
Transformation Laws for UML-RT

Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota

Centre for Informatics, Federal University of Pernambuco
P.O.Box 7851, CEP 50740-540, Recife-PE, Brazil

{rtr, acas, acm}@cin.ufpe.br

Abstract. With model-driven development being on the verge of be-
coming an industrial standard, the need for systematic development
strategies based on safe model transformations is a demand. Transforma-
tions must take into account changes in both behavioural and structural
diagrams. In this paper, we present a set of transformation laws that
aims to systematise the evolution of semantically well-defined UML-RT
models, with preservation of both static and dynamic aspects. The pro-
posed laws support the transformation of initial abstract analysis models
into concrete design models. Furthermore, we show the seamless applica-
tion of the laws through design activities of the Rational Unified Process
in the development of a case study. Soundness and completeness of the
laws are briefly addressed.

1 Introduction

In Model Driven software Engineering (MDE) [1], the central artifacts, and the
driving force, of a software development are models, rather than code in a pro-
gramming language. As a departure from the general idea that the usefulness
of models are only for documentation or to capture interesting design aspects
during development, the main objective in MDE is that the development process
is driven by the activity of modelling.

The purpose of MDE is combining an architecture of the model roles with
other process activities. In this framework, transformations help to overcome the
challenges of model evolution, allowing restructure of the software with preser-
vation of behaviour; the idea is similar to well-known code transformation tech-
niques like refactorings [2] and refinements [3].

Models are widely expressed using the Unified Modeling Language (UML) [4],
as well as its extensions. In particular, we emphasise the use of UML-RT [5], an
UML profile, which has a clear definition for reactive components and compo-
nent protocols, and is useful to describe concurrent and distributed domains. In
previous work [6] we defined a formal semantics for UML-RT, and illustrated
how model transformations can be verified. We have also explored refinement
notions for UML-RT, together with some large grain transformation rules [7],
which seemed useful to support the evolution and restructure of architectural
UML-RT models.

Here we concentrate on an algebraic presentation of UML-RT. We propose a
set of algebraic laws for the language, focusing on the new elements that it adds

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 123–137, 2006.
c© IFIP International Federation for Information Processing 2006

124 R. Ramos, A. Sampaio, and A. Mota

to UML: active classes (capsules), protocols, ports and connections. The pro-
posed laws express both basic properties of each individual construct, as well as
relationships among them. For instance, the laws permit justifying transforma-
tions of initial abstract models into concrete design models, using consistent steps
with preservation of both static and dynamic model aspects (taking into account
structural and behavioural properties together); this is illustrated through the
development of a case study: a simple manufacturing system. We also address
a notion of completeness, briefly presenting a strategy to reduce an arbitrary
UML-RT model to a extended UML model, entirely based on the laws.

Our work can be considered complementary to others that focus on laws for
UML design elements [8, 9], as well as on component transformations [10]. A
more detailed account of related work is left for the concluding section.

We briefly present an overview of UML-RT, including part of a formal se-
mantics, in the next section. In Section 3, we present a selection of our set of
laws, and address completeness. In Section 4, we show how these laws can be
used to capture and formalise some design guidelines adopted, for example, by
the Rational Unified Process (RUP) [11], through the development of our case
study. Our conclusions and related work are presented in Section 5.

2 UML-RT Semantics Overview

The specification of reactive systems is a complex task, involving data, control
behaviour, communication and architectural modelling aspects. In order to in-
corporate support for all these facets into a widely used language, like UML,
several ROOM concepts have been added to the UML-RT. Although some of
these concepts have also influenced the component model of the recent UML
2.0 [12] version, here we use the UML-RT profile because we consider that its pro-
posed model for active objects is more consolidated than that proposed for UML
2.0. A detailed comparison between UML-RT and UML 2.0 is out of the scope
of this paper; the work reported in [13] presents some problems on the state-
chart specification of UML 2.0. Furthermore, there is commercially established
tool support for UML-RT.

UML-RT, like other Architectural Description Languages, models reactive
systems with active architectural components working concurrently and com-
municating among themselves. Communication is modelled by means of input
and output message exchanges, which can be synchronous or asynchronous; here
we assume synchronous communication. These concepts have been introduced
to UML-RT via four new design elements: capsule, protocol, port and connec-
tor. Capsules (active classes) describe architectural components whose points
of interaction are called ports, which are assembled by connectors and realise
communication signals previously declared in a protocol.

