Dynamic Instrumentation of Distributed Java
Applications Using Bytecode Modifications

Wilodzimierz Funika* and Pawel Swierszcz

Inst. Comp. Science, AGH-UST, al. Mickiewicza 30, 30-059 Krakow, Poland
funika@uci.agh.edu.pl
Tel.: (+48 12) 617 44 66; Fax: (+48 12) 633 80 54

Abstract. Java’s features such as system platform independence,
dynamic and network oriented architecture, robustness as well as grow-
ing number of common standards make it a language of choice for many
projects. However an increasing complexity of created software and re-
quirement for high stability and high quality of applications make it de-
sirable for a developer to inspect, monitor, debug or in any way alter Java
programs behaviour on-the-fly. The main goal of this paper is to present
the design of a system for instrumenting Java classes at runtime. This
system is to aid developer in modifying program by adding fragments of
code at specific locations that implement some new functionality. This
allows programmer to enhance classes with logging, monitoring, caching
or any other capabilities that are required at run-time.

Keywords: Java, instrumentation, bytecode, J-OMIS, J-OCM.

1 Introduction

With the fast increasing power of modern computers equipped with more and
more advanced processing units, memory and disk resources more complex and
larger applications are created. Rapidly developing networking made distributed
systems common as network-enabled computers are standard. Additionally, mod-
ern systems are often assembled from components coming from different vendors,
sometimes running on quite different platforms and not fully compliant to im-
plemented standards. This makes applications prone to errors, unpredicted be-
haviour, runtime flaws, deadlocks and all kinds of programmer mistakes.

Java is a leading solution for developing modern, object-oriented software,
being a platform for a great number of advanced systems in various use cases
both scientific projects and business oriented applications. Together with this
comes greater effectiveness of software production in many domains from mo-
bile devices to large scale systems and middle-tier integration of heterogeneous
legacy solutions. Java is also successfully applied to massive computational tasks
executed on a farm of high performance servers or quite contrary in distributed
environment or for example grid network.

* Corresponding author.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 534-[541] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Instrumentation of Distributed Java Applications 535

The increasing complexity of developed software makes the whole process of
testing, bugs detecting and fixing difficult and time-consuming. Large hardware
potential made solving much complicated problems possible nowadays but this
has a side-effect of making optimizing and debugging systems even more difficult.
Although Java platform provides with many options of debugging, testing or
in other ways producing stable applications it does not include ready-to-use
kits that can be helpful when dealing with advanced, parallel and distributed
programming. This leads to a demand for more sophisticated tools intended
to aid the developer in creating stable end efficient software, e.g. monitoring
systems, debuggers, logging systems, profilers and other. For realizing their tasks
in the distributed environment, such tools might exploit various techniques and
interfaces, in this paper we address one of these techniques - instrumentation.

Instrumentation does not modify original application’s behaviour in terms of
which instrumented program should work in the exact same way is was working.
Obviously, in order to perform code instrumentation, some knowledge about how
application works is indispensable. This could include some code structure details
like locations of interesting fragments of code or runtime behaviour information
(for example how is application using it’s external resources). However these
application meta-data could be collected in automatic or semi-automatic way
through code (source or binary) analysis.

In this paper we address the issue of dynamic instrumentation of distributed
Java applications. In order to achieve this goal, we combine techniques, which
enable the analysis of application code with run-time bytecode modification and
communication with distributed JVMs which are running the target application.

2 Related Work

There are other systems that exploit various instrumentation techniques in appli-
cation monitoring or manipulation. One example might be the JSpy system for
runtime analysis of Java applications [I0]. It reads instrumentation specification
(a set of rules in a predicate/action form) and generates logging statements in
the target code. The general concept of the system is quite similar to ours, binary
Java classes are also extended with additional bytecode instructions (low-level
library used for that is in this case JTrek) and there is interoperability with
external monitoring system (JPax). Our system is more generic while JSpy is
entirely analysis/monitoring oriented.

Another example of instrumentation tool capable of instrumenting and mod-
ifying programs at the time of execution is the DynInst library [I4]. It provides
functions for building instrumentation tools by creating mutator programs that
connect to the target application at runtime and change the program’s behaviour
on-the-fly. Although DynInstAPI is machine independent it is also highly C++
oriented and thus practically unusable for instrumenting Java applications. On
the other hand, DynlInst allows for fine-grained instrumentation while our system
produces new versions of whole classes.

