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Abstract. Comparing vertebrate genomes requires efficient cross-species
sequence alignment programs. We describe COMBAT, a new mer-based
method which can search rapidly for highly similar translated genomic se-
quences, with the stable-marriage algorithm with incomplete lists (SMI)
as a filter scheme. We apply the COMBAT program to the comparative
analysis of the human with the most recent bovine genome assemblies, and
84%∼95% of the homologous blocks identified by this program are con-
firmed by BLASTZ.

1 Introduction

In the past decade many genome projects have produced complete genomes for
increasingly many organisms. Since 1999 many tools have proven effective in
aligning large genomic sequences of two closely related organisms. These include
MUMmer [4], GLASS [1], AVID [2], DIALIGN [8], LAGAN [3], BLASTZ [9],
BLAT [7], and etc. Common characteristics in many of these programs are: i)
they assume the conserved regions of the sequences being aligned appear in the
same order and orientation, as is particularly likely for closely related organisms;
ii) they build tables of scores for matches and mismatches between amino acids
or nucleotides incorporating penalties for insertions or deletions, and from these
constructs obtain mathematically ‘optimal’ alignments; iii) many local alignment
programs search for exact or spaced exact matches, and then extend the local
similarities in both directions in passes directed by specified scoring functions.

However, certain shortcomings limit the use of many of these programs. First,
genomic order and orientation need not be conserved between species of interest.
Secondly, the scoring matrix (eg. a PAM or a BLOSUM matrix) most appropriate
for aligning a set of sequences should be determined by the level of relatedness
of sequences. Hence the percentage of similarity between two genomes has to
be preestimated to choose a proper scoring matrix. Also, the fact that the rate
of evolution varies across the genome makes it impractical to pick a universal
scoring matrix or a set of gap costs [5]. Finally, by using the “match and extend”
strategy many local alignment algorithms pay a steep cost in extending short
matches in both directions.
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This paper describes a novel local alignment algorithm, called COMBAT
(Clean Ordered Mer-Based Alignment Tool), which addresses the above chal-
lenges by implementing the following two critical stages: i) generating an index
of all overlapping K-mers in translated genomic sequences, where the index rep-
resents the blocks to which a K-mer belongs and is used to search efficiently for
homologous blocks. ii) using the SMI algorithm to find the optimal one-to-one
mapping from a list of multiple local mappings and so form a global matching
map. COMBAT makes no assumption of gene order and orientation, does not
utilize any sophisticated scoring matrix, and does not have the expensive “ex-
tend” stage of many local alignment programs. The COMBAT algorithm is fully
described in the next section.

2 Method for Pairwise Genomic Comparison

The goal of COMBAT is to identify protein-encoding regions in genomic se-
quences using a genome comparison approach. Let us suppose the two genomes
being compared are called genome A and genome B. We define some of the terms
used below, and present the parameters involved in Table 1.

J-interval: a continuous genomic sequence of length J . Adjacent J-intervals
are spaced J/2 bases apart. The J-interval index is simply called J-index.

Partner Interval Pair (PIP): an instance of PIP (a, b) consists of a J-interval
a in genome A and a J-interval b in genome B if there are more than T K-mers
shared by both a and b.

Table 1. The involved parameters in COMBAT program

J The length of a J-interval
K The K-mer size
T The minimum number of common K-mers required in any PIP
S The actual number of common K-mers in a PIP

E,F The chaining filtering criterion requires that there must be at least F PIPs,
each no further than E intervals from each other.

J1 interval

J2 interval

Κ1
Κ2

Κ13 K1J1
K2J1
……
K13J1
K13J2

……

Mer LibraryIndividual mers (oligopeptides)

Genomic sequences at peptide level

……
……

Fig. 1. How mer library for one genome is built. Ki denotes the ith K mer. Jj denotes
the index of the jth J-interval. Most mers (like K13) occur in the region covered by
two adjacent J-intervals, so they may appear twice in the mer library.
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The COMBAT algorithm comprises the following steps:

Step 1: Build Clean Ordered Mer Libraries
First, we translate genomic sequences of genome A and B in all three frames over
both forward and reverse orientations. After choosing a mer-size K we gener-
ate overlapping K-mers starting at every base position, ignoring mers in repeats
annotated by RepeatMasker. We cover the considered genome with J-intervals.
The “representation of position” that we attach to each K-mer is the index of
each J-interval to which it belongs, shown in Figure 1. We keep only one copy
of duplicate K-mers in each J-interval from the mer library. This makes all the
K-mers unique in every interval. Next we sort the mer library by the mer se-
quences. Such mer libraries for genome A and genome B are built separately.