Despite the expressiveness of UML-RT, the rigorous development of non-
trivial applications does not seem feasible without an assigned formal semantics.
In previous work [6] we defined a semantics for UML-RT via mapping into the
formal notation Circus [14], which combines CSP, Z and specification statements.

Transformation Laws for UML-RT 125

Fig. 1. Use Case Diagram

The semantics of Circus is defined in the setting of the Unifying Theories of
Programming [15]; this relational model has proved convenient for reasoning.
Another advantage is that Circus includes the main design concepts of UML-RT
and provides a refinement calculus [3]. Both the semantics and the laws of Circus
have been inspiring to prove laws that we propose for UML-RT.

Throughout this section, an example of a simplified manufacturing system
is used to illustrate the UML-RT notation and semantics. In this system, the
entire application is responsible for processing a number of workpieces, which are
inserted by an operator and made available for retrieving after processed. These
functionalities are presented by the use case diagram in Figure 1. Processing
pieces is an autonomous process that does not require any operator intervention.

In Figure 2, an abstract model of this system is presented. The model is
formed by a set of diagrams and system properties, using diagrams that mainly
represent the following architectural views: static data, dynamic behaviour, and
instance relationships; these are expressed, respectively, by class, state and struc-
ture diagrams. We directly express the system properties by invariants, pre- and
post-conditions in Circus; they could alternatively be expressed in OCL, but an
OCL to Circus mapping is out of the scope of this work.

In the class diagram (top left rectangle) of Figure 2, capsules and protocols are
graphically represented by stereotyped classes with labels Capsule and Protocol.
The diagram emphasises the relationships between the capsules ProdSys and
Storage. The capsule Storage is a bounded reactive buffer that is used to store
objects of class Piece, and ProdSys is used to process these objects. These capsules
have an association to the protocols STO and STI, which are used to govern their
communications: STO declares the input signal req and the output signal output
(used to communicate the request and the delivery of a work piece, respectively),
while STI declares a signal input to store a piece.

By their own nature, capsules provide a high degree of information hiding.
As the communication mechanism is via message passing, all capsule elements
are hidden, including not only attributes, but also methods. The only visible
elements in the capsule are ports, which can be connected to other capsule ports
to establish communication. This decoupling makes capsules highly reusable. In
addition, a capsule can also be defined hierarchically.

A structure diagram describes a capsule structural decomposition in sub-
capsules, showing the capsule interaction through connections among its ports.
We assume that a configuration of the manufacturing system, given by the

126 R. Ramos, A. Sampaio, and A. Mota

Fig. 2. Abstract Analysis Model

structure diagram in Figure 2 (bottom rectangle), is represented by an instance
(man) of capsule Main, which is structurally decomposed into the sub-capsules
sin, son and sys; these sub-capsule instances are created as a consequence of the
association of Main with Storage and ProdSys in the class diagram. Black filled
squares in the capsule instances represent their ports, which are used for commu-
nication (end ports) or just to convey signals to other sub-capsules (relay ports).
Each end port can be connected only to another conjugated port of the same
protocol; conjugated ports are represented by (unfilled) squares and have the
directions of their input and output signals inverted in order to fully assemble
with other ordinary ports. For instance, in the structure diagram, the ports pi
and po are public end ports of ProdSys, while mi and mo are public relay ports
of Main used only to connect ports of sub-capsules to the environment.

The capsule behaviour is described in terms of UML-RT statecharts, which dif-
fer from the standard UML statecharts [16] by including some adaptations to bet-
ter describe active objects. A statechart is composed by transitions and states; in
general, a transition has the form p.e[g]/a, where e is an input signal, p is the port
through which the signal arrives, g is a guard and a is an action. Input signals and a
true guard trigger the transition. As a result, the corresponding action is executed.

