
Monitoring of WS-Based Applications

Lechoslaw Trebacz1, Piotr Handzlik2, Wlodzimierz Funika3,�,
and Marcin Smetek3

1 Department of Computer Methods in Metallurgy, AGH, Krakow, Poland
2 Department of Physical Chemistry and Electrochemistry, AGH, Krakow, Poland

3 Inst. Comp. Science, AGH, Krakow, Poland
ltrebacz@metal.agh.edu.pl, piohandz@interia.pl

{funika, smetek}@uci.agh.edu.pl
Tel.: (+48 12) 617 44 66; Fax: (+48 12) 633 80 54

Abstract. The paper presents a Java-related monitoring platform for
distributed applications which are oriented towards the use of Web Ser-
vices (WS). We focus on the building a monitoring platform based on
a well-defined interface (OMIS) between a monitoring system organized
as middleware and tools that use the facilities provided by the monitor-
ing middleware for WS-based applications. We aim at the observation
and analysis of SOAP messages (data) exchanged with a Web Service
(requests and responses). Our system is intended to monitor the char-
acteristics of the remote call, especially: request time, transport time,
cache access time, response time.

Keywords: monitoring tools, Web Services, OMIS, J-OCM, Java.

1 Introduction

With the increased possibilities of distributed Java programming, e.g. Web Ser-
vices (WS), the demand for tool support (performance analyzers, debuggers
etc.) for efficient programming increases as well. Nowadays, there are few envi-
ronments which provide efficient monitoring support for distributed Java pro-
grams. One of the opportunities to solve this problem is an approach exploited
in the On-line Monitoring Interface Specification [1]. A universal, open inter-
face between tools and a monitoring system and an OMIS compliant monitoring
system (OCM) allowed to specify such a Java-oriented monitoring interface (J-
OMIS) [2] and monitoring infrastructure, which enables an extensible range of
functionality intended for various kinds of tools and programming paradigms.

In this paper we consider extending the functionality of the J-OCM system
[3] by the monitoring of WS-based applications. This extension is intended to:

– provide information about running Web Services and their number,
– provide information about the main stages of a WS life cycle, e.g.: receiving

a request from the client side, starting particular services, time used to parse
an SOAP message, etc.

� Corresponding author.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 549–556, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

550 L. Trebacz et al.

– make possible to manipulate particular services, for example: stopping any
operation at any moment, calling a method of a Web Service from within
the monitoring system etc.

– enable access to available information about a Web Service,
– make possible to check, which stages of a WS life cycle take most of time,

to analyze the performance of this application,
– provide information about errors when running a Web Service.

The paper is organized as follows: In Section 2 we focus on the principal features
of WS, interesting from the performance point of view. In Section 2 (Related
work) we show what issues connected withe the operation of WS are not covered
by the existing tools. In Section 3 we briefly describe the J-OCM monitoring
system with showing its some features aimed at the monitoring of distributed
applications. In Section 4 we focus on the concept of support for WS monitoring
in the J-OCM monitoring system and further on implementation details of the
WS-related extension to it. We give also some results of overhead measurements
when monitoring sample WS-based applications.

2 Related Work

There are a number of monitoring tools aimed at providing performance infor-
mation and testing of the operation of WS. Such tools as internetvista 1 or
Parasoft SOAtest 2 provide for the user a lot of useful features. They allow the
user to verify all aspects of WS, from WSDL validation, to unit and functional
testing of the client and server, to performance testing. SOAtest addresses key
Web service issues such as interoperability, security, change management, and
scalability. On the other side, each of these tools runs as a client application.
They test WS by sending requests and waiting for a response. However, an issue
is that they do not allow the user to get insight into what really happens inside
the WS. There is another group of monitoring tools like TAU [15] which allow
for advanced performance visualization of distributed applications, but do not
provide monitoring information on WS.

Our goal was to overcome this constraint and to provide that our approach can
enable to locate which part of WS (initialization, request processing, operation
invocation or response) is responsible for performance problems. The system
under discussion should be easily extended by new functionality to meet the
emerging needs of the WS user. Moreover, we aim at adapting the existing
performance analysis mechanisms like this exploited in TAU for the goals of WS
monitoring.

3 Web Service

Web Services are a programming paradigm of distributed systems [4, 5, 6], being
a programmable application logic accessible using standard Internet protocols.
1 [http://www.internetvista.com]
2 [http://www.parasoft.com/]

http://www.internetvista.com
http://www.parasoft.com/

Monitoring of WS-Based Applications 551

Web Services combine the best aspects of component-based development and the
Web. As components, Web Services represent the functionality that can be easily
reused without knowing how the service is implemented. Web Service features
the following:

– WS is accessible over the Web. Web Services communicate using platform-
independent and language-neutral Web protocols,

– WS supports loosely coupled connections between systems, by passing mes-
sages to each other.