A slightly different approach is used in Java Instrumentation Suite (JIS),
where instead of modifying class methods prior to executing them in JVM the

536 W. Funika and P. Swierszcz

actual runtime environment is instrumented [I1]. Calls to dynamic native meth-
ods are wrapped that allows to react on runtime events like starting thread or
entering monitor. This makes bytecode modifications needless which is good as
they are quite error prone. On the other hand, it limits the set of events the in-
strument can react on to those which include calling native methods from within
the JVM runtime libraries. The whole system has functionality strictly limited
to monitoring multithreaded applications, debugging deadlocks, etc.

An example of a tool that gives a developer a greater extent of freedom could
be the BIT tool [I2], being a framework for creating custom instrumentation
applications, which provides a set of interfaces for enhancing applications with
arbitrary code. BIT operates somewhere between an instrumentation system like
ours and a low-level bytecode altering library. It provides no direct support for
distributed applications nor monitoring - at the cost of making instrumentation
process more complicated and time consuming it gives almost unlimited power
to the programmer when it comes to inserting custom code at a fine-grained
level.

3 Motivation and Goals

The main goal of our research is to design and implement a system that will
support the developer in instrumenting Java applications. This support consists
of automating some of the tasks that are the required steps of instrumentation
process. In this way, the developer can concentrate on a higher abstraction level
- the design of instrumentation elements, choice of instrumentation spots, com-
bining additional functionality with the existing application classes to create
functional execution units.

The designed system has to preserve maximum flexibility that means it must
not limit instrument’s functionality so that it can perform any task that the
original program could do. This is to be achieved by using bytecode manipulation
that allows for arbitrary code to be executed as an instrument is invoked. An
alternative approach could be taken - that is to change the JVM behaviour
rather than an application’s code. Although this frees us from error-prone (and
sometimes costly in execution time) bytecode modifications it requires a custom
virtual machine. This is a major downside as we don’t want to rely on a single
JVM implementation [4]. Operating on bytecode has an advantage that it puts
minimal constraints on the instrumentation process - no source code is needed
and rewritten classes are undistinguishable from those produced by the original
Java compiler. Therefore this is another goal of the work - to create methods for
automatic bytecode modification from an instrumentation design, possibly with
some help from third party libraries.

As mentioned above, distributed applications are increasingly widely used and
thus some kind of tool support for them is highly required. An instrumentation
system must be able to act in a distributed environment and communicate with
remote virtual machines and instruments running on them. To achieve this,
another tool is used - the J-0CM distributed monitoring system [1}2]. It allows

Dynamic Instrumentation of Distributed Java Applications 537

to discover execution nodes, collect various data on running machines and what is
more important - to interact with JVMs through low-level debugging interfaces.
Therefore the main project goals include inspection of the possibilities to combine
the generic instrumentation engine with the monitoring system.

The secondary goals include creating structures and algorithms for represent-
ing the instrumented application’s code in an object-oriented fashion, examining
libraries for the modification of binary classes in the context of instrumentation
and creating a universal, generic model of instrumentation design - specifying
common instrument features and ways of binding instruments to applications.

4 System Concept

The system being described comprises a few components. The main element
of the architecture is an instrumentation engine with graphical user interface
allowing for choosing classes to be instrumented, designing instruments to be
applied and controlling the actual process of dynamic instrumentation. Other
elements include low-level libraries for class manipulations (e.g. Bytecode Engi-
neering Library), instruments definitions (class files realizing a proper interface
and holding data about a specific instrumentation pattern) and last but not least
the monitoring system for communicating with distributed virtual machines.

The process of instrumentation performed by the described system consists
of several stages. The first one is choosing which application classes are to be
modified and analysing their contents. A class model is created in the form of
SIR tree which is a format for representing an applications’ code structure [7].
Then it comes to the design of additional functional units called instruments.
Each instrument implements some feature (e.g. writes out the current class field
value) and is connected to program hooks which are places in the code where
the instrument code can be injected. Having prepared the design of instrumen-
tation, the developer can advance to the third stage and perform actual class
files modifications. New fields are added to the classes, their internal structures
are modified and new bytecode instruction sections are introduced to classes’
methods - accordingly to previously crafted instruments and their binding to
SIR elements.

After all classes that need to be changed are changed, they are distributed
to (possibly remote) Java Virtual Machines running an application that is to
be operated on. The original program classes are replaced in JVMs with their
instrumented versions. Every object of instrumented class instantiated from that
point on as well as static calls to class methods will possess and perform extended
functionality. For adding network-awareness to the design, we used the J-OCM
distributed Java applications monitoring system. It is used as a communication
and transportation framework, provides information about hosts (nodes) and
JVMs running the application as well as implements low-level class hot-swapping
service using Java’s new (Java Virtual Machine Tool Interface) (JVMTI)
[5] . This is where the described instrumentation system differs mostly from
traditional solutions. Typically, instrumentation tools focus on either enhancing

538 W. Funika and P. Swierszcz

the application’s code or interoperating with a target virtual machine, to gather
required data or perform some operations. Using J-OCM in the described system
gives the developer a better view on the environment where the instrumented
application is going to be executed as well as allows to interact with it. Since one
can write custom services in the J-OCM monitoring system, this functionality
of interacting with the distributed environment can be further extended as new
features are required.

