The total number of block cipher encryptions for an m-block
message is 4 if m = 1; and is m + 5 if m ≥ 2. The polynomial hashes are used
to compute MPP and MCC for m ≥ 2, the two computations being similar.

To compute MPP we have to compute
⊕m

i=1 Pi(x)Ri−1(x). Using Horner’s
rule this can be computed using (m − 1) multiplications over GF (2n). But
Horner’s rule does not compute the values PPi = Pi(x)Ri−1(x). Since the val-
ues of PPi’s are also required, using Horner’s rule does not help. We have to
compute R2(x), . . . , Rm−1(x) and P2(x)R(x), . . . , PmRm−1(x). These require a
total of 2m − 3 multiplications in GF (2n). Similarly, a total of 2m − 3 multi-
plications are required for computing MCC and the CCi’s. Hence, for m ≥ 2,
PEP requires a total of 4m − 6 finite field multiplications. In addition, there are
the multiplications of the type pm,i(x)M1 and pm,i(x)M2. But as discussed in
Section 2.2, these can be computed very efficiently.

If sufficient memory is available, then the values R2(x), . . . , Rm−1(x) com-
puted during the computation of MPP and the PPi’s can be stored and used
during the computation of MCC and the CCi’s. (This can also be combined
with the parallel computation strategy discussed below.) This brings down the
total number of multiplications to 3m − 4.

We note that decryption requires the computation of one finite field inverse.
The cost of this is amortized over the entire computation and will not reflect on
the overall cost if m is moderately large. The main cost will be that for hardware
implementation since we will have to implement a finite field inverter requiring
more chip area.

Parallelism: The encryption layer is fully parallelizable though the computations
of R, EN , EEN , M1 and M2 has to be sequential. Thus, for m ≥ 2, we require
at least six parallel encryption rounds irrespective of the number of available
block cipher units – five for computing the above quantities and at least one for
encrypting the PPPi’s.

The computation of the PPi’s and MPP can be parallelized in the following
manner. We illustrate by an example. Suppose there are 4 finite field multipli-
ers available. In the first step, the quantity R2 is computed. Now consider the
following parallel schedule for the four multipliers.
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multiplier 1 multiplier 2 multiplier 3 multiplier 4
Round 1 (P2(x) ∗ R(x)) (P3(x) ∗ R2(x)) (R(x) ∗ R2(x)) (R2(x) ∗ R2(x))
Round 2 (P4(x) ∗ R3(x)) (P5(x) ∗ R4(x)) (R3(x) ∗ R2(x)) (R4(x) ∗ R2(x))
Round 3 (P6(x) ∗ R5(x)) (P7(x) ∗ R6(x)) (R5(x) ∗ R2(x)) (R6(x) ∗ R2(x))
. . . . . . . . . . . . . . .

Using this schedule, all the four multipliers can be kept busy in all the rounds
(except possibly for the last round and the initial computation of R2). A similar
schedule can be built for computing MCC and the CCi’s. In general using κ
many multipliers, all the multiplications can be completed in approximately
�(4m − 6)/κ many parallel rounds which is optimal for κ many multipliers.

HCTR uses a polynomial hash which can be evaluated by Horner’s rule. On the
other hand, there is no straightforward way of parallelizing the polynomial com-
putation without increasing the total number of multiplications. The approach
described above can be used to obtain parallel implementation of polynomial
evaluation and this would approximately double the number of multiplications
required in evaluating using Horner’s rule.

Provable Security: PEP is provably secure. We state a theorem related to the
security of PEP in Section 4 and provide the proof ideas (for the full proof see [2]).
The concrete security bound that we obtain for PEP is similar to that obtained
for CMC, EME and EME∗ and is as expected for a mode of operation. Loosely
speaking, the theorem shows that the advantage of an adversary in attacking
PEP[E] as a tweakable SPRP is bounded above by the advantage of an adversary
in attacking E as an SPRP plus an additive factor which is approximately equal
to cσ2

n/2n, where c is a constant and σn is the total number of blocks (plaintext
or ciphertext) provided by the adversary in its queries to the encryption and the
decryption oracles. The security bound of HCTR is considerably weaker than
the other modes of operations including PEP. For HCTR, the quantity cσ2

n/2n

is replaced by cσ3
n/2n, i.e., there is a cubic security degradation rather than the

usual quadratic degradation. One consequence of a weaker security bound is that
the secret keys need to changed much earlier compared to the other modes.