– WS provides an interface that can be called from within another program.
The WS interface acts as a liaison between the Web and the actual applica-
tion logic that implements the Service.

WS can communicate by the Extensible Markup Language (XML) [7]. Web
Services use XML to describe their interfaces and to encode their messages.
XML underlies three standards used by WS: SOAP which defines a standard
invocation protocol for WS [8], WSDL which defines a standard mechanism to
describe a WS [9], and UDDI which provides a standard mechanism to register
and discover WS [10].

The needs in the monitoring of Web Services are mainly motivated by the
performance problems when using this programming paradigm. So the main
goal of the monitoring of WS is to obtain as many information as possible to
improve WS performance, to discover places where a WS-based application has
bottlenecks, memory leaks, and errors.

4 J-OCM Monitoring System vs. Accessing JVM

J-OCM is a monitoring system for Java applications[3], compliant with the OMIS
specification [1] extended by support for distributed Java programs. The idea
of OMIS (On-line Monitoring Interface Specification) is to separate the func-
tionality of a monitoring system from monitoring tools. J-OMIS is a monitor
extension to OMIS for Java applications intended to support the development
of Java distributed applications with on-line tools. The work dates back to 1995
when OMIS, a monitor/tool interface specification was released. J-OMIS spec-
ifies three types of services: information services (providing information about
an object), manipulation services (allowing to change the state of an object),
event services (trigger arbitrary actions whenever a matching event is raised).

J-OCM comprises the following components: (1) Node Distribution Unit is
part, which is responsible for distributing requests and assembling replies; (2)Lo-
cal Monitor is a monitor process, which resides on a node. LM’s extensions pro-
vide new services defined by J-OMIS, which control Java Virtual Machine via
agent. LM stores information about the target Java application’s object, such
as JVMs, threads, classes, interfaces, objects, methods, etc., referred to by to-
kens; (3) Agent uses JVM native interfaces to access a low-level mechanism for
interactive monitoring of JVM.

552 L. Trebacz et al.

In Java 1.5 Sun Microsystems has incorporated a new native programming
interface for use by tools, JVMTI (JVM Tool Interface) [11], to replace less
efficient interfaces JVMPI and JVMDI, which were used formerly in J-OCM.

JVMTI is intended to provide a VM interface for the full range of tools that
need access to VM state, including but not limited to: profiling, debugging, mon-
itoring, thread analysis, and coverage analysis tools. It is a two-way interface. A
client of JVMTI, hereafter called an agent, can be notified of interesting events.
JVMTI can query and control the application through many functions, either
in response to events or independent of them. Agents run in the same process
with and communicate directly with the virtual machine executing the applica-
tion being examined. A native in-process interface allows maximal control over
the application with minimal intrusion on the part of a tool. Agents can be
controlled by a separate process which implements the bulk of a tool’s func-
tion without interfering with the target application’s normal execution. JVMTI
provides support for bytecode instrumentation which can be applied in three
ways:

– Static Instrumentation: The class file is instrumented before it is loaded into
the VM - e.g., by creating a duplicate directory of *.class files which have
been modified to add the instrumentation.

– Load-Time Instrumentation: When a class file is loaded by the VM, the
raw bytes of the class file are sent for instrumentation to the agent. The
ClassFileLoadHook event provides this functionality.

– Dynamic Instrumentation: A class which is already loaded (and possibly
even running) is modified. This feature is provided by the RedefineClasses
function. Classes can be modified multiple times and can be returned to their
original state.

5 Concept and Implementation of WS Monitoring in
J-OCM

Prior to coming to the proper discussion of performance issues of WS, we will
mention the software platform used to build WS. Next, we present our approach
to building a WS-oriented monitoring mechanism, followed by some details on
the implementation aspects, usage, and the overhead induced by the system.

Software Platform for Building WS. For building WS to be monitored, we
use Jakarta Tomcat [14] and AXIS[12, 13]. AXIS (the Apache eXtensible Interac-
tion System) is an Open-Source product from the Apache Software Foundation
and its tools for writing client Java programs that use WS (including Microsoft
.NET WS) and tools for deploying Java programs as WS. AXIS provides trans-
parent access to WS for Java programmers, which allows to focus on the business
logic of their applications rather than to worry about low-level network protocols
(like SOAP), to use WS. AXIS also allows for automated deployment of Java
programs as WS by generating a WSDL description from Java code directly.

To use a WS, a client program (typically, another WS-based application in
Java, C++, C#, etc.) sends a request to the WS and receives a reply much

Monitoring of WS-Based Applications 553

like a web browser requests a web page and receives HTML in reply. However,
the requests and replies are encoded by SOAP. With AXIS, the developer can
build client programs in Java that use WS as if they used methods in any Java
class. AXIS automatically generates an additional ”glue” code that hides the
details of SOAP from the client program. In AXIS, existing Java programs can
be deployed quickly as WS by installing AXIS e.g. on a J2EE application server
engine.

