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Abstract. Cellular automata display configurations that are constant
in time. We implement a stochastic synchronization between the present
configurations of the system and its precedent ones in order to search
for these constant patterns. For most of the known evolution rules with
complex behavior a dynamic competition among all the possible con-
stant patterns is established and no stationary regime is reached. For the
particular rule coded by the decimal number 18, a self-synchronization
phenomenon can be obtained, even when strong modifications to the
synchronization method are applied.

1 Introduction

Cellular automata (CA) are discrete dynamical systems, discrete both in space
and time. The simplest one dimensional version of a cellular automaton is formed
by a lattice of N sites or cells, numbered by an index i = 1, . . . , N , and with
periodic boundary conditions. In each site, a local variable σi taking a binary
value, either 0 or 1, is asigned. The binary string σ(t) formed by all sites values
at time t represents a configuration of the system. The system evolves in time
by the application of a rule Φ. A new configuration σ(t + 1) is obtained under
the action of the rule Φ on the state σ(t). Then, the evolution of the automata
can be writen as

σ(t + 1) = Φ [σ(t)]. (1)

If coupling among nearest neighbors is used, the value of the site i, σi(t + 1),
at time t + 1 is a function of the value of the site itself at time t, σi(t), and
the values of its neighbors σi−1(t) and σi+1(t) at the same time. Then, the local
evolution is expressed as

σi(t + 1) = φ(σi−1(t), σi(t), σi+1(t)), (2)

being φ a particular realization of the rule Φ. For such particular implementation,
there will be 23 different local input configurations for each site and, for each
one of them, a binary value can be assigned as output. Therefore there will be 28
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different rules φ, also called the Wolfram rules. Each one of these rules produces
a different dynamical evolution. In fact, dynamical behavior generated by all 256
rules were already classified in four generic classes. The reader interested in the
details of such classification is addressed to the original reference [1].

CA provide us with simple dynamical systems, in which, we would like to find
different methods of synchronization. A stochastic synchronization technique
was introduced by Morelli and Zanette [2] that works in synchronizing two CA
evolving under the same rule Φ. The two CA are started from different initial
conditions and they are supposed to have partial knowledge about each other.
In particular, the CA configurations, σ1(t) and σ2(t), are compared at each time
step. Then, a fraction p of the total different sites are made equal (synchronized).
The synchronization is stochastic since the location of the sites that are going
to be equal is decided at random. Hence, the dynamics of the two coupled CA,
σ(t) = (σ1(t), σ2(t)), is driven by the successive application of two operators:

1. the deterministic operator given by the CA evolution rule Φ, Φ[σ(t)] =
(Φ[σ1(t)], Φ[σ2(t)]), and

2. the stochastic operator Γp that produces the result Γp[σ(t)], in such way
that, if the sites are different (σ1

i �= σ2
i ), then Γp sets both sites equal to σ1

i

with the probability p/2 or equal to σ2
i with the same probability p/2. In

any other case Γp leaves the sites unchanged.

Therefore the temporal evolution of the system can be written as

σ(t + 1) = (Γp ◦ Φ)[σ(t)] = Γp[(Φ[σ1(t)], Φ[σ2(t)])]. (3)

A simple way to visualize the transition to synchrony can be done by display-
ing the evolution of the difference automaton (DA),

δi(t) =| σ1
i (t) − σ2

i (t) | . (4)

The mean density of active sites for the DA

ρ(t) =
1
N

N∑

i=1

δi(t), (5)

represents the Hamming distance between the automata and verifies 0 ≤ ρ ≤ 1.
The automata will be synchronized when limt→∞ ρ(t) = 0. As it has been de-
scribed in [2] that two different dynamical regimes, controlled by the parameter
p, can be found in the system behavior:

p < pc → limt→∞ ρ(t) �= 0 (no synchronization),
p > pc → limt→∞ ρ(t) = 0 (synchronization),

being pc the parameter for which the transition to the synchrony occurs. When
p � pc complex structures can be observed in the DA time evolution. In Fig. 1,
typical cases of such behavior are shown near the synchronization transition. Lat-
eral panels represent both CA evolving in time where the central strip displays
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Rule 22 Rule 30

Rule 90 Rule 110

Fig. 1. Spatio-temporal patterns near the synchronization transition. Lateral strips
represent both CA evolving in time where the central strip displays the evolution of
the corresponding DA. Time goes from top to bottom. Lattice size is N = 100 and the
number of iterations is T = 250. The stochastic coupling between both CA is p = 0.23.

the evolution of the corresponding DA. When p comes close to the critical value
pc the evolution of δ(t) becomes rare and resembles the problem of structures
trying to percolate in the plane [3]. A method to detect this kind of transition,
based in the calculation of a statistical measure of complexity for patterns, has
been proposed in the Refs. [4].