Comparison: Table 1 provides a comparison of the various features of PEP and
other modes of operations which are SPRPs. We make the following points based
on Table 1.

HCTR is the only previously known fully specified tweakable SPRP which is
of the hash-encrypt-hash type. The NR construction is too incomplete (and also
not tweakable) to permit a proper comparison to other constructions. The main
drawback of HCTR is its weaker security bound and the requirement of two keys.
It has other good features such as ability to handle all message lengths ≥ n, and
lower computation cost. The encryption layer of HCTR is fully parallel. The two
hash layers can be implemented in parallel with computation cost similar to that
of PEP.

PEP is currently the only known single key, efficiently parallelizable algorithm
which can handle arbitrary number of n-bit blocks. CMC, EME∗ and HCTR can
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Table 1. Comparison of SPRPs using an n-bit block cipher, an n-bit tweak and for
m message blocks. (We assume m ≥ 3.) [BC]: one block cipher invocation; [M]: one
GF (2n) multiplication.

Mode sec. bnd. computation keys msg. len. passes enc. parallel?
cost layers

CMC σ2
n/2n (2m + 1)[BC] 1 mn, m ≥ 1 2 2 No

EME σ2
n/2n (2m + 2)[BC] 1 mn, 1 ≤ m ≤ n 2 2 Yes

EME∗ σ2
n/2n (2m + m

n
+ 1)[BC] 3 ≥ n 2 2 Yes

HCTR σ3
n/2n m[BC] 2 ≥ n 3 1 partial

+2(m + 1)[M]
PEP σ2

n/2n (m + 5)[BC] 1 mn, m ≥ 1 3 1 Yes
+(4m − 6)[M]

handle such messages, but CMC is strictly sequential; EME∗ requires one key
from K plus two other n-bit keys; and HCTR requires one key from K and one
n-bit key. On the other hand, EME uses a single key and is fully parallel but
can handle at most n many n-bit blocks.

A general comparison of the computation cost of PEP and HCTR with the
other modes (CMC, EME and EME∗) is difficult. This is because in one case
we have less block cipher invocations but GF (2n) multiplications whereas in the
other case we have more block cipher invocations and no GF (2n) multiplications.
Consequently, the comparison depends upon several factors such as:

1. The implementation platform – hardware or software. For software imple-
mentation, we need to consider the target architecture and its support for
GF (2n) multiplication. Availability of cryptographic co-processors may pro-
vide substantial support for such operation. For hardware implementation,
the number of available parallel encryption units and GF (2n) multiplication
units need to be considered.

2. The most important consideration is the design of the actual block cipher
being used with the mode of operation and its efficient implementation.

Note that PEP approximately trades one block cipher call for four multiplica-
tions (HCTR trades one [BC] for two [M]). Implementation results from [10]
suggest that using a look-up table it is possible to complete a few GF (2n) mul-
tiplications in the time required for one AES-128 invocation. A more detailed
software speed comparison requires efficient implementation of the various modes
of operation and can be a topic of future study.

A mode of operation is not designed for use with any particular block cipher.
As a side remark, we would like to note that the FIPS 197 specifies AES for
protecting “sensitive (unclassified) information”. So each government might be
having its own block cipher for protecting classified information. The computa-
tion cost of PEP vis-a-vis the other modes with respect to such ciphers has to
be determined on a case-to-case basis.

The number of passes made by PEP and HCTR is one more than the other
modes (though the number of encryption layers is one less). We do not consider
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this to be a serious problem since all the modes require at least two passes and
cannot perform online encryption and decryption. The additional pass of PEP
and HCTR by itself does not by itself lead to any efficiency degradation.

