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Abstract. We present newly implemented functions in SyNRAC, which
is a Maple package for solving real algebraic constraints derived from
various engineering problems. The current version of SyNRAC has added
quantifier elimination (QE) by cylindrical algebraic decomposition
(CAD), a general QE procedure. We also show a visualization tool for
representing the possble region of an output quantifier-free formula for
the two-dimensional case.

1 Introduction

Nowadays symbolic computation methods have been widely applied to solv-
ing scientific and engineering problems, which has been caused by the efficient
symbolic algorithms introduced or improved for these few decades and by the
advancement of computer technology that has hugely increased the CPU power
and memory capacity.

We have been developing a Maple toolbox, called SyNRAC, for solving real
algebraic constraints, or first-order formulas over the reals. SyNRAC stands for
a Symbolic-Numeric toolbox for Real Algebraic Constraints and is aimed at be-
ing a comprehensive toolbox including a collection of symbolic, numerical, and
symbolic-numeric solvers for real algebraic constraints derived from engineering
problems and the biological sciences. Our main method is quantifier elimina-
tion (QE), which is a procedure removing the quantified variables from a given
formula to return a quantifier-free equivalent.

In this paper we present newly implemented procedures in SyNRAC. In [1]
two types of special QE methods as well as some simplification procedures of
quantifier-free formulas had been implemented in SyNRAC. In [2] QE by virtual
substitution for weakly parametric linear formulas and a preliminary version of
QE by CAD were implemented. The newly implemented functions in the current
version of SyNRAC are following:

• general QE by cylindrical algebraic decomposition
• visualization of a resulting quantifier-free formula (plotting of 2-D CAD)
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Against the inherent computational complexity of QE based on a CAD algo-
rithm, several researchers have focused on QE algorithms specialized to particular
types of input formulas; see [3, 4, 5, 6, 7]. This direction is quite promising in prac-
tice since a number of important problems in engineering have been successfully
reduced to a certain type of input formulas and resolved by using specialized QE
algorithms. For the concrete applications of these schemes, see [8, 9, 10, 11, 12, 13].
However, there still remain many significant problems in engineering that cannot
be recast as such particular formulas. Therefore, it is strongly desired to develop
an efficient algorithm to realize CAD. These new features extend the applicabil-
ity and tractability of SyNRAC for solving real algebraic constraints in science and
engineering.

This paper is organized as follows. We explain some changes in expressing
formulas in SyNRAC in Section 2. We briefly describe CAD in Section 3 and
in Section 4 we show some exapmle commands of QE by CAD and our plan
for combining QE by CAD with numerical methods. In Section 5, a tool for
visualizing two-dimensional possible region are shown. We state a conclusion
and our future work in Section 6.

2 Formula Description on Maple 9.5

SyNRAC has been developed on the Maple software. When the SyNRAC project
started, we were doing our implementation on Maple 8. We were using relational
and logical operators bundled in Maple in the very first stage, but it turned out
that some of those operators were unsuitable for our purpose. Here is a simple
example. Let x be just an indeterminate (called a name in Maple). The evalb
command, which evaluates a Maple expression in Boolean context, returns false
if x = 0 is input. This behavior does not meet our expectation, because we want
to remain x = 0 unchanged and undecided until some real value is assigned to x.
We introduced a user-defined operator &= to avoid such a reaction and replaced
it for the Maple’s equal sign ‘=’. We have also defined &and and &or, as taking
a list of atomic formulas as an argument because binary logical operators and
and or in Maple had a disadvantage when dealing with long formulas.

Since then Maple 9, Maple 9.5 and Maple 10 have been released. We are
now developing SyNRAC on Maple 9.5. The most influential change is that the
Logic Package has been introduced in Maple 9.5. (We have not used Maple
10 yet, but we hear that the Logic Package in Maple 10 is the same as in
Maple 9.5.)