The usability of the described system is not limited to monitoring or profiling
only. Instruments can implement almost any kind of service including object
state persistence (for example to relational database), caching with an external
caching system or even workarounds or quick bugfixes of encountered appli-
cation’s problems. Practically, the developer has only to be careful about not
damaging original program’s functionality and not using excessive amounts of
system resources which could affect application’s performance or stability.

The architecture of the system is shown in Fig. [l

Instrumentation
Engine

?_¢

J-OCM

Distributed
Environment

JVM JVM JVM

Fig. 1. Instrumentation system architecture

Dynamic Instrumentation of Distributed Java Applications 539

5 Implementation Issues

The system was implemented in Java using Java Developers Kit version 5.0. It
was created with a free and open developer’s environment Eclipse [I3]. Graphic
user interface (GUI) uses SWT (Standard Widget Toolkit) library which is an
alternative to standard libraries included in Java distribution such as AWT
(Abstract Windowing Toolkit) or Swing. Alternatively, a scripting approach
would be possible, but we believe that it’s easier for the user to interact with
graphical interface. For example it is more convenient to examine the appli-
cation’s structure in a point-and-click widget than to read large XML file [6],
also joining instruments with application elements is less error-prone and more
user-friendly when done using a GUI. Class introspection and manipulation was
performed mostly with Java Object Instrumentation Engine [9] v. 0.9 beta.

Like in many other applications, XML format was used for storing instrument
definitions, SIR structures, and application configuration between sessions. In
our project, however, instead of using the standard SAX or JDOM parser, an alter-
native solution is chosen. Castor tool was used to transform plain Java objects
into XML structures based on the mapping files created by the developer [§].
Castor was chosen because it frees from writing custom XML processing code.
Keeping the conversion policy in an XML file makes it also more maintainable
and easier to apply any potential changes.

The most challenging task was to implement bytecode modifications to be
performed based on instrument definitions and the original class structure. Not
only bytecode sections have to be changed but also other static structures of the
class like the constant pool containing all constant values the class uses or the
stack size field that could result in a runtime error if set to an insufficient value.
The actual bytecode instructions inserted have also to be valid and correct - not
only from the syntax point of view but also should not collide with original
instructions, change a field or variable values or in any other way alter the
original runtime behaviour. A small mistake in an instruction parameter, index
argument or similar details will end up in crashing VM or will cause the class
verifier to refuse loading the instrumented class. Unfortunately, there is no easy
way to debug instrumented classes at run-time. There is no source code for the
instrumented version of the class and instrumented classes contain no valid line
numbering information. What is even worse a debugger cannot be used in case
of a low level class validation error or runtime VM crashes, at least no debugger
capable of warning in such conditions is known to the authors. The most effective
yet inconvenient way of debugging is bytecode instruction analysis. By comparing
the original bytecode with the bytecode of instrumented classes, it is possible to
reveal what instructions were added by the instrumentation system - it is up to
the developer to find what’s wrong with it.

6 Case Study

For testing purposes, a few instruments were created (designed as Java classes
implementing proper interface) and later instantiated in the instrumentation

540 W. Funika and P. Swierszcz

system and applied to simple test classes and methods. Later, bytecode imple-
mentations were compared between original and modified versions. The instru-
ments used in these tests were:

— HeapMemoryInstrument - measures the amount of heap memory available
at the time it is invoked. It can be configured to react on any runtime event
but its most natural use is to inject such a measurement into those places in
application code where new objects are created.

— MethodTimeInstrument - is intended to react on the method execution
and return from method events. The first one causes instrument to get a
current system time and store it as a field value. The second event makes
the instrument check the system time again and compare it to a saved value.
In this way, one can calculate the time spent in a method.

— VariableWatchingInstrument - enables to monitor changes to a variable
value or class/object field value.

— ExceptionLoggingInstrument - reacts on the throw exception runtime
event, helpful in debugging applications; with a few enhancements it can be
used to preserve important data when a system error occurs.

— GarbageCollectingInstrument - is more of a utility than a monitoring
probe, forcing garbage collection in VM.