Tomcat, an official reference implementation for the Java Servlet 2.2 and
JavaServer Pages 1.1 technologies , is a servlet container with in a JSP environ-
ment, which is a runtime shell that manages and invokes servlets on behalf of
users. Tomcat runs with any web server that supports servlets and JSPs. The
Tomcat servlet engine often appears in combination with an Apache webserver.
Tomcat can also function as an independent web server: it operates in develop-
ment environments with no requirements for speed and transaction handling.

WS Performance Issues. In WS-based applications, many issues need moni-
toring, especially, those directly connected with the SOAP protocol and with the
life-cycle of WS activities. Usually, WS performs the following basic operations:

1. receives a request via SOAP,
2. parses XML contained within the SOAP request,
3. executes the functionality specified by the XML,
4. formats the results in XML,
5. transmits the reply via SOAP.

The above operations which may cause performance problems are intended to
be monitored by a WS extension to J-OCM.

As a basis of our system, we use J-OCM , but prior to using this system we
needed to reimplement it from Java 1.4 to Java 1.5, where the issue of monitoring
of Java applications is realized via the JVMTI interface. This enables to capture
much more information from VM compared to the earlier interfaces of JVM
(JVMPI, JVMDI).

Architecture of the J-OCM/WS System. The monitoring system (Fig. 1)
comprises three layers of components (darked elements in Fig. 2 are parts of
the system): (1)application monitor (AM) - agent like in J-OCM, (2)node’s local
monitor (LM), and (3)service monitor (SM). AM is embedded into the AXIS,
which manages SOAP messages. It is used to perform monitoring activities in
the context of the application. A node’s LM is created on each node, where WS
to be monitored resides. LM receives requests from SM and distributes them to
AMs. LM assembles replies from AMs to send an integrated reply to SM. SM is
a permanent component and exposes monitoring services to tools.

Metrics. The J-OCM/WS system is intended to provide metrics on particular
operations performed within a WS life-cycle, e.g., the time used to parse a SOAP
message, time of computation, the whole time of the activity of a particular
WS, etc. An important element to be monitored is the SOAP message and its
content. It is done in an event-driven fashion. At the start and the end of each

554 L. Trebacz et al.

Fig. 1. Architecture of J-OCM/WS

above mentioned stage of WS operation, there are placed sensors which generate
events and convey them to the AM. The sensors are dynamically placed into the
class images of AXIS classes. The time stamps obtained from these events are
used to produce dynamic metrics, by which we understand metrics related to
the life-cycle of the WS-based application. The second group of metrics comprise
static metrics, i.e. metrics related to the WS provider. There will be monitored
how many WS are used at any moment, how many calls to the same WS are
performed. The system provides information about the usage of WS (e.g. name,
end-point URL) and about the used method (operation) of WS, e.g. the name
of this operation.

J-OCM/WS provides information about:

– start/end of the whole WS execution or of its operation,
– start/end of a coming in/going out request/response message,
– start/end of parsing an SOAP message,
– calls to non-existing operation by the user or application,
– errors during an operation execution,
– number and names of WS,
– number, names, and signatures of WS operations,
– number of currently running WS,
– number of calls to each WS.

Use of the Monitoring System. In order to start the monitoring of a WS-
based application, one must perform the following commands:

– to start AXIS on Tomcat with the agent in JVM:

java -jar agentlib:jvmlm bootstrap.jar

Monitoring of WS-Based Applications 555

where:
• jvmlm - application monitor
• bootstrap.jar - jar with AXIS classes

A query from a tool to J-OCM/WS can look like the following (in compliance
to the OMIS interface specification):

– a request for getting all WS tokens3 on the JVM that runs the WS-container
(AXIS):

:jvm_ws_get_tokens([jvm_j_1_n_1])

– a request for information on events (with the time, name, and token of WS
and the name and token of an operation of WS), when any operation of any
WS on JVM 3 on node 2 begins:

jvm_ws_event_operationStart([jvm_j_3_n_2]):print(["Operation
Starts at",$time, $wsStr, $ws, $opStr, $op])

Monitoring Overhead. The monitoring overhead measured in our tests on In-
tel 2.4 GHz platform can be broken down into a start-up overhead and that on
a per WS basis. The start-up overhead occurs only when the software platform
Tomcat and Axis), resulting from the dynamic instrumentation of all classes in
JVM, which is performed by JOCM (Tomcat includes ca. 1400 classes). The
start-up time increases from 6.343 s to 12. 17 s (increase by ca. 90%). The influ-
ence of monitoring on the duration of WS operations depends on the duration of
the operations. In case of a ’Hello World’ WS which lasted 0.142 s the overhead
was 30%, while in case of a WS which lasted 1.741 s the overhead was more
negligible, only 5%. Thus, the longer is WS, the less is the relative overhead.

