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Abstract. It is an observed fact in the market that the implied volatil-
ity of traded options vary from day to day. An alternative and straight-
forward explanation is that the instantaneous volatility of a stock is
a stochastic quantity itself. The assumptions of the Black and Scholes
model no longer hold. This is, therefore, one reason why Black and Sc-
holes prices can differ from market prices of options. Having decided
to make the instantaneous volatility stochastic, it is necessary to de-
cide what sort of process it follows. The article analyzes three stochastic
volatility models and considers how stochastic volatility can be incorpo-
rated into model prices of options. The investigation of stochastic volatil-
ity influence for pricing options traded in the SEB Vilnius Bank is done.

1 Introduction

The pricing of derivative instruments, such as options is a function of the move-
ment in the price of the underlying asset over lifetime of the option. One of the
main problems of financial engineering is to develop a suitable model of financial
assets dynamics. The dynamics is described as a stochastic process, and pricing
models describe the stochastic dynamics of asset price changes, whether this is a
change in share prices, stock indices, interest rates and so on. Louis Bachelier [1]
had claimed that stock prices are actually random in 1900. Comparing trajec-
tories of random walks and stock prices, Bachielier could not find a significant
difference among them. The dynamics of asset prices are reflected by uncertain
movements of their values over time. Some authors [2, 3, 4, 14] state that effi-
cient market Hypothesis (EMH) is one possible reason for the random behavior
of the asset price. The EMH basically states that past history is fully reflected
in present prices and markets respond immediately to new information about
the asset.

The classical approach is to specify a diffusion process for the asset price, that
is, a stochastic integral or stochastic differential equation where the uncertainty
is driven by Wiener process. The wide spread adoption of Wiener process as a
frame work for describing changes in financial asset prices is most like due to its
analytic tractability.

Unfortunately, in recent years more and more attention has been given to
stochastic models of financial markets which differ from traditional models. It
appears that variances and covariances are not constant over time. There is now
a lot of literature on time series modeling of asset prices. The reviewed literature
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[5, 6] has revealed the following empirical properties of asset dynamics: fat tails of
distribution, volatility clustering, large discrete jumps, and parameter instability.

Some classical models of asset dynamics are presented in the article and
stochastic volatility models of EUR/USD exchange rate based on the data of
trading options in SEB Vilnius Bank are analyzed also.

2 The Stochastic Process of Stock Prices

The modeling of the asset price is concerned with the modeling of new infor-
mation arrival, which affects the price. Depending on the appearance of the so
called “normal” and “rare” events, there are two basic blocks in modeling the
continuous time asset price. Neftci [7] states that the main difference between the
“normal” and “rare” behavior concerns the size of the events and their probabil-
ity to occur. Wiener process can be used if markets are dominated by “normal”
events. This is a continuous time stochastic process, where extremes occur only
infrequently according to the probabilities in the tails of normal distribution.
The stochastic process is written in the form of the following stochastic differen-
tial equation for the asset return: dSt = μStdt+σStdWt, where St – the current
price of the underlying asset, μ – the constant trend, σ – the constant volatility,
Wt – the standard Wiener process. Since this process has a continuous time sam-
ple path, it does not allow for discontinuity or jumps in its values when “rare”
events occur. In this case , the Poisson jump process can be useful. In particular,
the time series of asset price can be modeled as the sum of continuous time dif-
fusion process and Poisson jump processes. The stochastic differential equation
for St is:

dSt = μStdt + σStdWt + bSt

Nt∑

j=1

(Yj − 1)

with the following addition of variables: Yj − 1 - a lognormal distributed ran-
dom variable representing the jump size, Nt - jumps in interval (0, t) governed
by a Poisson process with parameter λt, b – constant. Jump diffusion models
undoubtedly capture a real phenomenon. Yet they are rarely used in practice
due to difficulty in parameter estimation.

