
Fine-Grained Instrumentation and Monitoring
of Legacy Applications in a Service-Oriented

Environment�

Bartosz Balís1, Marian Bubak1,2, and Krzysztof Guzy1

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 Academic Computer Centre – CYFRONET, Nawojki 11, 30-950 Kraków, Poland

{bubak, balis}@uci.agh.edu.pl
Tel.: (+48 12) 617 39 64; Fax: (+48 12) 633 80 54

Abstract. Legacy applications are still heavily used in Grid systems. In
modern service-oriented Grid environments such applications are adapt-
ed to work as services. Monitoring of applications is often necessary
for various purposes, such as debugging, performance analysis, fault-
tolerance, etc. In this paper we present a framework for monitoring of
legacy applications wrapped as services. We adapt the OCM-G system
for monitoring of distributed legacy applications (such as MPI) to work
as part of a broader service-oriented monitoring infrastructure GEMINI.
We address monitoring and instrumentation at both service-level and
legacy-level. Our instrumentation is fine-grained, i.e. we support instru-
mentation and monitoring at the level of individual code regions.

Keywords: grid, monitoring, instrumentation, legacy applications,
service-oriented architecture.

1 Introduction

Grid systems based on modern service-oriented architecture (SOA) still heavily
use legacy code. For needs of debugging or performance measurement there is
necessity to monitor such legacy applications both at the level of service invoca-
tions and legacy code. The basis of monitoring of applications is instrumentation:
we insert additional instructions into the application’s code to generate events
and pass monitoring information to the monitoring system. Instrumentation in
a service-oriented environment cannot be statically inserted whenever we need to
monitor an application, since we usually do not have the opportunity to change
the source code, compile and deploy the application on demand.

We propose a solution for instrumentation which is: (1) dynamically enabled
and disabled, (2) fine-grained to enable monitoring at the level of code regions,
(3) accessible through a standardized instrumentation service to expose instru-
mentation functionality to arbitrary tools and services. This feature involves
� This work is supported by EU-IST Project K-WfGrid Knowledge Based Workflow

System for Grid Applications, IST-2002-511385, http://www.kwfgrid.net

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 542–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fine-Grained Instrumentation and Monitoring of Legacy Applications 543

a standardized high-level representation of the application to let the user easily
pick code regions to be instrumented, and a standardized language for expressing
instrumentation requests.

For legacy applications wrapped as services, it is important to address mon-
itoring at both service-level and legacy-code level in a coordinated way, e.g. to
relate delays at the service-level to respective code regions at the legacy-level.
However, those two aspects involve completely different execution environments.
If different monitoring and instrumentation tools are used for those two levels,
we are likely to fail in providing a unified view of the monitoring data. Therefore,
a generic monitoring system is desirable to collect data from various sources.

To our knowledge, though some grid application monitoring approaches do ex-
ist, e.g. Mercury [8], none of the current efforts addresses the described problems
in a comprehensive way.

We present a framework to instrument and monitor legacy applications
wrapped as services. In this effort, we employ several existing systems and speci-
fications. The existing system OCM-G [1] [2] is used for monitoring of MPI appli-
cations. We extend the OCM-G to support the concept of Standard Intermediate
Representation (SIR) [3] to provide an abstract view of the application as a con-
venient way for the user to pick individual code regions to be instrumented.
We have designed an instrumentation service compliant with a standardized
language WIRL (Workflow Instrumentation Request Language) for specifying
instrumentation requests. The mentioned functionality is integrated with the
GEMINI monitoring infrastructure [4] [5], which provides us with opportunity
to build custom sensors in order to collect information about any entity we want
to monitor (legacy application in our case), and ensures the transport of the
monitoring data over the Grid.

2 Legacy Monitoring Framework

Our framework used to monitor legacy applications is depicted in Fig. 1. The
main monitoring system is GEMINI – Generic Monitoring Infrastructure for
Grid resources and applications. GEMINI accepts requests for monitoring data
and instrumentation, and also transports those requests and monitoring data
over the network. GEMINI also deals with instrumentation at the service-level
of the application. For this we used application sensors developed with GEMINI.
However, in this paper we will focus on the legacy-level aspect. More information
about GEMINI can be found in section 4.