We assume that events, guards and actions are expressed using the Circus
notation. For example, in the statechart of Storage, there are two transitions
from state Sa. The one on the right triggers if the req signal arrives through port
so and the buffer is non-empty. The corresponding action declares a variable x
to capture the result of the method remove. This is the way it is done in Circus,
since remove is actually interpreted as a Z Schema. The value of x is then sent
through port so. The syntax for writing these actions related to communication
are also as in CSP. In this work we do not consider capsule inheritance, mainly
because its semantics in UML-RT is not yet well-defined.

Transformation Laws for UML-RT 127

The formal counterpart of the UML-RT concepts are also found in Circus,
since, in this language, concurrent components are represented by processes that
interact via channels. Therefore, capsules and protocols, classifiers with an asso-
ciated behaviour, are semantically mapped into processes, ports into channels,
and classes into Z paragraphs, which act as passive data registers. Furthermore,
connections are represented by means of using common channels. As an example,
consider the following mapping of the capsule Storage into Circus.

| N : N
TSTI ::= input � Piece 	
TSTO ::= req | output � Piece 	
channel si : TSTI, so : TSTO

process Storage =̂ begin
state StorageState =̂ [buffer : seq Piece; size : 0..N | size = #buffer ≤ N]
initial StorageInit =̂ [StorageState ′ | buffer′ = 〈〉 ∧ size′ = 0]
insert =̂ [ΔStorageState; x? : Piece | size < N ∧

buffer′ = buffer � 〈x?〉 ∧ size′ = size + 1]
remove =̂ [ΔStorageState; x ! : Piece | size > 0 ∧ x ! = head buffer ∧

buffer′ = tail buffer ∧ size′ = size − 1]
Sa =̂ (size < N & si?input.x → insert; Sa)

� (size > 0 & so.req → (var x : Piece • remove; so!output.x); Sa)
• StorageInit; Sa
end

In Circus, a process declaration body (delimited by the begin and end key-
words) is composed of a Z state schema, action paragraphs and a main action
(delimited after the • symbol), which defines the process behaviour; action para-
graphs are used to structure the behaviour of a main action and to express data
operations. In this specification, the maximum size of the buffer is a positive con-
stant N . The Storage process takes its inputs and supplies its outputs through
the channels si and so, respectively. The free types TSTI and TSTO categorise
the values communicated by these channels. In our example, the process Storage
encapsulates two state components in the Z schema StorageState: an ordered list
buffer of contents and the size of this list. Initially, buffer is empty and, therefore,
its size is zero; this is specified as a state initialisation action StorageInit . Pre-
and postconditions of methods, and state invariants play a corresponding role
as annotations in the model; they have not been included in Figure 2 for con-
ciseness. The main action initialises the buffer and then acts like the action Sa,
repeatedly offering the choice of input and req, like Sa in the statechart of Storage
(Figure 2). The main action represents the topmost state (S0) of Storage; this
contains all other states in the statechart, and each of these enclosing states is
also mapped to another action paragraph. In the following we present a semantic
mapping for protocols and capsules.

A protocol declaration in UML-RT encapsulates both the communication
elements (signals) and the allowed flow of these elements (statechart). In Circus,
this gives rise to two major elements: a process that captures this behaviour
and a channel to represent the communication elements. This single channel
communicates values of a free type, with each constructor representing a signal.

128 R. Ramos, A. Sampaio, and A. Mota

TP ::= i � T (I) 	| o | TL(incomings) | TL(outgoings)
channel chanP : TP

process P =̂ begin • H(SP) end

In names like chanP above, we assume that P is a placeholder for the actual
protocol name. The channel chanP communicates values of the free type TP; each
value represents a signal. Parameterless and parameterised signals are mapped
into constants and data constructors, like the signals o and i above. The type
of the parameter is translated into a corresponding Circus type by the function
T (). The remaining signals (incomings and outgoings) are mapped by the meta
function TL() that translates this remaining lists such as the elements that was
singled out. The main action is represented by H(SP), where SP stands for the
topmost composite state of P and the function H() translates a statechart into
a Circus action.