6 Concluding Remarks

The monitoring system J-OCM/WS we presented in this paper is an implementa-
tion of our concept of the monitoring of Web Services [16], based on the inherent
extendibility of the OMIS specification and its Java-bound implementation, the
J-OCM monitoring system, towards new paradigms and new tools.

The WS-related monitoring system under discussion is open source and offers
a functionality required in case of the monitoring of distributed Java applications
and also Web Services implemented in Java.

For monitoring Web Services we used the dynamic instrumentation of AXIS
classes. At the start and the end of each stage of processing SOAP message there
are placed sensors (in AXIS) which generate events and convey them to the agent.
We used the JVM Tool Interface and JNI to obtain information about the state
of Java Virtual Machine (e.g. information about a class of WS). As a result we
keep to a minimum a overhead to the monitored application performance.
3 Token is a string reference to a monitored object, i.e. in this case it is a reference to

JVM 1 on node 1.

556 L. Trebacz et al.

Due to the fact that our system extends J-OCM, commands of this extension
comply to the same syntax as the commands of J-OCM, our system should be
easy to use for the users of tools which are compliant with OMIS. Within our
recent research we have adapted the J-OCM/WS monitoring system to cooper-
ate with the SCIRUN/TAU framework [17, 18]

Acknowledgements. This research was partially supported by the EU Core-
GRID IST-2002-004265 project and the corresponding SPUB-M grant.

References

1. Ludwig, T., Wismüller, R., Sunderam, V., and Bode, A.: OMIS – On-line Monitor-
ing Interface Specification (Version 2.0). Shaker Verlag, Aachen, vol. 9, LRR-TUM
Research Report Series. 1997.
http://wwwbode.in.tum.de/~omis/OMIS/Version-2.0/version-2.0.ps.gz

2. Bubak, M., Funika, W., Wismüller, R., Mȩtel, P., Or�lowski. Monitoring of Dis-
tributed Java Applications. In: Future Generation Computer Systems, 2003, no.
19, pp. 651-663. Elsevier Publishers, 2003.

3. W. Funika, M. Bubak, M.Smȩtek, and R. Wismüller. An OMIS-based Approach to
Monitoring Distributed Java Applications. In: Yuen Chung Kwong (ed.) Annual
Review of Scalable Computing, volume 6, chapter 1. pp. 1-29, World Scientific
Publishing Co. and Singapore University Press, 2004.

4. http://www.webservices.org/index.php/ws/content/view/full/1390/
5. http://www.xml.com/pub/a/ws/2001/04/04/webservices/index.html
6. http://www.w3.org/TR/2002/WD-ws-arch-20021114/
7. http://www.w3.org/XML/
8. http : //www.w3schools.com/soap/soapintro.asp
9. http://www.w3.org/TR/wsdl

10. http://www.uddi.org/
11. http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
12. http://ws.apache.org/axis/java/user-guide.html
13. http://ws.apache.org/axis/java/architecture-guide.html
14. http://jakarta.apache.org/tomcat/
15. A. D. Malony, S. Shende, and R. Bell, ”Online Performance Observation of Large-

Scale Parallel Applications”, Proc. Parco 2003 Symposium, Elsevier B.V., Sept.
2003.

16. P. Handzlik, L. Trebacz, W. Funika, M.Smȩtek, Performance Monitoring of Java
Web Service-based Applications. Proc. Cracow Grid Workshop’2004, December
2004, Cracow, CYFRONET, Krakow, 2005

17. Funika, W., Koch, M., Dziok, D., Malony, A. D., Shende, S., Smetek, M., Wis-
muller, R. An Approach to the Performance Visualization of Distributed Appli-
cations, in: Bubak, M., Turaa, M., Wiatr, K. (Eds.), Proceedings of Cracow Grid
Workshop - CGW’04, December 13-15 2004, ACC-Cyfronet UST, 2005, Krakw,
pp. 193-199.

18. Funika, W., Koch, M., Dziok, D., Smetek, M., Wismuller, R. Performance Visu-
alization of Web Services Using J-OCM and SCIRun/TAU, in: Laurence Tianruo
Yang, Omer F. Rana, Beniamino Di Martino, Jack Dongarra (Eds.), Proc. HPCC
2005, pp. 666-671, Lecture Notes in Computer Science, no. 3726, Springer, 2005.

	Introduction
	Related Work
	Web Service
	J-OCM Monitoring System vs. Accessing JVM
	Concept and Implementation of WS Monitoring in J-OCM
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