2 Self-synchronization of Cellular Automata

2.1 First Self-synchronization Method

Let us now take a single cellular automaton [5, 6]. If σ1(t) is the state of the
automaton at time t, σ1(t) = σ(t), and σ2(t) is the state obtained from the
application of the rule Φ on that state, σ2(t) = Φ[σ1(t)], then the operator Γp

can be applied on the pair (σ1(t), σ2(t)), giving rise to the evolution law

σ(t + 1) = Γp[(σ1(t), σ2(t))] = Γp[(σ(t), Φ[σ(t)])]. (6)
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Fig. 2. Rule 90 has two stable patterns: one repeats the 011 string and the other one
the 00 string. Such patterns are reached by the first self-synchronization method but
there is a dynamical competition between them. In this case p = 0.9. Binary value 0 is
represented in white and 1 in black. Time goes from top to bottom.

The application of the Γp operator is as follows. When σ1
i �= σ2

i , the sites i of
the state σ2(t) are updated to the correspondent values taken in σ1(t) with a
probability p. The updated array σ2(t) is the new state σ(t + 1).

It is worth to observe that if the system is initialized with a configuration
constant in time for the rule Φ, Φ[σ] = σ, then this state σ is not modified
when the dynamic equation (6) is applied. Hence the evolution will produce a
pattern constant in time. However, in general, this stability is marginal. A small
modification of the initial condition gives rise to patterns variable in time. In fact,
as the parameter p increases, a competition among the different marginally stable
structures takes place. The dynamics drives the system to stay close to those
states, although oscillating continuously and randomly among them. Hence, a
complex spatio-temporal behavior is obtained. Some of these patterns can be
seen in Fig. 2. However, in rule 18, the pattern becomes stable and, independently
of the initial conditions, the system evolves toward this state, which is the null
pattern in this case.

2.2 Second Self-synchronization Method

Now we introduce a new stochastic element in the application of the operator Γp.
To differentiate from the previous case we call it Γ̃p̃. The action of this operator
consists in applying at each time the operator Γp, with p chosen at random in
the interval (0, p̃). The evolution law of the automaton is in this case:

σ(t + 1) = Γ̃p̃[(σ1(t), σ2(t))] = Γ̃p̃[(σ(t), Φ[σ(t)])]. (7)
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Fig. 3. Mean density ρ vs. pmax = p̃ for different rules evolving under the second
synchronization method. The existence of a transition to a synchronized state can be
clearly observed for rule 18.

The DA density between the present state and the previous one, defined as
δ(t) =| σ(t)− σ(t− 1) |, is plotted as a function of p̃ for different rules Φ in Fig.
3. Only when the system becomes self-synchronized there will be a fall to zero
in the DA density. Let us observe again that the behavior reported in the first
self-synchronization method is newly obtained in this case. Rule 18 undergoes
a phase transition for a critical value of p̃. For p̃ greater than the critical value,
the method is able to find the stable structure of the system. For the rest of the
rules the freezing phase is not found. The dynamics generates patterns where the
different marginally stable structures randomly compete. Hence the DA density
decays linearly with p̃ (see Fig. 3).

2.3 Third Self-synchronization Method

At last, we introduce another type of stochastic element in the application of the
rule Φ. Given an integer number L, the surrounding of site i at each time step is
redefined. A site il is randomly chosen among the L neighbors of site i to the left,
(i−L, . . . , i−1). Analogously, a site ir is randomly chosen among the L neighbors
of site i to the right, (i+1, . . . , i+L). The rule Φ is now applied on the site i using
the triplet (il, i, ir) instead of the usual nearest neighbors of the site. This new
version of the rule is called ΦL, being ΦL=1 = Φ. Later the operator Γp acts in
identical way as in the first method. Therefore, the dynamical evolution law is:

σ(t + 1) = Γp[(σ1(t), σ2(t))] = Γp[(σ(t), ΦL[σ(t)])]. (8)
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Fig. 4. Mean density ρ vs. p for rule 18 evolving under the third self-synchronization
method. The existence of a transition to a synchronized state can be observed despite
of the randomness in the election of neighbors within a range L, up to L = 4.

Fig. 5. Mean density ρ vs. p for different rules evolving under the third self-
synchronization method. The density of the system decreases linearly with p.
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The DA density as a function of p is plotted in Fig. 4 for the rule 18 and in Fig.
5 for other rules. It can be observed again that the rule 18 is a singular case that,
even for different L, maintains the memory and continues to self-synchronize. It
means that the influence of the rule is even more important than the randomness
in the election of the surrounding sites. The system self-synchronizes and decays
to the corresponding stable structure. Contrary, for the rest of the rules, the DA
density decreases linearly with p even for L = 1 as shown in Fig. 5. The systems
oscillate randomly among their different marginally stable structures as in the
previous methods.

3 Conclusions

Inspired in stochastic synchronization methods for CA, different schemes for self-
synchronization of a single automaton have been proposed and analyzed in this
work. Self-synchronization of a single automaton can be interpreted as a strategy
for searching and controlling the structures of the system that are constant in
time. In general, it has been found that a competition among all such structures is
established, and the system ends up oscillating randomly among them. However,
rule 18 is a unique position among all rules because, even with random election
of the neighbors sites, the automaton is able to reach the configuration constant
in time.
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