The system proved to be producing a code that is working stable and correct.
Instrument implementations were injected into the original code and actually
executed by VM just as they were written in the original source code and com-
piled with the rest of the class. The user is enabled to define instrumentation
with GUI and observe the whole instrumentation process with it.

7 Conclusions

While most of the above research goals have been achieved, some work still
remains. The dynamic class reloading of classes after bytecode instrumentation
via monitoring system is left for future development.

The instrumentation system discussed in this paper is found to be capable
of performing all the tasks mentioned above with the exception of distributed
class redefinition. First of all, it allows for the in-depth introspection of binary
classes of the instrumented application and the creation of a model representing
its structure. It provides an easy and extendable way of defining instruments as
Java classes which implement a special interface. The instrument can perform
arbitrary actions and what actually is done in the instrument depends only on
the instrument creator. Binary modifications are performed fully automatically
and the user performing instrumentation does not need to know any bytecode-
level details.

As for examining the possibilities of combining the generic instrumentation
system with J-OCM - using techniques defined in the J-OMIS specification [3],
monitoring system services can be defined and called to perform on-line dynamic
instrumentation through Java agent plugged into the target VM. This requires,

Dynamic Instrumentation of Distributed Java Applications 541

however, knowledge about how J-OCM works as well as some native coding for
implementing services.

Instrumentation is often used as a means of monitoring. In this context, in-
stead of actually modifying classes low-level interfaces provided by the JVMTI can
be used to obtain information about the running application and even perform
a sort of instrumentation for the purposes of gathering data to be utilized by
tools. The general concept stays the same with the difference that the J-OCM
system requests are not used for class redefinition but rather for calling proper
tool interface methods via the agent.

Acknowledgements. This research was partially supported by the EU IST
K-Wf Grid project and the AGH grant.

References

1. M. Bubak, W. Funika, M.Smetek, Z. Kilianski, and R. Wismiiller: Architec-
ture of Monitoring System for Distributed Java Applications. In: Proc. Eu-
roPVMMPI’2003, LNCS 2840, pp. 447-454, Springer Verlag, 2003

2. M. Smetek: OMIS-based Monitoring System for Distributed Java Applications,
M.Sc. Thesis, AGH, Krakow, 2003

3. Bubak, M., Funika, W., Wismiiller, R., Metel, P., Orlowski. Monitoring of Dis-
tributed Java Applications. In: Future Generation Computer Systems, 2003, no.
19, pp. 651-663. Elsevier Publishers, 2003

4. Tim Lindholm, Frank Yellin: The Java Virtual Machine Specification, 1999 http://
java.sun.com/docs/books/vmspec/

5. JVM Tool Interface: http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

6. W3Org: Extensible Markup Language (XML) 1.0 (Second Edition) http://www.
w3.org/TR/REC-xml

7. C. Seragiotto, Jr., Hong-Linh Truong, B. Mohr, T. Fahringer, M. Gerndt: Stan-
darized Intermediate Representation for Fortran, Java, C and C++ (to be
published)

8. S. Gignoux, K. Visco: Castor XML Mapping http://www.castor.org/
xml-mapping.html

9. G. A. Cohen, J. S. Chase, D. L. Kaminsky: Automatic Program Transformation
with JOIE, 2002

10. A. Goldberg, K. Havelund: Instrumentation of Java Bytecode for Runtime Analy-
sis, 2003 http://ase.arc.nasa.gov/havelund/Publications/jspy-final.pdf

11. J. Guitart, J. Torres, E. Ayguade, J. Oliver, J. Labarta: Java Instrumentation
Suite: Accurate Analysis of Java Threaded Applications, 2000 http://citeseer.
ist.psu.edu/guitartOOlast.html

12. H.B. Lee, B. G. Zorn: BIT: A Tool for Instrumenting Java Bytecodes, 1997 http://
citeseer.ist.psu.edu/lee97bit.html

13. Object Technology International, Inc.: Eclipse Platform Technical Overview, 2003
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

14. B. Buck,J.K. Hollingsworth: An API for Runtime Code Patching, 2000 http://
www.dyninst.org/

http://java.sun.com/docs/books/vmspec/
http://java.sun.com/docs/books/vmspec/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.castor.org/xml-mapping.html
http://www.castor.org/xml-mapping.html
http://citeseer.ist.psu.edu/guitart00last.html
http://citeseer.ist.psu.edu/guitart00last.html
http://citeseer.ist.psu.edu/lee97bit.html
http://citeseer.ist.psu.edu/lee97bit.html
http://www.dyninst.org/
http://www.dyninst.org/

	Introduction
	Related Work
	Motivation and Goals
	System Concept
	Implementation Issues
	Case Study
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