Step 2: Search For Common Mers
Next we scan the clean ordered mer libraries prepared in the manner just de-
scribed to compute offsets between the pairs of matching mers found. When the
offset dij = Ai - Bj exists, it is the J-index difference between the i-th mer
occurring in genome A and the matching mer in genome B. It is easy to recover
the J-index of genome B using dij . We then sort this list of mers/offset pairs
by their offsets and their J-indexes on genome A. For each J-index of genome
A in this list we count the number of K-mers that have the same offsets. We
keep only those intervals as PIPs whose number of common K-mers is beyond
the threshold T for the next step.

Step 3: Find One-to-One Correspondence
As a natural result of genome duplications one region of one genome might match
several regions of another genome. Usually the single best, orthologous match
for each conserved region gains most biologists’s attention. BLASTZ uses the
axtBest program to produce the best alignments [9]. In this paper we first present
the application of the stable marriage (SM) problem in large-scale genome com-
parison as an alignment filter1. The well-know SM problem was introduced by
Gale and Shapley [6]. The problem can be stated as below: given two finite equal-
sized sets of players, called men and women (mi ∈ men, wj ∈ women), where
each mi/wj ranks wj/mi in strict order forming his/her preference list, find a
one-to-one stable matching M between the two sexes. M is “stable” if there is
no two couples (m, w) and (m′, w′) in M such that m prefers w′ to w and w′

prefers m to m′. The so-called “proposal algorithm” solves this problem.
Let P = {(a, b)} denote the set of all PIPs (a, b) found in step 2, X = {a | ∃b :

(a, b) ∈ P}, and Y = {b | ∃a : (a, b) ∈ P}. P can be viewed as a bipartite graph
which is a multiple mapping between two sets of J-indexes. We wish to find M ,
a one-to-one stable matching, from P . Since normally some a in X matches to
a true subset of Y , this SM problem becomes the relaxed version — the Stable
Marriage Problem with Incomplete Lists (SMI). We form a preference list for
each J-interval in P as follows:
1 One might borrow the idea of maximum weight matching (MWM) for this task.

The MWM solver maximizes the cumulative similarity, thus might not give single
best matches for individual regions.



COMBAT: Search Rapidly for Highly Similar Protein-Coding Sequences 657

a1

a2

a3

b1

b2

b3

2

3

5
4

2

a1 b1
0.67 1.00

a2

a3

b2

b3

1.00
0.75

1.00

1.00

1.00

1.00

0.50 0.40

M with Absolute Similarities M with Relative Similarities Stable Marriage Assignments

(a1, b1)
(a2, b3)
(a3, b2)

Fig. 2. An example of the stable marriage problem procedure. First compute relative
similarities from absolute similarities in the bipartite graph, then follow the SMI
algorithm to find the stable marriage assignments. a1 ∼ a4/b1 ∼ b4 denote the J-
indexes on genome A/B. In multiple mapping M with absolute similarities the numbers
on the edges show the number of K-mers shared by the partner intervals. The numbers
associated with an edge in the middle panel are the relative similarities for a pair of
partner intervals.

1. A measure of absolute interval similarity S is calculated, and S =
{S(a,b) | (a, b) ∈ P}, where S(a,b) denotes the number of K-mers shared
by a PIP (a,b).

2. Relative similarities are computed subsequently as fractions of the absolute
similarities of the best match partner for any J-interval in P . Then each J-
interval j ranks its match partners in strict order of their relative similarities
to j, forming j′s preference list.

In the example in Figure 2, b2 is the best match for a1, so we set R(a1,b2) =
1.00. The relative similarity for the other match partner of a1 is computed as
a fraction of S(a1,b2). Thus, R(a1,b1) =

S(a1,b1)
S(a1,b2)

= 2
3 ≈ 0.67. Relative similarities

are asymmetric. Under the marriage interpretation, this means that any two
match partners like each other to the different extent. We modify the proposal
algorithm and explain the SMI algorithm used by COMBAT as follows:

1. X={a},Y={b},M={}. Every a and b has an ordered preference list.
2. WHILE X is not empty, LOOP
3. choose an interval a from X
4. b=the first interval on a’s list(If have ties, randomly choose one)
5. IF a is not on b’s preference list, THEN
6. delete b from a’s list;
7. IF a’s preference list is empty, THEN
8. delete a from X; goto line 2
9. ELSE goto line 4
10. ELSE
11. IF (x, b) is in M for some x in X, THEN
12. remove (x, b) from M; add x to X;
13. add (a, b) to M
14. FOR each successor x (x ranks after a) in b’s list, LOOP
15. delete x from b’s list, and b from x’s list;
16. END LOOP
17. END LOOP
18. RETURN M
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This SMI algorithm’s complexity is O(n2) in time, and is linear in space
(n is the number of PIPs). The result returned by this algorithm is a list of
incomplete one-to-one mapping, which means J-intervals in genome A map to
at most one partner in genome B, and vice versa. Lastly, in order to remove
randomly matching PIPs we perform a chaining procedure which requires that
there must be at least F partner intervals, each no further than E intervals from
each other. This step is not necessary if we choose strict values of J and K.

3 Results for the Human/Cow Genome Comparison

We have applied COMBAT to Human Assembly (hg17, May 2004) and Cow
Assembly (bosTau1, Sep. 2004, BCM HGSC Btau 1.0), both from the UCSC
Genome Bioinformatics Site. As an example illustrating our results, we take
chromosome I from hg17 and the first 33,000 cow scaffolds, and align them by
COMBAT. These two sequences are approximately 250MB in size. Let us call the
first sequence chr1, and the second sequence cow1. The resulting alignment maps
using different configurations are shown for positive strands in Figure 3. Figures
3-(1),(2),(4), and (5) are the results produced by COMBAT, with each plus
sign representing the index coordinates of a pair of matching intervals found by
COMBAT. Figures 3-(3) and (6) are the matches produced by BLASTZ, filtered
by the axtBest program [9] (downloaded from the UCSC Genome Bioinformatics
Site and transformed to fit our J-intervals context), with each dot representing
the index coordinates of the starting positions of two matched regions. The
BLASTZ result is transformed twice according to two values of J used.

The chaining criterion used by COMBAT turns out to be relatively insensitive
to the value of E used (see Figure 3-(1) and 3-(2)). To evaluate COMBAT, we
have tested the appearance of every matching pair of intervals found by COM-
BAT in the BLASTZ result (transformed by the same J used by COMBAT)2. In
Figure 3-(1), 95% of the 625 partner interval pairs found by COMBAT are true
positives. In the other direction, out of 8,389 matching regions in the BLASTZ
result, 7% are confirmed by COMBAT. In Figure 3-(4), there are 84% true posi-
tives out of 1235 PIPs, and they cover 11% of the BLASTZ result. In Figure 3-(5),
there are 85% true positives out of 971 PIPs, and they cover 9% of the BLASTZ
result. This high specificity indicates a promising wide use of COMBAT. The
low coverage is not surprising because only highly similar protein-coding regions
are expected to be found.

The computational core of the COMBAT algorithm was implemented as
a C++ program and all experiments were performed on NYU Bioinformatics
Group’s cluster of Pentium IV machines with 3 GB memory running RedHat

2 Consider a pair of matching J-interval (a, b) in COMBAT result as a true positive
case if there exists a pair of matching regions (x, y) (a and x in genome A, b and y
in genome B) in BLASTZ result and one of the following conditions is satisfied: 1)
a is contained in x and b is contained in y; 2) x is contained in a and y is contained
in b; 3) the starting positions of a/b is within J bases of those of x/y, respectively;
4) the ending positions of a/b is within J bases of those of x/y, respectively.
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Fig. 3. Alignment maps on positive strands between chr1 and cow1, with the X-axis
showing the J-indexes along the chr1 sequence, and the Y-axis showing those along the
cow1 sequence. (1),(2),(4), and (5) are the results produced by COMBAT; (3) and (6)
are the transformed results produced by the BLASTZ. (4) and (5) are done without
using the chaining procedure.

Linux 7.3. To compare 0.25 Gb of human sequence against 0.24 Gb of cow se-
quence (∼ 1/10 of total genomes) and produce the one-to-one mapping list of
highly similar regions, it took 23 CPU hours under the configuration shown in
Figure 3-(1), and took 2 CPU hours under the configuration shown in Figure 3-
(4). For the sake of performance comparison, we point to the published report
of BLASTZ taking 481 days of CPU time to align 2.8 Gb of human sequence
against 2.5 Gb of mouse sequence on a cluster of 1024 833-Mhz Pentium III [9].

