
Integration of Compute-Intensive Tasks into Scientific
Workflows in BeesyCluster�,��

Paweł Czarnul

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Poland

pczarnul@eti.pg.gda.pl

Abstract. The paper presents design, implementation details and simulations of
scientific workflows involving compute-intensive tasks on clusters and PCs. The
author has incorporated support for scientific workflows into previously devel-
oped J2EE-based BeesyCluster, deployed at Academic Computer Center Gdansk
Poland on large HPC resources including a large 288-processor Itanium2 clus-
ter. BeesyCluster allows users to manage various accounts on clusters/PCs via
WWW/Web Services, run shell interactively, compile, queue, run tasks, publish
services for other users, work in teams. A frequent scenario in HPC computing is
analyzed, in which a workflow is combined from tasks offered by different users.
Steps of the workflow include data preparation and following simulations run in
parallel on clusters, with and without queuing systems.

1 Introduction and Related Work

In today’s distributed networks, services are combined into scientific workflows en-
abling convenient execution of frequent scenarios in various disciplines like molecular
biology, bioinformatics, ecology, chemistry, often using HPC resources.

Examples of systems supporting workflows include Kepler ([1]), Pegasus ([2]), Tri-
ana ([3]), P-GRADE ([4]). Such systems may utilize Web Services or grids e.g. Ke-
pler ([1]) features Web Service or grid actors – WEBSERVICE and GLOBUSJOB for
calling Web Services and running Globus jobs respectively. Directed Acyclic Graph
Manager (DAGMan) is a meta-scheduler for Condor jobs (described by a DAG).

Potential obstacles in integration in current grid ([5]) technology and systems may in-
clude: often difficult and time-consuming deployment of new resources, quickly chang-
ing versions of standards and software, complexity of the middleware for average users.

For integration of Web Services there exist Web Services Flow Language (WSFL),
its extension Services Workflow Language (SWFL), BPEL and WS-Choreography.

The J2EE-based BeesyCluster ([6]), implemented by our team, deployed at Aca-
demic Computer Center Gdansk, Poland, is an advanced access portal to HPC re-
sources/PCs and services available on them. While the implemented workflow features
are similar to other systems, unlike many middlewares BeesyCluster accesses cluster-
s/PCs via SSH. Thus attachment of resources, unlike for many grid systems, can be
done in seconds since does not require any additional software layer on clusters/PCs.

� Partially covered by the Polish National Grant KBN No. 4 T11C 005 25.
�� Calculations carried out at the Academic Computer Center in Gdansk, Poland.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 944–947, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integration of Compute-Intensive Tasks into Scientific Workflows in BeesyCluster 945

2 Integration of Services into Workflows in BeesyCluster

As an exemplary workflow in BeesyCluster we consider the one in Figure 1. User iccs
runs a DataGenerator on a Linux workstation TBC2 (Pentium 4 2GHz) which prepares
input data and runs two parallel simulations on two different clusters: holk (288 Ita-
nium processors, Infiniband) with PBS and parowiec (16 processors, Ethernet) with
no queuing system. Applications are offered by different users in BeesyCluster.

pa1:Parallel
Application

<<process>>

{location=parowiec}

owner=stud04

pa:Parallel
Application

<<process>>

{location=holk}

dg:Data
Generator

<<process>>

{location=TBC2}

w:Workflow

iccs

a:Application

<<process>>

{location=parowiec}
owner=klaster

pczarnul

owner=franiuowner=stud04

2.1

2.22.2

3
 1

Fig. 1. Basic Interaction Diagram for Testbed Workflow

We have implemented a workflow that responds dynamically to the changes of load
on cluster parowiec (application a started by pczarnul), by checkpointing/restart-
ing or migrating pa1 using our checkpointing libraries for MPI programs ([7]).

In BeesyCluster, services (tasks run interactively, queued or any services that operate
on any of resources attached to clusters/PCs) process input data and produce output
results. Workflows in BeesyCluster can be modeled as a directed graph with:

node of a workflow graph – contains calls to at least one service. A path of connected
graph nodes is implemented as a message-driven bean thread on the J2EE platform
calling services on clusters/PCs via SSH. The workflow node is represented by a
row in a database with service data. The graph links the node with following ones.

parallel execution of workflow nodes/paths – threads representing parallel paths are
created and execute services in parallel.

synchronization of parallel workflow nodes on the following node – threads repre-
senting parallel paths can determine through synchronization on the database which
finishes last and it continues with services associated with the following node.

communication between parallel workflow nodes - inter-thread interaction in the ap-
plication server or by direct interaction (hand-coded) if nodes on the same resource.

input/output data management – output files of preceding service(s) transferred as
input files with proper name mapping.

For the testbed scenario (Figure 1) additional services are created (Figures 2, 3):

1. l1-l4 on cluster parowiec for load monitoring – implemented as a C++ pro-
gram loadmonitor using command ps and parsing output periodically,

2. apml on cluster parowiec – reads the load provided by loadmonitors, check-
points/stops pa1when the processor load by other user processes exceeds 10% and
restarts when it drops below or migrates to other nodes immediately; apml sends
signal USR1 to checkpoint pa1 and restarts by a system command ([7]).