Capsules are also defined as processes, with methods and attributes defined as
Z operation and state schemas. Each port generates a channel with the same type
of the corresponding channel of the protocol, and has its behaviour described by
the process obtained from the mapping of its protocol synchronised with that
obtained from the capsule statechart. Observe that in UML-RT the type of a
port is the protocol itself. In Circus, the type of the channel originated from the
port is the free type that represents the protocol signals.

channel p : TP; TL(ports); TL(ports′)
process ChartC =̂ begin

state Cstate =̂ [a : T (A); TL(atts) | InvC]
m =̂ [ΔCstate ; x : T (X);

TL(params) | Prem ∧ Postm]
TL(meths)
• H(Sc)

end

In the above mapping, the process ChartC deals with the views represented
by class and state diagrams. It encapsulates all actions that manipulate the
private attributes of the capsule C. In the capsule C above, the compartments
correspond to attributes, methods and ports. Therefore, a, m and p are those
that we single out, and remaining lists in these compartments are mapped by the
function TL(). The attribute a is mapped to an attribute in the state of ChartC
with its corresponding type in Circus given by T (A). The method m() is mapped
to an operator that could change any state attribute and whose parameters are
mapped into schema attributes, just like a has been included in the state schema.
The invariant InvC, preconditions Prem and postconditions Postm come from the
UML-RT note element on the left, and it is assumed to be already described in
Circus. The port p is mapped to a channel with the same type TP of the channel
ChanP used by the protocol P. The main action of ChartC is expressed by H(SC),
which represents the mapping of the statechart of capsule C.

Transformation Laws for UML-RT 129

In Circus the semantics of the dynamic behaviour of a capsule C, includ-
ing its internal structure diagram, is captured by the parallelism of its internal
behaviour (ChartC), its connected sub-capsules and its ports. The dynamic be-
haviour considers restrictions imposed by its ports to the corresponding com-
munication channels and the interaction with its sub-capsules in a hierarchical
and compositional way. This is expressed in Circus by means of a parallel com-
position of these processes. Further details about our semantics for UML-RT is
presented in [6].

3 Transformation Laws

Based on the formal semantics briefly presented in the previous section, we pro-
pose some transformation laws for UML-RT. As with the formal semantics, we
concentrate on the elements that UML-RT adds to UML, and the relationships
of these with UML elements, especially classes. The laws deal with static and
dynamic model aspects represented by the three most important diagrams of
UML-RT: statechart, class and structure diagrams. The proof of the laws can
be found in [17, 6], using both semantics and the refinement laws of Circus [14].

Each law is defined by an equivalence relation on models (filled arrow) with a
subscript M that stands for the context in which the equality holds; the sound-
ness of this equivalence relation is based on the formal semantics: the models on
the two sides of each law are semantically equivalent, when mapped into Circus
specifications. Our laws do not modify the context M, but impose side condi-
tions on some of its views: ClsM represents the class diagrams of M, and StrM
denotes the architecture configuration of M, expressed by structure diagrams.
State diagrams of protocols and capsules are explicitly expressed in the law. Di-
agrams and notes describing properties (invariants, pre- and postconditions) are
presented only as the need arises. On each side of the law we use a dotted line
box to single out the relevant part of the model affected by the transformation.

The first law establishes when it is possible to introduce a new capsule into
the model.

Law 1. Declare Capsule

provided
(→) ClsM does not declare any element named A.
(←) No capsule in M has a relationship with capsule A in any diagram.

The left-hand side of Law 1 displays an empty box, meaning that the new
capsule can be included anywhere in the model, provided the side conditions are
satisfied; the subscript M fixes the context for the law application. We write (→)
before the proviso of a law to indicate that it is required only for applications of

130 R. Ramos, A. Sampaio, and A. Mota

this law from left to right. Similarly, we use (←) to indicate that it is only for
applying the law from right to left, and we use (↔) to indicate that the proviso
is necessary in both directions.

A proviso to remove a capsule A (application from right to left) is that no
other capsule extends, is associated to or connected with it. Since UML (and
UML-RT) does not allow two elements with the same name, then there is a
proviso stating that the name of the new element is fresh. We assume that atts,
meths and ports always represent the set of attributes, methods and ports of a
capsule. As the capsule is assumed not to be associated with any other in M, the
structure diagram or a statechart can have any form that obeys our provisos,
and their presentation is immaterial. We have similar laws to add or remove
other basic elements (for instance, protocols, ports and connections).

