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Abstract. In this paper, we propose an effective distributed algorithm
to solve the minimum energy data gathering (MEDG) problem in
sensor networks with multiple sinks. The problem objective is to find
a rate allocation on the sensor nodes and a transmission structure on
the network graph, such that the data collected by the sink nodes can
reproduce the field of observation, and the total energy consumed by
the sensor nodes is minimized. We formulate the problem as a linear
optimization problem. The formulation exploits data correlation among
the sensor nodes and considers the effect of wireless channel interfer-
ence. We apply Lagrangian dualization technique on this formulation
to obtain a subgradient algorithm for computing the optimal solution.
The subgradient algorithm is asynchronous and amenable to fully
distributed implementations, which corresponds to the decentralized
nature of sensor networks.

Keywords: Sensor networks, data correlation, distributed algorithm,
minimum energy, optimal rate allocation, transmission structure.

1 Introduction

Many applications for sensor networks, such as target tracking [1] and habitat
monitoring [2], involve monitoring a remote or hostile field. Sensor nodes are
assumed to be inaccessible after deployment for such applications and thus their
batteries are irreplaceable. Moreover, due to the small size of sensor nodes, they
carry limited battery power. Thus, energy is a scarce resource that must be
conserved to the extent possible in sensor networks.

In this context, we are interested in solving the MEDG problem in multi-sink
sensor networks with correlated sources. The first part of the problem objective
is to find an optimal rate allocation on the sensor nodes, such that the aggregated
data received by the sink nodes can be decoded to reproduce the entire field of
observation. If the data collected by the sensor nodes are independent, then the
rate allocation can be trivially determined – each sensor node can transmit at its
data collection rate. However, sensor nodes are often densely deployed in sensor
networks, hence the data collected by nearby sensor nodes are either redundant
or correlated. This data correlation can be exploited to reduce the amount of
data transmitted in the network, resulting in energy savings.
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The second part of the problem objective is to find an optimal transmission
structure on the network graph, such that the total energy consumed in trans-
porting the data from the sensor nodes to the sink nodes is minimized. If the
wireless links have unlimited bandwidth capacities, then each sensor node can
transmit its collected data via the minimum energy path. However, as in any
practical network, there are capacity limitations on the links and interference
among competing signals. As a variation of wireless ad hoc networks, sensor
networks have the unique characteristic of location-dependent contention. Sig-
nals generated by nearby sensor nodes will compete with each other if they
access the wireless shared-medium at the same time. It is shown in [3] that the
two parts of the problem objective can be achieved independently if capacity
constraints do not exist. But in the presence of capacity constraints, the MEDG
problem becomes complicated because the decision on the rate allocation will
affect the decision on the transmission structure, and vice versa.

In this paper, we propose an efficient algorithm to solve the MEDG problem.
The problem is carefully formulated as a linear optimization problem that can
be solved with a distributed solution. This is important since centralized solu-
tions require the participating nodes to repeatedly transmit status information
across the network to a central computation node, thus they are not feasible for
real-time calculations when energy constraints are present. To design a practical
algorithm, we have assumed a realistic data correlation model and considered
the effect of location-dependent contention. The formulation is relaxed with La-
grangian dualization technique and solved using the subgradient algorithm. The
resulting algorithm is asynchronous, distributed, and supports large-scale sensor
networks with multiple sink nodes.

Data gathering with correlated sources in sensor networks and resource alloca-
tion with capacity constraints in wireless networks have been separately studied
in previous literature. The main contribution of this paper is to propose a solu-
tion to the MEDG problem that considers both topics simultaneously, and copes
with the dependent relationship between the rate allocation and the transmis-
sion structure. To the best of our knowledge, no previous works have addressed
the MEDG problem with all of the factors above.