4 Security of PEP

4.1 Definitions and Notation

As mentioned earlier, an n-bit block cipher is a function E : K × {0, 1}n →
{0, 1}n, where K �= ∅ is called the key space and for any K ∈ K, E(K, .) is a
permutation. We will usually write EK( ) instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacting with the oracles
O1, O2, finally outputs the bit 1.

Let Perm(n) denote the set of all permutations on {0, 1}n. We require E(, )
to be a strong pseudorandom permutation. The advantage of an adversary
in breaking the strong pseudorandomness of E(, ) is defined in the following
manner.

Adv±prp
E (A) = Pr

[
K

$← K : AEK( ),E−1
K ( ) ⇒ 1

]
−

Pr
[
π

$← Perm(n) : Aπ( ),π−1( ) ⇒ 1
]
.

Formally, a tweakable enciphering scheme is a function E : K×T ×M → M,
where K �= ∅ and T �= ∅ are the key space and the tweak space respectively and
M = ∪i≥1{0, 1}ni, where n is the length of a message block. We shall often write
ET

K(.) instead of E(K, T, .). The inverse of an enciphering scheme is D = E−1

where X = DT
K(Y ) if and only if ET

K(X) = Y .
Let PermT (M) denote the set of all functions πππ : T ×M → M where πππ(T , .)

is a length preserving permutation. Such a πππ ∈ PermT (M) is called a tweak
indexed permutation. For a tweakable enciphering scheme E : K × T × M →
M, we define the advantage an adversary A has in distinguishing E and its
inverse from a random tweak indexed permutation and its inverse in the following
manner.

Adv±p̃rp
E (A) = Pr

[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−

Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]
.

Pointless queries: An adversary never queries its deciphering oracle with (T, C)
if it got C in response to an encipher query (T, M) for some M . Similarly,
the adversary never queries its enciphering oracle with (T, M) if it got M as
a response to a decipher query of (T, C) for some C. These queries are called
pointless as the adversary knows what it would get as response for such queries.
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Following [5], we define the query complexity σn of an adversary as follows. A
string X contributes max(|X |/n, 1) to the query complexity. A tuple of strings
(X1, X2, . . .) contributes the sum of the contributions from all oracle queries
plus the contribution from the adversary’s output. Suppose an adversary makes
q queries where the number of n-bit blocks in the ith query is �i. Then, σn =
1 +

∑q
i=1(1 + �i) ≥ 2q. Let ρ be a list of resources used by the adversary A

and suppose Adv±xxx
π (A) has been defined where π is either a block cipher

or a tweakable enciphering scheme. Adv±xxx
π (ρ) denotes the maximal value of

Adv±xxx
π (A) over all adversaries A using resources at most ρ. Usual resources

of interest are the running time t of the adversary, the number of oracle queries
q made by the adversary and the query complexity σn (n ≥ 1).

The notation PEP[E] denotes a tweakable enciphering scheme, where the n-
bit block cipher E is used in the manner specified by PEP. Our purpose is
to show that PEP[E] is secure if E is secure. The notation PEP[Perm(n)] de-
notes a tweakable enciphering scheme obtained by plugging in a random per-
mutation from Perm(n) into the structure of PEP. For an adversary attacking
PEP[Perm(n)], we do not put any bound on the running time of the adver-
sary, though we still put a bound on the query complexity σn. We show the
information theoretic security of PEP[Perm(n)] by obtaining an upper bound

on Adv±p̃rp
PEP[Perm(n)](q, σn). The upper bound is obtained in terms of n and

σn. For a fixed block cipher E, we bound Adv±p̃rp
PEP[E](q, σn, t) in terms of

Adv±prp
E (q, σn, t′), where t′ = t+O(σn). We will use the notation Eπ as a short-

hand for PEP[Perm(n)] and Dπ will denote the inverse of Eπ. Thus, the notation
AEπ,Dπ will denote an adversary interacting with the oracles Eπ and Dπ.

4.2 Statement of Result

The following theorem specifies the security of PEP.

Theorem 1. Fix n, q and σn ≥ q to be positive integers and an n-bit block
cipher E : K × {0, 1}n → {0, 1}n. Then

Adv±p̃rp
PEP[Perm(n)](q, σn) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
(4)

Adv±p̃rp
PEP[E](q, σn, t) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
+ Adv±prp

E (q, σn, t′) (5)

where t′ = t + O(σn).