The next law captures a more elaborate transformation; it decomposes a
capsule A into parallel component capsules (B and C) in order to tackle design
complexity and to potentially improve reuse. The side condition requires that A
be partitioned, a concept that is explained next. Note that protocols X and Z
are not illustrated because any deterministic machines can be used.

Law 2. Capsule Decomposition

provided

(→) 〈batts, binv, bmeths, (b1, b2), Sb〉 and 〈catts, cinv, cmeths, (c1, c2), Sc〉 partition A.
(↔) The statecharts of the protocols X and Z are deterministic.

On the left-hand side of Law 2 the state machine of A is an And-State com-
posed of two states (Sb and Sc), which may interact (internal communication)
through the conjugated ports b2 and c1 (as captured by the structure diagram
on the left-hand side). The two other ports (b1 and c2) are used for external com-
munication by states Sb and Sc, respectively. Furthermore, in transitions on Sb,
only the attributes batts and the methods bmeths (that may reference only the
attributes batts) are used; analogously, transitions of Sc use only the attributes
catts and the methods cmeths (that may reference only the attributes catts).
Finally, the invariant of A is the conjunction binv ∧ cinv, where binv involves
only batts as free variables, and cinv only catts. When a capsule obeys such con-
ditions, we say that it is partitioned. In this case, there are two partitions: one is
〈batts, binv, bmeths, (b1, b2), Sb〉 and the other is 〈catts, cinv, cmeths, (c1, c2), Sc〉.

Transformation Laws for UML-RT 131

The effect of the decomposition is to create two new component capsules, B
and C, one for each partition, and redesign the original capsule A to act as a
mediator. In general, the new behaviour of A might depend on the particular
form of decomposition. Law 2 captures a parallel decomposition. On the right-
hand side of the law, A has no state machine. It completely delegates its original
behaviour to B and C through the structure diagram.

Concerning the structure diagram on the right-hand side of the law, it shows
how A encapsulates B and C. When A is created, it automatically creates the
instances of B and C, which execute concurrently. The public ports b1 and c2
are preserved in A. Capsule B has as its public port an image of b1, called b′1.
Although this port is public in B, it is only visible inside the structure diagram
of A. The role of this port is to allow B to receive the external signals received
from A through port b1, as captured by the connection between b′1 and b1 in
the structure diagram of A. Analogously, c2 and b′2 have the same relationship,
concerning capsules A and C. The internal ports b2 and c1 are moved to capsules
B and C, respectively, and play the same role as before.

Motivated by existing development practices, we propose a law that replaces
a capsule by a class, or vice-versa. This establishes an interesting connection
between passive and active classes.

Law 3. Replace a Class by a Capsule

provided
(→) All attributes within batts are private.
(↔) No capsule, except A, has a relationship with B.

Law 3 transforms a class B (left-side) into a capsule, also named B, on the
right-hand side. The behaviour of method calls is preserved by a statechart
that simulates a synchronised communication with the client protocol. Now, all
services (public methods) of the class are exposed in a new protocol XB. The
constructor of class B becomes an action in its statechart’s initial transition.

The following law promotes a hidden abstraction inside a capsule into an
independent passive class. This simple transformation seems recurrent during
several design steps. It is particularly helpful in the context where the system
is initially modelled as components, since it allows the extraction of relevant

132 R. Ramos, A. Sampaio, and A. Mota

classes from these components. Concerning side conditions, we need to consider
the effect on the state machine of the capsule, whose behaviour must be preserved
by the transformations. A simplified version of this law allows extracting a class
from another class.

Law 4. Extract Class

provided
(→) bmeths, binv, bpre and bpost refer only to methods and attributes within bmeths

and batts; B is a fresh identifier.
(←) No element, except A, refers to B; there is an equivalence relationship between

Sax and Sa, and also between ameths and ameths′.

On the left-hand side of law 4, capsule A is composed by the set of attributes
aatts and batts, of methods ameths and bmeths, and of ports ports. Its state
machine, represented by Sa, can access any of these elements. Its invariant is
represented by the conjunction ainv ∧ binv, and the pre- and postconditions of
its methods are captured by apre, bpre, apost and bpost. The elements inside
batts, bmeths, bpre and bpost are assumed not to refer to any other element of
A. These are the elements that will be extracted into a new class.