2 Problem Formulation

2.1 Network Model

The wireless sensor network is modeled as a directed graph G = (V, E), where V
is the set of nodes and E is the set of directed wireless links. Let SN denote the
set of sensor nodes and SK denote the set of sink nodes. Then, V = SN ∪ SK .
The rate allocation assigns each sensor node i ∈ SN with Ri, which refers to
a non-negative data collection rate. All sensor nodes have a fixed transmission
range of rtx. Let dij denote the distance between node i and node j. A directed
link (i, j) ∈ E exists if dij ≤ rtx. Each link is associated with a weight eij = d2

ij ,
referring to the energy consumed per unit flow on link (i, j). All links are assumed
to be symmetrical, where eij = eji. Moreover, fij represents the flow rate of link
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(i, j). We have assumed that each sensor node has knowledge of its own location.
Here, the rate vector [Ri]∀i∈SN and the flow vector [fij ]∀(i,j)∈E are the variables
that can be adjusted in order to minimize the following optimization objective.

2.2 Optimization Objective

Given a rate allocation and a transmission structure, the flow rate on each link,
denoted by fij , can be found and the total energy consumed on each link equals
to eij · fij . The objective of the MEDG problem is to minimize the total energy
consumed in the network:

Minimize
∑

(i,j)∈E

eij · fij . (1)

2.3 Flow Conservation Constraints

For each sensor node i ∈ SN , the total outgoing data flows must equal to the
sum of the total incoming data flows and the non-negative data collection rate
Ri. Since the sensor nodes relay all incoming data flows, only the sink nodes can
absorb the data flows.

∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = Ri, ∀i ∈ SN . (2)

2.4 Channel Contention Constraints

The channel contention constraints model the location-dependent contention
among the competing data flows. We build the constraints based on the protocol
model [4] of packet transmission. According to the protocol model, all links
originating from node k will interfere with link (i, j) if dkj < (1 + �)dij , where
the quantity � > 0 specifies a guard zone. We derive Ψij for each link (i, j) ∈ E
as the cluster of links that cannot transmit as long as link (i, j) is active. The
notation of cluster is used here as a basic resource unit, as compared to individual
links in the traditional wireline networks. In sensor networks, the capacity of a
wireless link is interrelated with other wireless links in its cluster. Therefore, data
flows compete for the capacity of individual clusters, which is equivalent to the
capacity of the wireless shared-medium. A flow vector [fij ]∀(i,j)∈E is supported
by the wireless shared-medium if the channel contention constraints below hold:

fij +
∑

(p,q)∈Ψij

fpq ≤ C, ∀(i, j) ∈ E , (3)

where C is defined as the maximum rate supported by the wireless shared-
medium. Note that the channel contention constraints are generic, since they
can accommodate other models of packet transmission instead of the protocol
model.
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2.5 Rate Admissibility Constraints

Slepian-Wolf coding is introduced in [5]. It is an important work in exploiting
data correlation among correlated sources. With Slepian-Wolf coding, sensor
nodes are assumed to have correlation information of the entire network, and
they can encode their data with only independent information. The Slepian-
Wolf region specifies the minimum encoding rate that the sensor nodes must
meet in order to transmit all independent information to the sink nodes. It is
satisfied when any subset of sensor nodes encode their collected data at a total
rate exceeding their joint entropy. In mathematical terms:

∑

i∈Y

Ri ≥ H(Y|YC ), Y ⊆ SN . (4)

The rate admissibility constraints are non-linear since they grow at an exponen-
tial rate in relation to the number of nodes.

Since non-linear constraints are generally difficult to solve, it is desirable to
remove them from the formulation. Moreover, the rate admissibility constraints
require each sensor node to have global correlation information, which is not
scalable in large networks. In this paper, we adapt a localized version of Slepian-
Wolf coding from [6] to relax the rate admissibility constraints, such that only
local correlation information is required at each sensor node. Here, we describe
the localized Slepian-Wolf coding:

– Define a neighbourhood for each sensor node.
– Find the nearest sink node for each sensor node using a distributed shortest

path algorithm, such as the Bellman-Ford algorithm [7]. Each sensor node
refers to its nearest sink node as the destination sink node.

– For each sensor node i:
– Find within its neighbourhood, the set Ni of sensor nodes that have the

same destination sink node as node i, and are closer to that destination
sink node than node i.

– The Slepian-Wolf region is satisfied when node i transmits at rate Ri =
H(i|Ni).