946 P. Czarnul

apml:AppMan
agerByLoad

<<process>>

{location=parowiec}

n0:Work
flowNode

<<thread>>

apml checkpoints/kills

pa when load is too

high (sending signal

-same cluster),

restarts/starts a new

app when load drops

or restarts immediately

on other nodes

apml reads load

information from

NFS (written by l1-l4)

pa1’:Parallel
Application

<<process>>

{location=parowiec}

pa1:Parallel
Application

<<process>>

{location=parowiec}

1

2

3

4

5

6

7

<<create>>

<<create>>

<<create>>

<<destroy>>

dg:Data
Generator

<<process>>

{location=TBC2}

<<create>>

n1:Work
flowNode

<<thread>>

l1-l4:Load
Monitor

<<process>>

{location=parowiec}

sl:StopLoad
Monitor

<<process>>

{location=parowiec}

n2:Work
flowNode

<<thread>>

sapml:Stop
AppManager
ByLoad

<<process>>

{location=parowiec}

<<destroy>>

<<thread>>

n3:Work
flowNode

owner=klaster

owner=stud04 owner=stud04

owner=stud04

owner=stud04

owner=stud04

owner=stud04

pa:Parallel
Application

<<process>>

{location=holk}

owner=franiu

checkpoint/kill restart/start

Fig. 2. Cooperation Diagram for Testbed Workflow with Reaction to External Load on Cluster

3 Simulations

Figures 3, 4 and 5 present an interaction diagram and results from the execution of
the workflow respectively. In the scenario from Figure 4 pa1 is restarted on the same
node when the load from other users drops while for Figure 5 migrated to another
node immediately. On holk requesting more nodes requires longer to obtain resources
(queued via PBS). On parowiec tasks are run at once (no queuing) but the cluster has

1.l1-l4 notice the load,

from a,2. apml reads the load

restart when load drops

3. apml checkpoints/kills pa

4. restarts/starts when load drops

a:App

apmll1-l4 n0 dg
 n1 n2

pczarnul

 pa pa1 pa1’ sl sapml

iccs

 n3

after migration

checkpoint/stop

restart from checkpoint

restart from scratch

fetch results from output dir

fetch results from output dir

fetch results from output dir

Fig. 3. Interaction Diagram for Testbed Workflow

Integration of Compute-Intensive Tasks into Scientific Workflows in BeesyCluster 947

0

20

40

60

80

100

0 100 200 300 400
Time [s]

Load [%]

pa1
a
dg
pa

Fig. 4. Workflow with Checkpoint/Restart

0

20

40

60

80

100

0 100 200 300 400
Time [s]

Load [%]

pa1
pa1 migrated
dg
a
pa

Fig. 5. Workflow with Migration of pa1

slower processors and the task can be slowed down by others as in our scenario. For the
one in Figure 4 twice as many processors were used on parowiec than on holk.

4 Conclusions and Future Work

We have presented design and execution of a testbed scientific workflow within Beesy-
Cluster. The workflow responded automatically to launching a higher priority applica-
tion on cluster parowiec by checkpointing/migrating/restarting application. Future
work includes incorporation of Web Services and Globus jobs into the system.

References

1. Ludscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao,
J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice & Experience, Special Issue on Scientific Workflows (2005)

2. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H., Vahi, K., Livny,
M.: Pegasus : Mapping Scientific Workflows onto the Grid. In: Across Grids Conference,
Nicosia, Cyprus (2004) http://pegasus.isi.edu.

3. Majithia, S., Shields, M.S., Taylor, I.J., , Wang, I.: Triana: A Graphical Web Service Compo-
sition and Execution Toolkit. In: IEEE International Conference on Web Services (ICWS’04),
IEEE Computer Society (2004) 512–524 http://www.trianacode.org/.

4. Laboratory of Parallel and Distributed Systems, MTA SZTAKI, Hungary: (Parallel Grid Run-
time and Application Development Environment, User’s Manual, ver. 8.4.2)

5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration. In: Open Grid Service Infrastructure
WG. (2002) Global Grid Forum.

6. Czarnul, P., Bajor, M., Fraczak, M., Banaszczyk, A., Fiszer, M., Ramczykowska, K.: Re-
mote task submission and publishing in beesycluster : Security and efficiency of web service
interface. In Springer-Verlag, ed.: Proc. of PPAM 2005. Volume LNCS 3911., Poland (2005)

7. Czarnul, P., Fraczak, M.: New user-guided and ckpt-based checkpointing libraries for parallel
mpi applications. In Springer-Verlag, ed.: Proceedings of Euro PVM/MPI 2005, 12th Euro-
pean PVM/MPI Users’ Group Meeting. Volume LNCS 3666., Sorrento, Italy (2005) 351–358

	Introduction and Related Work
	Integration of Services into Workflows in BeesyCluster
	Simulations
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