3 Stochastic Volatility Models

Most options are priced using the Black and Scholes formula, but it is well known
that the assumptions upon which this formula is based are not justified empiri-
cally [12]. In particular, return distribution may be fat tailed and its volatility is
certainly not constant. It is an observed fact in financial market that the implied
volatilities of traded options vary from day to day. An alternative and straight-
forward explanation is that the instantaneous volatility of a stock is itself a
stochastic quantity. Having decided to make volatility stochastic, it is necessary
to decide what sort of process follows. Take a process of the form [11]:
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dSt = μ(St, νt)dt + σ(St, νt)dWSt (1)

σ(St, νt) = f(νt) (2)

dνt = σ(St, νt)dt + β(St, νt)dWνt (3)

where WSt, Wν are correlated Wiener processes with correlation coefficient
ρ , i.e,

dWν = ρdWSt +
√

1 − p2dZt (4)

WSt and Zt are uncorrelated Wiener processes [13].
Three different stochastic volatility models will be considered, such as: Hull-

White, Heston, and logarithmic Ornstein-Uhlenbeck. The Hull-White model [9]
is the particular case of the model described by (1) – (4) equations. Then we
have that

dSt = μStdt + σtStdWSt, dνt = γνtdt + ηνtdWνt (5)

where σt =
√

νt, γ < 0, WSt, and Wνt are uncorrelated Wiener processes.
For simplicity, assume that volatility can take only two values. In this case the
price of Call option is equal to Ct = E

[
CBS

(
t, S, K, T,

√
σ2

)∣∣∣νt = ν
]

where

σ2 = 1
T−t

∫ T

t
f
(
νx

)2
dx, νtis the two state Markov process [13] and

σ2 =
{

σ2
1 with probability p

σ2
2 with probability 1 − p

Heston’s option pricing model assumes that St and νtsatisfies the equations [10]:

dSt = μStdt + σtStdWSt, dνt = κ
(
θ − νt

)
dt + η

√
νtdWνt (6)

where σt =
√

νt, κ, θ, η, ρ are constants.
The Ornstein-Uhlenbeck’s stochastic volatility model is

dSt = μStdt + σtStdWSt, dνt = α
(
ν − νt

)
dt + βdWνt (7)

where σt = exp(νt). The empirical investigation shows that lnσt follows
Ornstein-Uhlenbeck process with parameters lnσ and α > 0. It is usual to as-
sume that μ, α(lnσ − νt) and β are constants. Let ρ = 0.

4 Estimation of Parameters of Stochastic Volatility
Models

Parameters of stochastic volatility models are estimated on observations of assets
and options price dynamics. There are three unknown parameters in the Hull-
White model: σ1, σ2, and p, which are estimated by the method of least
squares :
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min

n∑

i=1

(
Cmarketi − Cmodel

(
σ1, σ2, p, Ki

))2

where n - the number of traded options per day, Cmarketi – the market price
of ith option with strike price Ki, Cmodel

(
σ1, σ2, p, Ki

)
– the price of option

evaluated by Hull-White model.
The parameters of Heston and Ornstein-Uhlenbeck models are estimated ap-

plying two steps procedure [12]. At first parameters μ, κ, θ, η must be valuated.
Say that μ = 0, then the equation (6) in discrete case has the form:

Rt =
√

νtτε1t, νt = κθτ +
(
1 − κτ

)
νt−τ + η

√
νt−τ τε2t

where Rt - the return rate of the asset, ε1t and ε2t - two standard normal
distributed correlated values. It is constructed the auxiliary GARCH(1,1) model:

Rt =
√

htεt, ht = ω + αε2
t−1 + βht−1

Where: εt- normally distributed random variable with mean 0 and variance ht. In
this case it is possible to estimate only three parameters

(
κ, θ, η

)
and coefficient

of correlation is equated zero. The theoretical return rate are matching with
empirical data when parameters

(
κ, θ, η

)
and τ are chosen.