Instead of global correlation information, the localized Slepian-Wolf coding
only considers the correlation that a node has with its neighbourhood members.
Based on a spatial data correlation model, it is natural to assume the nodes that
are not in the neighbourhood contribute very little or nothing to the amount of
compression. With a sufficient neighbourhood size, the localized coding should
have a performance similar to global Slepian-Wolf coding. In this paper, we
include the one-hop neighbours of the sensor nodes in their neighbourhoods.

2.6 Linear Programming Formulation

Combining the optimization objective with the introduced constraints, the
MEDG problem can be modeled as a linear programming formulation.

Minimize
∑

(i,j)∈E

eij · fij , (5)
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Subject to:
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni), ∀i ∈ SN , (6)

fij +
∑

(p,q)∈Ψij

fpq ≤ C, ∀(i, j) ∈ E , (7)

fij ≥ 0, ∀(i, j) ∈ E . (8)

3 Distributed Solution: The Subgradient Algorithm

3.1 Lagrangian Dualization

The MEDG formulation resembles a resource allocation problem, where the ob-
jective is to allocate the limited capacities of the clusters to the data flows
originating from the sensor nodes. Previous research works in wireline networks
[8, 9] have shown that price-based strategy is an efficient mean to arbitrate re-
source allocation. In this strategy, each link is treated as a basic resource unit. A
shadow price is associated with each link to reflect the traffic load of the link and
its capacity. Based on the notation of maximal cliques, Xue et al. [10] extend the
price-based resource allocation framework to respect the unique characteristic of
location-dependent contention in wireless networks. Due to the complexities in
constructing maximal cliques, the notation of cluster as defined in Section 2 is
used as the basic resource unit. Each cluster is associated with a shadow price,
and the transmission structure is determined in response to the price signals,
such that the aggregated price paid by the data flows is minimized. It is re-
vealed from previous research that at equilibrium, such price-based strategy can
achieve global optimum.

To solve the MEDG formulation with a price-based strategy, we relax the
channel contention constraints (3) with Lagrangian dualization technique to ob-
tain the Lagrangian dual problem:

Maximize LS(β) , s.t. β ≥ 0 . (9)

By associating price signals or Lagrangian multipliers βij with the channel con-
tention constraints, the Lagrangian dual problem is evaluated via the Lagrangian
subproblem LS(β):

Minimize
∑

(i,j)∈E

eij · fij + βij · (fij +
∑

(p,q)∈Ψij

fpq − C) , (10)

Subject to:
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni), ∀i ∈ SN , (11)

fij ≥ 0, ∀(i, j) ∈ E . (12)

We further define Φij as the set of clusters that link (i, j) belongs to. Recall Ψpq

is the cluster of links that cannot transmit when link (p, q) is active. For any link
(i, j) that interferes with link (p, q), link (i, j) belongs to the cluster of link (p, q).
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Thus, for any links (i, j) and (p, q), (p, q) ∈ Φij iff (i, j) ∈ Ψpq. The Lagrangian
subproblem can be remodelled using this notation:

Minimize
∑

(i,j)∈E

fij(eij + βij +
∑

(p,q)∈Φij

βpq) − βijC , (13)

Subject to:
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni), ∀i ∈ SN , (14)

fij ≥ 0, ∀(i, j) ∈ E . (15)

The objective function of the remodelled Lagrangian subproblem specifies that
the weight of each link is equal to the sum of its energy and capacity cost. And
the capacity cost is equal to the Lagrangian multiplier of the link plus the sum
of the Lagrangian multipliers in Φij . This is intuitive since when link (i, j) is
active, any links in the set Φij cannot transmit due to interference. So the actual
price to pay for accessing link (i, j) should equal to the total price for accessing
link (i, j) and all links in Φij .

Since the capacity constraints are relaxed, we observe that the solution of
the remodelled Lagrangian subproblem requires each sensor node to transmit its
data along the shortest path that leads to its nearest sink node. As a result, the
Lagrangian subproblem can be solved with a distributed shortest path algorithm,
such as the Bellman-Ford algorithm [7]. Recall from the localized Slepian-Wolf
coding scheme, a sensor node will co-encode with another sensor node only if they
have the identical nearest sink node. Consequently, for any solution generated by
the Lagrangian subproblem, data flows due to sensor nodes that have co-encoded
with each other will be absorbed by an identical sink node.

