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Abstract. The paper presents design, implementation details and simulations of
scientific workflows involving compute-intensive tasks on clusters and PCs. The
author has incorporated support for scientific workflows into previously devel-
oped J2EE-based BeesyCluster, deployed at Academic Computer Center Gdansk
Poland on large HPC resources including a large 288-processor Itanium2 clus-
ter. BeesyCluster allows users to manage various accounts on clusters/PCs via
WWW/Web Services, run shell interactively, compile, queue, run tasks, publish
services for other users, work in teams. A frequent scenario in HPC computing is
analyzed, in which a workflow is combined from tasks offered by different users.
Steps of the workflow include data preparation and following simulations run in
parallel on clusters, with and without queuing systems.

1 Introduction and Related Work

In today’s distributed networks, services are combined into scientific workflows en-
abling convenient execution of frequent scenarios in various disciplines like molecular
biology, bioinformatics, ecology, chemistry, often using HPC resources.

Examples of systems supporting workflows include Kepler ([1]), Pegasus ([2]), Tri-
ana ([3]), P-GRADE ([4]). Such systems may utilize Web Services or grids e.g. Ke-
pler ([1]) features Web Service or grid actors – WEBSERVICE and GLOBUSJOB for
calling Web Services and running Globus jobs respectively. Directed Acyclic Graph
Manager (DAGMan) is a meta-scheduler for Condor jobs (described by a DAG).

Potential obstacles in integration in current grid ([5]) technology and systems may in-
clude: often difficult and time-consuming deployment of new resources, quickly chang-
ing versions of standards and software, complexity of the middleware for average users.

For integration of Web Services there exist Web Services Flow Language (WSFL),
its extension Services Workflow Language (SWFL), BPEL and WS-Choreography.

The J2EE-based BeesyCluster ([6]), implemented by our team, deployed at Aca-
demic Computer Center Gdansk, Poland, is an advanced access portal to HPC re-
sources/PCs and services available on them. While the implemented workflow features
are similar to other systems, unlike many middlewares BeesyCluster accesses cluster-
s/PCs via SSH. Thus attachment of resources, unlike for many grid systems, can be
done in seconds since does not require any additional software layer on clusters/PCs.
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2 Integration of Services into Workflows in BeesyCluster

As an exemplary workflow in BeesyCluster we consider the one in Figure 1. User iccs
runs a DataGenerator on a Linux workstation TBC2 (Pentium 4 2GHz) which prepares
input data and runs two parallel simulations on two different clusters: holk (288 Ita-
nium processors, Infiniband) with PBS and parowiec (16 processors, Ethernet) with
no queuing system. Applications are offered by different users in BeesyCluster.
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Fig. 1. Basic Interaction Diagram for Testbed Workflow

We have implemented a workflow that responds dynamically to the changes of load
on cluster parowiec (application a started by pczarnul), by checkpointing/restart-
ing or migrating pa1 using our checkpointing libraries for MPI programs ([7]).

In BeesyCluster, services (tasks run interactively, queued or any services that operate
on any of resources attached to clusters/PCs) process input data and produce output
results. Workflows in BeesyCluster can be modeled as a directed graph with:

node of a workflow graph – contains calls to at least one service. A path of connected
graph nodes is implemented as a message-driven bean thread on the J2EE platform
calling services on clusters/PCs via SSH. The workflow node is represented by a
row in a database with service data. The graph links the node with following ones.

parallel execution of workflow nodes/paths – threads representing parallel paths are
created and execute services in parallel.

synchronization of parallel workflow nodes on the following node – threads repre-
senting parallel paths can determine through synchronization on the database which
finishes last and it continues with services associated with the following node.

communication between parallel workflow nodes - inter-thread interaction in the ap-
plication server or by direct interaction (hand-coded) if nodes on the same resource.

input/output data management – output files of preceding service(s) transferred as
input files with proper name mapping.

For the testbed scenario (Figure 1) additional services are created (Figures 2, 3):

1. l1-l4 on cluster parowiec for load monitoring – implemented as a C++ pro-
gram loadmonitor using command ps and parsing output periodically,

2. apml on cluster parowiec – reads the load provided by loadmonitors, check-
points/stops pa1when the processor load by other user processes exceeds 10% and
restarts when it drops below or migrates to other nodes immediately; apml sends
signal USR1 to checkpoint pa1 and restarts by a system command ([7]).
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Fig. 2. Cooperation Diagram for Testbed Workflow with Reaction to External Load on Cluster

3 Simulations

Figures 3, 4 and 5 present an interaction diagram and results from the execution of
the workflow respectively. In the scenario from Figure 4 pa1 is restarted on the same
node when the load from other users drops while for Figure 5 migrated to another
node immediately. On holk requesting more nodes requires longer to obtain resources
(queued via PBS). On parowiec tasks are run at once (no queuing) but the cluster has
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Fig. 4. Workflow with Checkpoint/Restart
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Fig. 5. Workflow with Migration of pa1

slower processors and the task can be slowed down by others as in our scenario. For the
one in Figure 4 twice as many processors were used on parowiec than on holk.

4 Conclusions and Future Work

We have presented design and execution of a testbed scientific workflow within Beesy-
Cluster. The workflow responded automatically to launching a higher priority applica-
tion on cluster parowiec by checkpointing/migrating/restarting application. Future
work includes incorporation of Web Services and Globus jobs into the system.
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