Applying GARCH(1,1) model, the set of optimal parameters B̂ =
(
ω, α, β

)

for given data of the asset return rates is obtained. Thus, the set of parameters
Θ =

(
κ, θ, η

)
is known for each modeled time series. The next step is to compute

the vector

m
(
Θ, B̂

)

3∗1
=

1
N

N∑

t=1

δlt

(
Rt

(
Θ

)∣∣Rt−1
(
Θ

)
, B

)

δB

∣∣∣∣
B=B̂

, lt = −lnht − R2
t

2ht

where Rt(Θ) are rates of modeled returns, N – the number of modeling steps. If
m equals zero, then the modeled data obtained by GARCH(1,1) model will have
the same parameters as observed data. The optimal set of parameters is valuated
minimizing the expression minΘ̂ mT

(
Θ, B̂

)
I−1m

(
Θ, B̂

)
with matrix of weights

I3∗3 = 1
N

∑N
t=1

δlt

(
Rt,B

)

δB

δlt

(
Rt,B

)

δBT

∣∣∣∣
B=B̂

. The matrix I is obtained estimating the

gradient from the observed market data.
Having the estimations (κ̂, θ̂, η̂), the coefficient of correlation ρ is calculated

by the method of least squares. The error between market and model prices is
minimized by the procedure

min
(p)

n∑

i=1

(
Cmarketi − Cmodel

(
ρ, Ki

))2

where n is the number of daily option prices. The procedure is repeated for
option prices of each day. The parameters of Logarithmic Ornstein-Uhlenbeck
model are estimated in a similar way.
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5 Empirical Investigation of the Models

The prices of European call options traded on exchange rate EUR/USD in SEB
Vilnius Bank (Lithuania) will be investigated. The observed data are divided into
several groups according to the profitability (S/K − 1) and life time of options.
Suppose that an option is at the money (ATM) if S = K or profitability belongs
to the interval (–0,5%, 0,5%.). An option is in the money (ITM) if S > K or
profitability belongs to the interval (0.5%, 1%) and out of the money (OTM)
if S < K or the profitability belongs to the interval (-1%, -0,5%). An option is
deep out of the money (DOTM) if profitability is less than -1%. An option is
called short term if the life time of the option is equal to 1 month, intermediate
- 3 months, and long term - 6 months. Daily observations of 82 days (from
2005-01-05 till 2005-04-30, totally 969 observations) were used for investigation.
The values of implied volatility depend on the profitability and are calculated
applying the above described models. The graphs of volatility smile are depicted
in the Fig. 1.

Fig. 1. Volatility smile for options of 1 month period

The implied volatility values of Hull-White model were computed by (5) equa-
tions. Thus

F (I) ≡ CBS(I) − p̂CBS(σ̂1) − (1 − p̂)CBS(σ̂2) = 0

where:CBS – value obtained by Black-Scholes formula [8], I –implied volatility
calculated by the method of Newton – Rapson.

Simulation by the method of Monte Carlo was carried out by the following
algorithm:

1. Obtained paths of asset price and volatility by the Hestono and Ornstein-
Uhlenbeck models.

2. Computed values of options at the end of each day: h(St) = max{0, St −K},
t = 1, T .

3. The price of option is calculated by the formula: Cmodel =e−rBaseT E
(
h(ST )

)
.

4. The values of volatility are derived from the equation CBS(I) − Cmodel = 0.
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Theoretical price of an option is approximate to the market price if the obtained
volatility value is close to the value of implied volatility derived from the Black-
Scholes.

Models of the stochastic volatility overprice DOTM and ITM options and
undervalue OTM options, except Ornstein-Uhlenbeck model which overprices all
options (Table 1). This is obviously seen for short term options. The stochastic
volatility models are more practical for pricing intermediate and short term
options. Errors of options pricing are estimated in two ways: average relative

Table 1. Comparison of implied volatilities for various models

Profit (x = S/K − 1) Model
Lifetime of option

TotalShort Interm. Long

DOTM
(x < – 0.01)