4 Error Estimation

Consider two random J-intervals a in genome A and b in genome B (each of
length J over an alphabet of 20 amino acids and 1 stop codon) . For the sake of
simplicity, we will consider these intervals in one orientation only. Let Pk denote
the probability that there is a common K-mer at any position. Assuming that
letters occur at any given position with equal probability and independency, we
get Pk = 1/(21)K . Let the positive-valued random variable w denote the number
of common K-mers in a and b. We can show that w follows a Poisson distribution
with parameter λw = J2Pk. The expectation of a new random variable

(
w
i

)
can be

estimated by considering all possible
(
J
i

)
subsets of K-mers from a and counting

the probability of each such subset having exact matches with i K-mers in b.

E

[(
w

i

)]

=

(
J

i

)

(JPk)((J − 1)Pk) · · · ((J − i + 1)Pk) ≈ J(i)

i!

(
J

21K

)i

≈
(
J2/21K

)i

i!
(1)
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Using Brun’s sieve, the probability that two randomly selected J-intervals
from genome A and genome B have exactly m K-mers in common is:

Pr[w = m] = e−(J2/21K)

(
J2/21K

)m

m!
(2)

Using parameters of this Poisson distribution, we can choose a lower threshold
such that two random J-intervals are unlikely (with probability > 1 − ε) to have
more than θw K-mers in common. Using Chebychev’s inequality, we see that a
conservative choice would be:

θw = μw +
σw√

ε
, where μw =

J2

21K
, σw =

J

21K/2 (3)

As argued earlier, by using the one-tailed Chebychev bound, we have:

Pr(w > θw) = Pr(w − μw >
σw√

ε
) < ε (4)

By choosing a very small value of ε (for example, ε ≈ O(1/G), where G is the
genome size), we could make the probability of false positive adequately small.

Table 2. Exemplary choices of parameters given G and s when ε = 1/G. The θ here
has the same meaning of the T parameter in Table 1. Since ε is extremely small here,
the suggested range of θ is very conservative.

s = 0.8 s = 0.6
G = 109 G = 106 G = 109 G = 106

J = 1000, K = 8 J = 1000, K = 6 J = 1000, K = 9 J = 1000, K = 6
162 < θ < 200 108 < θ < 200 35 < θ < 150 108 < θ < 150

In the other direction, let s be a desired similarity value, in the sense that
COMBAT must almost always find pairs a and b, whenever they have a similarity
value of s or higher. The number of observed K-mers shared by a and b can be
viewed as a random variable v: B(|a∩b|, s) which has a Binomial distribution with
mean μ = |a ∩ b|s and variance σ2 = |a ∩ b|s(1 − s). Using the Chernoff bound, we
can choose an upper threshold of |a ∩ b|s/2 > Js/4 to guarantee a probability of
success larger than (1− ε), if J is sufficiently large, i.e., Js > 16 ln(1/ε). Assuming
ε = 1/G, and 16 ln(G)/s < J � G, we will need to satisfy the following inequality:

J2

21K
+ J

√
G

21K
< θ < Js/4 or

J

21K
+

√
G

21K
< θ′ < s/4 (5)

Since G and s are determined by the genomes, we need only to choose K
and J . Table 2 shows some exemplary choices of parameters. Note that since
our estimations are rather conservative, we found that, in practice, COMBAT
performs quite well even for suboptimal choices of parameters.

5 Summary and Acknowledgements

To get adequate speed when performing comparison at the scale of whole
genomes many high-speed alignment programs have a fast search stage that



COMBAT: Search Rapidly for Highly Similar Protein-Coding Sequences 661

uses a heuristic to identify regions likely to be homologous. Providing a way
of indexing sequences is a key to an efficient search stage. COMBAT indexes
both genomic sequences. By using the index of intervals instead of genomic
positions we have been able to decrease by J-fold the size of the index for a ver-
tebrate genome, and make it practical to run on a single CPU machine. We show
that COMBAT is capable of rapidly finding matching regions across vertebrate
species working in translated mode. Then a detailed alignment can be easily
retrieved by using the standard alignment algorithms [Smith-Waterman,1970;
Needleman-Wunsch,1981]. Therefore, the complex large-scale genome compari-
son problem is simplified by COMBAT. We also solve the problem of finding a
one-to-one mapping in a multiple mapping list by using the SMI algorithm.

Since COMBAT looks for exact K-mers matches, it cannot find regions of
relatively low similarity. However, the basic COMBAT scheme can be varied
to increase its sensitivity. For example, we can generate K-mers consisting of
n exactly matching submers K1 ∼ Kn with g number of bases between them
(g ∈ [0, α], where α is a threshold). This scheme makes it possible to find inexact
K-mer matches with gaps or mismatches, and will be experimented in the future.

This project was sponsored by the Department of the Army Award Number
W81XWH-04-1-0307.
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