3.2 Subgradient Algorithm

Many algorithms have been proposed to solve optimization problems, such as
simplex, ellipsoid and interior point methods. These algorithms are efficient in
the sense that they can solve large instance of optimization problems in a few
seconds. However, they have the disadvantage of being inherently centralized,
which implies that they are not applicable for distributed deployment. In this
subsection, we describe the subgradient algorithm, a distributed solution to the
Lagrangian dual problem.

The algorithm starts with a set of initial non-negative Lagrangian multipli-
ers βij [0]. In our simulations, we set βij [0] to zeros, assuming no congestion in
the network. During each iteration k, given current Lagrangian multiplier val-
ues βij [k], the Lagrangian subproblem is solved. Using the new primal values
[fij [k]]∀(i,j)∈E obtained from the Lagrangian subproblem, we update the La-
grangian multipliers by:

βij [k + 1] = max(0, βij [k] + θ[k](fij [k] +
∑

(p,q)∈Ψij

fpq[k] − C)) , (16)

where θ is a prescribed sequence of step sizes. If the step sizes are too small, then
the algorithm has a slow convergence speed. If the step sizes are too large, then
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βij may oscillate around the optimal solution and the algorithm fails to converge.
However, the convergence is guaranteed [11], when θ satisfies the conditions
θ[k] ≥ 0, limk→∞ θ[k] = 0, and

∑∞
k=1 θ[k] = ∞. In this paper, we use the

sequence of step sizes, θ[k] = a
b+ck , where a, b, and c are positive constants.

The subgradient algorithm is an efficient tool for solving the Lagrangian dual
problem. However, it has the disadvantage that an optimal solution, or even a
feasible solution to the primal problem (the linear MEDG formulation) may not
be available. We adapt the primal recovery algorithm introduced by Sherali et al.
[11] to recover the primal optimal solution f∗

ij . At iteration k of the subgradient
algorithm, the primal recovery algorithm composes a primal feasible solution
f∗

ij [k] via the solutions generated by the Lagrangian subproblem:

f∗
ij [k] =

k∑

m=1

λk
mfij [m] , (17)

where λk
m = 1

k are convex weights. In this paper, for each iteration, the La-
grangian subproblem generates a rate allocation and a transmission structure.
The primal recovery algorithm specifies that the solution to the MEDG problem
(the optimal rate allocation and transmission structure) should equal to a convex
combination of the solutions that are generated by the Lagrangian subproblem.
Note that since each solution generated by the Lagrangian subproblem satisfies
the Slepian-Wolf region, the convex combination of the solutions also satisfies
the Slepian-Wolf region. In the kth iteration, we can calculate f∗

ij [k] by:

f∗
ij [k] =

k − 1
k

f∗
ij [k − 1] +

1
k

fij [k] . (18)

3.3 Distributed MEDG Algorithm

We now present our distributed algorithm for the MEDG problem. Each directed
link (i, j) is delegated to its sender node i, and all computations related to link
(i, j) will be executed on node i.

1. Choose initial Lagrangian multiplier values βij [0], ∀(i, j) ∈ E.
2. For the kth iteration, determine the weight of each link as (eij + βij [k] +∑

(p,q)∈Φij
βpq[k]).

3. Compute the shortest path from each sensor node to its nearest sink node
using the distributed Bellman-Ford algorithm. Sensor nodes refer to their
nearest sink node as their destination sink node.

4. For each sensor node i, determine its rate allocation according to the localized
Slepian-Wolf coding scheme introduced in Section 2.