Black-Scholes
Hull-White‘
Heston
Ornstein-Uhlenbeck

0.1425
0.1432
0.1661
0.1616

0.1209
0.1218
0.1269
0.126

0.1125
0.1126
0.1039
0.1197

0.1253
0.1259
0.1323
0.1358

OTM
(–0.01 < x < –0.005)

Black-Scholes
Hull-White
Heston
Ornstein- Uhlen-
beck

0.1266
0.1238
0.1194
0.137

0.1107
0.1106
0.0966
0.1219

0.1052
0.1049
0.0872
0.1186

0.1141
0.1131
0.1011
0.1258

ATM
(–0.005 < x < –
0.005)

Black-Scholes
Hull-White
Heston
Ornstein-Uhlenbeck

0.1103
0.1084
0.0636
0.1214

0.1012
0.1012
0.0636
0.1174

0.0985
0.0982
0.0661
0.1167

0.1033
0.1026
0.063
0.1185

ITM
(0.005 < x < 0.01)

Black-Scholes
Hull-White
Heston
Ornstein-Uhlenbeck

0.0868
0.0945
0.0975
0.1374

0.0901
0.0941
0.0907
0.1208

0.0912
0.0934
0.0603
0.1175

0.0894
0.094
0.0898
0.1252

pricing error (ARPE) and average square error (ASE).

ARPE =
1
n

n∑

i=1

∣∣∣CM
i − Ci

∣∣∣
Ci

, ASE =

√√√√ 1
n

n∑

i=1

(
CM

i − Ci

)2

where n is number of option prices, Ci and CM
i –theoretical and market prices of

options respectively. ARPE and RMSE are calculated with different profitability
and duration of options. All the models overvalue DOTM and ITM options but
the Hull-White model undervalue ITM options of all terms (Table 2). The pricing
errors of ITM, DOTM, and short term options are the largest one. The Hull-
White model is clearly superior comparing with the Black-Scholes and other
stochastic volatility models. Relative options pricing errors of the Hull-White
model are less then Black-Scholes one in 7 cases from 12. Rising duration of
options their pricing errors decline. ARPE and ASE errors coincide.
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Table 2. Relative errors of options pricing

Profit (x = S/K − 1) Model
Lifetime of option

TotalShort Interm. Long

DOTM
(x < – 0.01)

Black-Scholes
Hull-White‘
Heston
Ornstein-Uhlenbeck

0.0381
0.0352
0.6935
0.1828

0.0194
0.0236
0.2018
0.2311

0.0156
0.0152
0.2064
0.1682

0.0244
0.0246
0.3672
0.194

OTM
(–0.01 < x < –0.005)

Black-Scholes
Hull-White
Heston
Ornstein- Uhlen-
beck

0.0473
0.0443
0.3365
0.1971

0.0259
0.0245
0.2309
0.1769

0.0175
0.015
0.2507
0.1192

0.0302
0.0279
0.2726
0.1644

ATM
(–0.005 < x < –
0.005)

Black-Scholes
Hull-White
Heston
Ornstein-Uhlenbeck

0.0397
0.038
0.3426
0.1884

0.0199
0.0231
0.343
0.1248

0.0171
0.0156
0.2795
0.091

0.0256
0.0255
0.3284
0.1347

ITM
(0.005 < x < 0.01)

Black-Scholes
Hull-White
Heston
Ornstein-Uhlenbeck

0.0614
0.0637
0.3405
0.1859

0.0348
0.0394
0.2494
0.0934

0.0238
0.0251
0.2332
0.0918

0.04
0.04
0.3077
0.1236

6 Conclusions

1. Stochastic volatility models are more preferable for intermediate and long
duration options.

2. In respect of profitability a stochastic volatility parameter is greater (less)
then implied volatility parameter for DOTM and ITM (OTM) options.

3. All the volatility models (except Heston model) overvalue DOTM and ITM
options but undervalue ATM options. The Hull – White model gives the
least option pricing error and the most one gives the Heston model.

4. The Ornstein-Uhlenbeck model is suitable for pricing long term options and
the Hull-White – model is relevant for various duration options.
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