On the right-hand side, any action in Sax, methods within ameths′ or predi-
cates (ainv′, apre′ or apost′) of A, which on the left-hand side accessed attributes
of batts or methods of bmeths, will now access these elements via a qualifier b,
which represents an object of the new class B.

3.1 A Word on Completeness

One way of showing that a set of laws is comprehensive is to define a reduction
strategy based on the laws, whose target is a normal form described in terms of
a restricted subset of the language being discussed. This shows that the laws are
sufficiently powerful to reduce any program to this normal form, and moreover
any pair of equivalent programs to the same normal form. This is what we
briefly discuss here, for a normal form that extends a UML model with a single
capsule responsible for all the interactions with the environment; this capsule
also centralises the entire active behaviour of the modelled system. The reason
for keeping one active element as part of the normal form (rather than a pure
UML model containing only passive classes) is that the autonomous control flows
of the original capsules cannot be simply eliminated; the closest we can get is
combining them as a single statechart. Reducing an arbitrary UML-RT model

Transformation Laws for UML-RT 133

to such a form suggests that our laws are expressive enough to reason about the
new design elements that UML-RT adds to UML, which is our major concern.

As it is not possible to present all the equality laws used by our structural re-
duction strategy, we list some categories of laws below; the laws already presented
fall in these categories. We also refer to these categories in the development of
our case study.

– Laws of declaration: for introducing/removing capsules (Law 1), protocols,
ports, signals of a protocol, attributes, methods, and associations.

– Communication: for introducing new connections and intermediate capsules.
– Merging: combining/decomposing capsules (Law 2), protocols and ports.
– Delegation: transferring part of a protocol/capsule behaviour to another cap-

sule, protocol or class (for instance, Law 4).
– Structuring: Encapsulate (making it local) or replace a capsule with another

capsule or class (for instance Law 3)
– Statechart : Adding a new state, rewriting a transition action, partitioning

regions, among others.

Laws in these categories are used in the main steps of our reduction strategy, as
summarised below.

1. Merge capsule ports. Capsules should have a unique binary connection be-
tween them; this is justified by Laws of Merging.

2. Eliminate capsule hierarchy in structure diagrams. In this step, sub-capsules
are moved out the structure of its enclosing capsule; this is justified by Laws
of Structuring.

3. Move protocol behaviour to capsules. The entire system behaviour is ex-
pressed in its capsules; this is justified by the Laws of Delegation.

4. Capsule composition. Every two capsules that communicate should be en-
capsulated in a topmost capsule, and then composed; this is justified by Laws
of Merging.

5. Remove unreferenced model elements. All disconnected elements can be re-
moved from the model by the application of Laws of Declaration.

As a result of this strategy all the active elements are transformed into a
single capsule that centralises the entire autonomous behaviour of the model.
The (passive) classes are not affected by the strategy. This model might be
reduced even further, by eliminating the classes as well; Law 4 (in its reverse
order) is relevant here. However, for a complete elimination of classes, possibly
involving inheritance, additional laws would be necessary, as suggested in [18]
for a programming language; our focus here is on active rather than on passive
classes. Our complete set of laws and more details of the reduction strategy can
be found in [17].

Clearly, the objective of such a reduction strategy is merely to study the
expressiveness of a set of laws. In a development process, the laws are applied
in the reverse direction, supporting the evolution of simple and abstract models
into more elaborate design models, as illustrated in the next section.

134 R. Ramos, A. Sampaio, and A. Mota

4 Case Study

The transformation laws we have proposed may be useful to formalise informal
analysis and design guidelines widely adopted by development processes such
as, for instance, the Rational Unified Process (RUP) [11]. The analysis and
design disciplines of RUP include several activities that guide the developer to
systematically realise the use case view into the so-called logical view. Broadly,
abstractions are identified, an abstract (analysis) model is developed, and this
is progressively refined into a concrete design model.

The focus of our approach is to support a formal transition from analysis into
design. Complementary approaches, like [19], for example, address the rigorous
migration from the use case view to an initial abstract model (Figure 1) with
active objects in the logical view. We allow great flexibility concerning the start-
ing point for our development. An extreme could be a centralised model with
a single capsule, just like the normal form discussed in the previous section. In
the context of our case study, such a model would include a single capsule Main
with all the interactions described in the use case diagram in Figure 1.