5. Based on the rate allocation and the transmission structure obtained, com-
pute fij [k + 1] and f∗

ij [k + 1], for all links (i, j) ∈ E.
6. Update Lagrangian multipliers βij [k + 1] = max(0, βij [k] + θ[k](fij [k] +∑

(p,q)∈Ψij
fpq[k] − C)), where θ[k] = a

(b+ck) , for all links (i, j) ∈ E.
7. For each link (i, j), send βij [k + 1] to all links in Ψij and send fij [k + 1] to

all links in Φij .
8. Repeat steps 2 to 7 until convergence.
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4 Performance Evaluation

4.1 Data Correlation Model

Since the sensor nodes are continuous and not discrete sources, the theoretical
tool to analyze the problem is Rate Distortion Theory [12]. Let S be a vector
of n samples of the measured random field returned by n sensor nodes. Let Ŝ
be a representation of S, and d(S, Ŝ) be a distortion measure. With the mean
square error (MSE) as the distortion measure, i.e., d(S, Ŝ) = ||S − Ŝ||2, and
the constraint E(||S − Ŝ||2) < D, a Gaussian source is the worst case, since
it requires the most bits to be represented when compared with other sources
[13]. For the purpose of illustration, we let S be a spatially correlated Gaussian
random vector ∼ N(μ, Σ). In this case, the rate distortion function of S is

R(Σ, D) =
N∑

n=1

1
2

log
λn

Dn
, (19)

where λ1 ≥ λ2 . . . ≥ λN are the ordered eigenvalues of the correlation matrix Σ
and

N∑

n=1

Dn = D , Dn =
{

K if K < λn ,
λn otherwise ,

(20)

and K is chosen such that
∑N

n=1 min(K, λn) = D. In our analysis, we let Σij =
W d2

ij , where W is a correlation parameter that represents the amount of data
correlation between spatial samples. W should be less than one such that Σ is
a semi-positive definite matrix. Given any subset of nodes X and the distortion
per node d, we can construct its correlation matrix ΣX and approximate its
entropy with its rate distortion function, H(X) ≈ R(ΣX , d · |X |).

4.2 Simulation Environments

We study the distributed MEDG algorithm in three different simulation environ-
ments. In the independent environment, we neglect the effect of data correlation
by substituting Slepian-Wolf coding with an independent coding scheme. In the
synchronous environment, the participating nodes simultaneously execute an it-
eration of the algorithm at every time step. Bounded communication delay is
assumed where price and rate updates will arrive at their destinations before the
next time step. The asynchronous environment is based on the partial asynchro-
nism model [10], which assumes the existence of an integer B that bounds the
time between consecutive updates. To implement this environment, each sensor
node maintains a timer with a random integer value between 0 and B. The timer
decreases itself by 1 at every time step. When the timer reaches 0, the sensor
node executes an iteration of the algorithm before resetting the timer. In this
environment, update messages may be delayed or out-of-date.

The distributed MEDG algorithm is implemented with the C++ program-
ming language. For all experiments, the transmission and interference range are
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set to 30m and the capacity of the wireless shared-medium is set to 600 bits. Un-
less stated, the experiments are executed on a random topology with 100 nodes,
the correlation parameter W and the per node distortion d are set to 0.99 and
0.0001, respectively.

4.3 Convergence Behaviour

We study the convergence behaviour of our algorithm under the synchronous
environment. To this end, we generate five random sensor fields, ranging from
100 to 500 nodes in increments of 100 nodes, with 10% of the nodes randomly
chosen as sink nodes. The sensor field with 100 nodes has an area of 100m ×
100m. Other sensor fields are generated by scaling the area to maintain a constant
node density. The convergence speed of the algorithm is shown in Fig. 1. The
optimal value is taken as the convergence value of the algorithm. We observe
that it takes about 220 iterations to converge to 99% optimality in a network
with 100 nodes, and this number increases to about 360 for a network with 500
nodes. Due to the slow increase in the number of iterations, the scalability of
our algorithm is not affected by the network size. In addition, we notice that
the algorithm can achieve 90% optimality in about half the iterations required
to achieve 99% optimality. Therefore, in practice, when it is not necessary to
achieve the optimal solution, we can obtain a near-optimal solution in a much
shorter time. This result illustrates that our distributed algorithm is efficient for
real-time calculations.
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Fig. 1. Convergence speed of the distributed MEDG algorithm

4.4 Asynchronous Network Environments

To show that our algorithm is applicable in asynchronous network environments,
we execute the algorithm under the asynchronous environment with different
time bounds B = 1, 2, 5, 10. Each experiment is performed for 1000 time steps,
and the total energy consumption attained at each time step is plotted in Fig. 2.
In all four experiments, the algorithm converges to an identical optimal solution,
which indicates that it can achieve convergence in asynchronous network envi-
ronments. Moreover, we conclude that the convergence speed of the algorithm
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is associated with the time bound B, since longer convergence time is required
when B is large.