The actual instrumentation and monitoring of the legacy application is done
by the OCM-G monitoring system [1] [2]. We adapt the OCM-G to work as
a GEMINI sensor. The OCM-G which supports multi-site parallel applications
is based on the OMIS specification. The OCM-G custom sensor is an adaptation
layer between GEMINI and the OCM-G. From the viewpoint of the OCM-G,
the sensor is a tool connected to the OCM-G which sends monitoring requests
expressed in OMIS. For GEMINI, however, this component works as a sensor
compliant to the Generic Sensor Infrastructure. In OCM-G, the requests for

544 B. Balís, M. Bubak, and K. Guzy

GEMINI

Client
WIRL Request

WIRL Response

PDQS Request

PDQS Response

Sensor Interface

OMIS Interface

OCM-G Sensor

OCM-G

Application

WIRL Request
PDQS Request WIRL Response

PDQS Response

OMIS Request OMIS Response

Fig. 1. Legacy Monitoring Framework

data can be expressed in a powerful imperative manner using OMIS[7]. GEM-
INI, on the other hand, employs an less complex, declarative monitoring request
language PDQS combined with the instrumentation request language WIRL.
GEMINI also uses a different data representation than the OCM-G. Thus, the
main task of the high-level OCM-G sensor is to process queries from monitoring
service of GEMINI (expressed in WIRL and PDQS) and convert them to ap-
propriate OMIS monitoring requests supported by OCM-G. And also to convert
OMIS responses containing monitoring data to the data representation compli-
ant with GEMINI.

Additionally, we have also adopted the OCM-G to fully support fine-grained
instrumentation of legacy applications (see section 3).

Clients of GEMINI are provided with service interface which enable them to
control the instrumentation and monitoring and to obtain the monitoring data.
Client thus can request SIR to have an abstract view of application and then
select individual code regions to be instrumented.

3 Fine-Grained Instrumentation

Our approach to instrumentation is to combine source code instrumentation
and binary wrapping with the dynamic control of the measurement process at
runtime. The instrumentation is inserted statically via patching of source code
or binary libraries, while activation and deactivation of the instrumentation is

Fine-Grained Instrumentation and Monitoring of Legacy Applications 545

done at runtime. In our opinion, this approach could work for services: while
developers of applications might be required to instrument their code, the cost of
inactive instrumentation will be insignificant, and it will be possible to activate or
deactivate required parts of instrumentation at runtime. Future implementations
of instrumentation may be based on a fully dynamic approach. We provide a tool
to automatically insert probe functions at defined places into source files and
to generate SIR descriptions of the code. We include SIR into the application
executable.

Compiler and Linker
Wrapper

Application
Source Code

Instrumented
Application
Source Code

Object Code

Executable

SIR Generator

Source Code
Instrumentator

Linker

Compiler

SIR

SIR

SIR

 Binary
 Wrapped
MPI Library

1.2 SIR Generation

1.1 Instrumentation

2. Placing SIR

3. Compilation

4. Linking

Fig. 2. Instrumentation process

To specify instrumentation requests, GEMINI exposes a service interface com-
pliant with WIRL language (Workflow Instrumentation Request Language).
WIRL is a XML-based language in which the user specifies which code regions
are to be instrumented and what metrics to compute for those code regions
(e.g. wall-clock time for code region A). The WIRL requests are translated into
OCM-G’s OMIS requests.

Our goal is to support monitoring at the level of individual code regions.
Currently, the OCM-G does not allows this, we can only monitor all calls to
a specified function. However, the OCM-G offers the mechanism of probes which
can be inserted at arbitrary places into the source code of the application to
generate custom events. We have extened the OCM-G with the capability to
extract the SIR description from the application. With this and the usage of
probes, the OCM-G can fully support instrumentation at the level of individual

546 B. Balís, M. Bubak, and K. Guzy

code regions. The detailed process of instrumentation and SIR generation is
presented in Fig. 2.

1. First we take the application’s source file and run a tool to instrument all
code regions in it (currently function invocations) – step 1.1 Instrumentation.
The tool, based on the parsing of the code, also generates the SIR description
of the code – (step 1.2 SIR Generation).

2. Then SIR is inserted (as a static string variable) into the instrumented source
file (step 2. Placing SIR).

3. Instrumented code is next compiled by the OCM-G compiler wrapper (step
3. Compilation).

4. Received object code is linked with an MPI library, probably pre-
instrumented by the OCM-G (step 4. Linking).

After we have done those steps, we have the instrumented application exe-
cutable which includes SIR that can be obtain by the monitoring system. In
SIR, code regions are described, among others with unique names that can be
transformed into probe names of the OCM-G. In this way, user “clicks” that
indicate code regions described in SIR can be transformed into GEMINI and
finally OCM-G monitoring requests.