The proposed laws can then be applied to evolve this monolithic model into a
concrete detailed model like the one in Figure 2. For example, Law 2 justifies the
decomposition of Main into ProdSys and Storage, and Law 4 justifies the extraction
of class Piece from Storage. The remainder of this section further refines this model
to a more concrete version, with more than one processor, working in a pipeline,
and a transportation agent (Holon) that intermediates the communication.

Fig. 3. Extracting PieceCollection and Decomposing the Processor

Transformation Laws for UML-RT 135

From the analysis model in Figure 2, we proceed to find a candidate architec-
ture. We adopt a simple layered architecture where data manipulation is isolated
from the business rules of the control elements. Therefore we use an explicit data
collection class PieceCollection to store the workpieces; this class is actually ex-
tracted from Storage using Law 4.

The candidate architecture is incrementally enhanced by means of the activ-
ity identify design elements. In particular, we decompose the processor ProdSys
into two other capsules (ProcessorA and ProcessorB), using Law 2 as well as
Laws of Statecharts, Communication and Delegation. With the introduction of
ProcessorA and ProcessorB, the statechart of ProdSys is split into the statecharts
of these new processors, and it is then represented by the interaction between
ProcessorA and ProcessorB. The remaining role of ProdSys is only to mediate
communication with these processors through its delay ports, and it is trans-
ferred to Main (Laws of Communication); then ProdSys becomes useless and can
be eliminated (Law 1). The resulting model is presented in Figure 3.

Transportation agents are needed not only to intermediate the communication
between physically separated processors, but also to relieve processors from con-
cerns of the global processing plan. To create one transportation agent (Holon),
we introduce intermediate capsule instances among the capsules that communi-
cate with the processor (using Laws of Communication); these capsules need to
be composed pairwise using a variation of Law 2 (Laws of Merging). As Holon

Fig. 4. Identifying Transportation Agents

136 R. Ramos, A. Sampaio, and A. Mota

was created by the composition of proxy capsules, it plays only a delegating role
at this moment. The resulting design is depicted in Figure 4.

The result of the entire development is a system with a structure very close
to the final architecture described in [20], but with a unique transport agent. A
further refinement could extend the design to include some new agents to form a
more complex automated transportation system, as well as refining the behaviour
and the structure of each agent to a more concrete version. An advantage of our
development strategy when contrasted to [20] is the justification of each design
decision using transformation laws; no algebraic law has been proposed in [20].

5 Conclusions and Related Works

We have proposed laws for UML-RT that capture both basic properties of indi-
vidual design elements as well as more elaborate transformations that correspond,
for instance, to refactorings [2, 21]. The presentation of the laws makes explicit the
transformation effects both on behavioural and on structural diagrams. Consid-
ering the elements that UML-RT adds to UML, our set of laws is comprehensive,
as discussed in Section 3.1, and can be regarded as an algebraic semantics of these
design elements. Another important issue is the connection between classes and
capsules, as captured by Law 3. We have also suggested a guide for the law ap-
plications based on the RUP analysis and design discipline, as illustrated through
the case study developed in Section 4. Soundness has been previously addressed
through mapping into Circus [6], which acts as a hidden formalism, useful to define
a sound interface for software engineering practice. The proof of the laws presented
here, as well as the complete set of laws, can be found in [17].

Regarding laws for UML models, there are several works [21, 8, 9] that con-
sider only transformations on structural or on behavioural diagrams in isolation.
They neglect possible interferences between static and dynamic aspects, unlike
our approach that takes into account these effects simultaneously. In [21], an
important relationship between code refactoring concepts and model transfor-
mations is presented. Other approaches [8, 22, 9] define a formal semantics for
UML using, respectively, Z, Alloy and Real-time Action Logic.