4.5 The Effect of Data Correlation

We investigate the effect of data correlation by comparing the asynchronous en-
vironment against the independent environment. As the correlation parameter
W varies from 0.99 to 0.999, the total energy consumed by the different en-
vironments at convergence is recorded in Fig. 3. Clearly, the energy consumed
at high correlation (W = 0.999) is much lower compared with the energy con-
sumed at low correlation (W = 0.99). Overall, the localized Slepian-Wolf coding
scheme outperforms the independent coding scheme by 15% to 50%. This result
suggests that even though the algorithm utilizes only local information, it can
achieve significant energy savings for a wide range of data correlation level.

5 Related Work

In [14], Kalpakis et al. have formulated the maximum lifetime data gathering
and aggregation problem as an integer program. Although this formulation yields
satisfactory performance, it makes the assumption of perfect data correlation,
where intermediate sensor nodes can aggregate any number of incoming packets
into a single packet. Perfect data correlation can also be found in [15], which
analyzes the performance of data-centric routing schemes with in-network ag-
gregation. We do not assume perfect data correlation in this paper since it may
not be realistic in practical networks.

While our paper utilizes Slepian-Wolf coding, there are works that exploit
data correlation with alternative techniques. Single-input coding is considered
in [3, 16], where intermediate nodes can aggregate their collected data with the
side information provided by another node. Cristescu et al. [3] prove that solving
the MEDG problem with single-input coding is NP-hard, even in a simplified net-
work setting. Since single-input coding can only exploit data correlation between
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pairs of nodes, it will not perform as well as Slepian-Wolf coding. In contrast,
data aggregation with multi-input coding is performed when all input informa-
tion from multiple nodes is available. Goel et al. [17] consider the joint treat-
ment of data aggregation and transmission structure with multi-input coding.
Although multi-input coding exploits data correlation among multiple nodes,
it requires the nodes to explicitly communicate with each other. Since Slepian-
Wolf coding does not require such communication, it can be implemented in
asynchronous network environments without timing assumptions.

Other closely related works are the ones involving Slepian-Wolf coding. In
[18], Servetto et al. introduced the sensor reachback problem, which requires a
single node in the sensor network to receive sufficient data to reproduce the entire
field of observation. Slepian-Wolf coding is employed to meet this requirement.
This paper inspires us to apply Slepian-Wolf coding in the MEDG problem,
allowing the sink nodes to receive independent information from all sensor nodes.
In [6], Cristescu et al. address the MEDG problem with Slepian-Wolf coding.
However, their optimization problem does not consider the effect of wireless
channel interference, hence the solution generated may not be supported by the
wireless shared-medium.

6 Conclusion

In this paper, we have presented an efficient solution for the MEDG problem
in multi-sink sensor networks with correlated sources. The problem is carefully
formulated as a linear optimization problem with a distributed solution. In the
presence of capacity constraints, we show that finding the optimal rate alloca-
tion and transmission structure are two dependent problems, hence they must be
addressed simultaneously. With a realistic model, the formulation exploits data
correlation among the sensor nodes, accounts for location-dependent contention
in the wireless shared-medium, and minimizes the total energy consumed by
the network. Sensor nodes are required to transmit at a rate that satisfies the
Slepian-Wolf region, which implies that the sink nodes will be able to reproduce
the entire field monitored by the sensor network. The algorithm is amenable to
fully distributed implementations, as the participating nodes are only needed to
communicate with other nodes in their neighbourhood. The algorithm is asyn-
chronous and provides multi-sink support, making it feasible for practical de-
ployment in large-scale sensor networks. To the best of our knowledge, this is
the first work that addresses the MEDG problem with data correlation and wire-
less channel interference simultaneously, especially when a price-based approach
is employed to obtain a distributed solution.
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