4 GEMINI – Generic Monitoring Infrastructure

Our main monitoring infrastructure is GEMINI [4] [5]. GEMINI is a generic
infrastructure designed to collect monitoring data from arbitrary sources (ap-
plications, resources, services, etc.) and transport this data over a distributed
network.

GEMINI is generic not only in terms of a variety of supported monitoring data
types, but also in that if offers standardized interfaces to query and subscribe
for the data and a standardized monitoring data representation. GEMINI also
provides a Generic Sensor Infrastructure which enables to easily develop and
deploy sensors which produce monitoring data to GEMINI.

Fig. 3 presents the peer-to-peer architecture of the GEMINI Framework. This
is a planned architecture; the current prototype provides a full monitoring func-
tionality though only multiple separate Monitors can be deployed. GOM is an
external registry that is used to publish GEMINI services and monitoring data
provided. D-Monitors and Monitors form a super-peer architecture to transport
monitoring data and data requests. D-Monitors expose interfaces to query and
subscribe for monitoring data in PDQS and also to issue instrumentation re-
quests in WIRL. Sensors are data producers which are connected to Monitors
and D-Monitors.

To specify instrumentation requests in GEMINI, WIRL (Workflow Instrumen-
tation Request Language) language is used. In WIRL one can request to attach
application to be ready for instrumentation, enable/disable or finalize instru-
mentation and get the SIR of an application. The second interface exposed by
GEMINI is PDQS (Performance Data Query and Subscription). It is employed
to specify query and subscription requests for monitoring data.

Fine-Grained Instrumentation and Monitoring of Legacy Applications 547

Fig. 3. Architecture of the GEMINI Monitoring Infrastructure

5 Summary

We have presented a framework for monitoring legacy applications wrapped as
services and deployed in a grid. The framework is composed of a generic monitor-
ing infrastructure GEMINI to transport the monitoring data and also data and
instrumentation requests and a legacy system for monitoring distributed appli-
cations the OCM-G. The OCM-G was adapted to be compliant with GEMINI.
A completely novel aspect of instrumentation was the support to instrument the
application at the level of code regions. Thanks to GEMINI, unified view on
monitoring data from the service-level and from the legacy-level of application
is possible. This paper was focusing on the legacy level. In the future we would
like to evaluate the presented solution on some real-world application scenarios.

References

1. B. Balís, M. Bubak, M. Radecki, T. Szepieniec, and R. Wismüller. Application Mon-
itoring in CrossGrid and Other Grid Projects. In Dikaiakos M., editor, Grid Com-
puting. Proc. Second European Across Grids Conference, pages 212-219, Nicosia,
Cyprus, January 2004. Springer.

2. The OCM-G homepage: http://www.icsr.agh.edu.pl/ocmg
3. C. Seragiotto Jr., H.-L. Truong, B. Mohr, T. Fahringer, M. Gerndt, T. Li. Standard-

ized Intermediate Representation for Fortran, Java, C and C++ Programs. APART
Technical Report Workpackage 1, http://www.fz-juelich.de/apart

4. B. Balis, M. Bubak, J. Dziwisz, H.-L. Truong, and T. Fahringer. Integrated Monitor-
ing Framework for Grid Infrastructure and Applications. In P. Cunningham and M.
Cunningham, editors, Innovation and the Knowledge Economy. Issues, Applications,
Case Studies, pages 269-276, Ljubljana, Slovenia, October 2005. IOS Press.

5. The GEMINI homepage: http://gemini.icsr.agh.edu.pl

548 B. Balís, M. Bubak, and K. Guzy

6. The K-Wf Grid Project homepage, http://www.kwfgrid.net
7. OMIS – On-line Monitoring Interface Specification. Version 2.0. Lehrstuhl fur Rech-

nertechnik und Rechnerorganisation Institut fur Informatik (LRR-TUM), Technis-
che Universitat Munchen. http://wwwbode.informatik.tu-muenchen.de/ omis

8. N. Podhorszki, Z. Balaton, G. Gombas. Monitoring Message-Passing Parallel Appli-
cations in the Grid with GRM and Mercury Monitor. In: In: Dikaiakos M., editor,
Grid Computing. Proc. Second European Across Grids Conference, Nicosia, Cyprus,
January 2004, Springer.

	Introduction
	Legacy Monitoring Framework
	Fine-Grained Instrumentation
	GEMINI -- Generic Monitoring Infrastructure
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