Since each query consists of at least one n-bit block, we have q ≤ σn and hence
we could write (q2 + 6(5q + σn)2) ≤ cσ2

n for some constant c. Upper bounding
q by σn is proper when σn and q are comparable, i.e., when each query consists
of a few blocks. On the other hand, if each query consists of a large number of
blocks, the bound q ≤ σn is very loose and replacing q by σn makes the bound
appear worse than what it really is. Hence, we choose to present the bound in
terms of both q and σn.
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The above result and its proof is similar to previous work (see for exam-
ple [4,5,14]). As mentioned in [4], Equation (5) embodies a standard way to pass
from the information theoretic setting to the complexity theoretic setting. Let
E(., ., .) denote PEP[E]. For any adversary A, we have the following.

Adv±p̃rp
PEP[E](A)

= Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

=
(
Pr

[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
])

+

Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

= X + Adv±p̃rp
PEP[Perm(n)](A)

where

X =
(
Pr

[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
])

.

The quantity X represents an adversary’s advantage in distinguishing PEP[E]
from PEP[π], where π is a randomly chosen permutation from Perm(n). Clearly,
such an adversary A can also distinguish E from a random permutation and
hence X ≤ Adv±prp

E (A). This argument shows how (4) is obtained from (5).
We need to consider an adversary’s advantage in distinguishing a tweakable

enciphering scheme E from an oracle which simply returns random bit strings.
This advantage is defined in the following manner.

Adv±rnd
MEM[Perm(n)](A) = Pr[π $← Perm[n] : AEπ,Dπ ⇒ 1] − Pr[A$(.,.),$(.,.) ⇒ 1]

where $(., .) returns random bits of length |M |. The basic idea of proving (4) is
as follows.

Adv±p̃rp
PEP[Perm(n)](A)

= Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

=
(
Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]

− Pr
[
A$(.,.),$(.,.) ⇒ 1

])
+

(
Pr

[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

≤ Adv±rnd
PEP[Perm(n)](A) +

(
q

2

)
1
2n

where q is the number of queries made by the adversary. For a proof of the last
inequality see [5].

The main task of the proof now reduces to obtaining an upper bound on
Adv±rnd

PEP[Perm(n)](σn). The complete proof is provided in [2]. The proof uses the
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standard technique of sequence of games between an adversary and the mode
of operation PEP. The proof is similar to the corresponding proofs of CMC
[4] and EME [5]. By a sequence of games we show that if in response to any
valid query of the adversary, random strings of appropriate lengths are returned
then the internal computations of PEP can be performed consistently under the
assumption that the block cipher and its inverse are random permutations. The
crux of the proof lies in showing that there would seldom be any collisions in
the range and domain sets of the block cipher if the adversary queries PEP with
valid queries and PEP responds to them by producing random strings. In a later
part we remove the randomness associated with the adversary and the game
runs on a fixed transcript consisting of the queries and their responses. We show
that in such a situation also the internal computations of PEP can be performed
consistently.

We later prove (see [2]) that for any adversary making q queries and having
query complexity σn

Adv±rnd
PEP[Perm(n)](q, σn) ≤ 3(5q + σn)2

2n
.

Using this and (6), we obtain

Adv±p̃rp
PEP[Perm(n)](q, σn) ≤ 1

2n+1 ×
(
q2 + 6(5q + σn)2

)
.

5 Conclusion

We have presented a new construction for a tweakable SPRP called PEP. Our
approach is to use polynomial hash, followed by an encryption layer and again
followed by a polynomial hash. This is different from the other constructions of
tweakable SPRPs, namely CMC, EME and EME∗ and is similar to the approach
for constructing SPRP (not tweakable SPRP) given in [11]; this approach has
also been used in constructing HCTR. PEP offers certain advantages over the
known tweakable SPRPs – it is the only know construction which uses a single
key, is efficiently parallelizable and can handle an arbitrary number of blocks.
We make a detailed comparison between the known constructions of tweakable
SPRPs which show that PEP compares quite favorably
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