Regarding transformations for UML-RT, the work reported in [23] discusses
a stepwise development process using UML-RT, incorporating notions of refine-
ment, based on principles of behavioural interface refinement and incorporating
time. In [24] the locality principle is explored, formalising model evolution using
some local transformations; it also analyses the effects of these transformations
on various consistency properties. None of these works, however, makes side con-
ditions of laws explicit, presents a comprehensive set of laws for UML-RT, or
systematises a strategy for algebraic-based model transformations, as we have
done here. The work [10] also proposes an elaborated set of refactorings similar
to ours, but the semantics used does not allow usage of an algebraic strategy.

As future work we intend to investigate the formalisation of design and ar-
chitectural patterns based on our laws, and build tool support for automated
transformations related to component based development.

Transformation Laws for UML-RT 137

References

1. Kent, S.: Model driven engineering. In: Proc. of the IFM Conference. Volume 2335
of LNCS., Springer (2002) 286–298

2. Fowler, M.: Refactoring-Improving the Design of Existing Code. Addison Wesley
(1999)

3. Morgan, C.: Programming From Specifications. second edn. Prentice Hall (1994)
4. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User

Guide. Addison-Wesley (1999)
5. Selic, B., Rumbaugh, J.: Using UML For Modeling Complex RealTime Systems.

Rational Software Corporation (1998) available at http://www. rational.com.
6. Ramos, R., Sampaio, A., Mota, A.: A Semantics for UML-RT Active Classes

via Mapping into Circus. In: Proc. of the FMOODS Conference. Volume 3535 of
LNCS., Springer (2005) 99–114

7. Sampaio, A., Mota, A., Ramos, R.: Class and Capsule Refinement in UML For
Real Time. In: Proc. WMF’03. Volume 95 of ENTCS., Elsevier (2004) 23–51

8. Evans, A., France, R., Lano, K., Rumpe, B.: The UML as a Formal Modeling
Notation. In: Proc. of the UML Conference. LNCS, Springer (1999)

9. Lano, K., Bicarregui, J.: Semantics and Transformations For UML Models. In:
Proc. of the UML’99. Volume 1618 of LNCS., Springer (1999) 107–119

10. Meng, S., B.L., Naixiao, Z.: On refinement of software architectures. In: Proc. of
the ICTAC Conference. Volume 3722 of LNCS., Springer (2005) 482–497

11. Kruchten, P.: Rational Unified Process: An Introduction, The. 2 edn. Addison-
Wesley (2000)

12. OMG: UML 2.0 Superstructure Specification (2003) OMG Adopted Specification.
13. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 New Unclarities in the

Semantics of UML 2.0 State Machines. In: Proc. of the ICFEM Conference. Volume
3785 of LNCS., Springer (2005) 52–65

14. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Proc. of the
FME Symposium. Volume 2391 of LNCS., Springer (2002) 451–470

15. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
16. OMG: Unified Modeling Language Specification, Version 1.4. Object Management

Group. (2001) Available at http://www.omg.org/uml.
17. Ramos, R.: Desenvolvimento Rigoroso com UML-RT. Master’s thesis, Federal

University of Pernambuco, Recife, Brazil (2005)
18. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for

Object-Oriented Programming. Science of Computer Programming 52 (2004)
19. Zhang, L., Xie, D., Zou, W.: Viewing Use Cases As Active Objects. ACM SIGSOFT

Software Engineering Notes 26 (2001) 44–48
20. Wehrheim, H.: Specification of an Automatic Manufacturing System: A Case Study

in Using Integrated Formal Methods. In: Proc. of the FASE Conference. Volume
1783 of LNCS., Springer (2000) 334–348

21. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.M.: Refactoring UML Models. In:
Proc. of the UML’01. Volume 2185 of LNCS., Springer (2001) 134–148

22. Gheyi, R., Borba, P.: Refactoring Alloy Specifications. In: Proc. WMF’03. Vol-
ume 95 of ENTCS., Elsevier (2004) 227–243

23. Sandner, R.: Developing Distributed Systems Step By Step With UML-RT. In:
Proc. of the VVVNS Workshop, Universität Münster (2000)

24. Engels, G., Heckel, R., Küster, J.M., Groenewegen, L.: Consistency-Preserving
Model Evolution Through Transformations. In: Proc. of the UML Conference.
Volume 2460 of LNCS., Springer (2002) 212–226

	Transformation Laws for UML-RT