The package has its own set of logical operators such as &and, &or, and
&not, as well as several commands for manipulating expressions. For example,
Normalize converts the input into a disjunctive or conjunctive normal form and
BooleanSimplify changes a given Boolean expression into a minimal sum of
prime implicants. Import and Export transform a certain type of Maple expres-
sion into a form available in the Logic Package, which enables users to convert
a Boolean expression represented by built-in logical operators into one suitable
for the Logic Package, and vice versa.
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The names &and and &or in the Logic Package are coincidentally the same
as those defined in SyNRAC on Maple 8. One of the differences was that &and
(or &or) in the Logic Package takes a sequence as input, while our counterpart
had been defined as taking a list of atomic formulas as input, like &and([a>0,
b>0, c>0]). We have modified our &and and &or to receive a sequence of atomic
formulas as input so that we can apply commands in the Logic Package such as
Logic[Normalize] to quantifier-free formulas in SyNRAC.

3 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition (CAD) was discovered by Collins in 1973;
see [14] for his monumental work. Collins also proposed a general QE algorithm
based on CAD, which has provided a powerful method for solving real algebraic
constraints.

Let A be a finite subset of Z[x1, . . . , xn]. An algebraic decomposition for A is
a collection of mutually disjoint, semi-algebraic, A-invariant sets that partitions
the Euclidean n-space En. To define the term cylindrical, we explain three parts
of a CAD procedure—the projection phase, the base phase, and the lifting phase.

In the projection phase of a CAD, the PROJ function plays a central role. Let
r be an integer greater than 1. PROJ maps a finite set of integral polynomials
in r variables to a finite set of integral polynomials in r − 1 variables: for Ar ⊂
Z[x1, . . . , xr], PROJ(Ar) ⊂ Z[x1, . . . , xr−1]. For a given A ⊂ Z[x1, . . . , xn], we
obtain a list

A = A0
PROJ�→ A1

PROJ�→ A2
PROJ�→ · · · PROJ�→ An−1,

where Ai ⊂ Z[x1, . . . , xn−i].
In the base phase we partition E1 by using a set of univariate polynomi-

als An−1 ⊂ Z[x1]; we find all the real zeros of An−1 and partition E1 into
An−1-invariant regions that consist of the zeros of An−1 and the remaining open
intervals. These points and intervals are called sections and sectors, respectively.

The lifting phase inductively constructs a decomposition of Ei+1 from the
decomposition of Ei, i = 1, 2, . . . , n − 1. Suppose D is a decomposition of Ei. A
lifting of D is a decomposition D̄ of Ei+1 obtained by decomposing the space
R×E1 by using An−i−1 for each region R ∈ D and putting all of them together.
Let R be a region of a decomposition D of Ei. R × E1 is decomposed by the
following; Take a point (p1, . . . , pi) in R and substitute it for (x1, . . . , xi) in
each polynomial in An−i−1 to obtain a set of univariate polynomials in xi+1;
Partition E1 into, say, L0, L1, . . ., L2k+1 by using the roots of the polynomials
in xi+1; Regard R × L0, R × L1, . . ., R × L2k+1 as the resulting decomposition.
The condition for this process to work is that An−i−1 is delineable on R, in
other words, every pair of polynomials in An−i−1 has no intersections on R. In
such a case the decomposition is independent of the choice of a sample point. A
decomposition D of Er is cylindrical if it is constructed by iterating the above
lifting method, i.e., r = 1 and E1 is decomposed as in the base phase, or r > 1
and D is a lifting of some cylindrical decomposition D′ of Er−1.
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Given a formula ϕ one can construct a CAD for the polynomials of the atomic
formulas in ϕ. The point for CAD-based QE is that the truth value of ϕ is
determined regionwise because each region in the CAD is A-invariant. See [14]
for details.

It is the PROJ function that is crucial in a CAD procedure. The fewer poly-
nomials PROJ produces, the more efficient the CAD program becomes. But
PROJ must be constructed to maintain the delineability and make the lifting
phase possible. Some improvements in the projection phase of CAD are found in
[15, 16, 17]. In the next section, we show some QE commands based on CAD. Our
present implementation of QE by CAD is based on Collins’s original method;
there is still a long way to catch up with latest tools such as QEPCAD.

4 Quantifier Elimination Based on CAD

4.1 Commands for QE by CAD

Here we show an example of the QE by CAD command in SyNRAC. Consider
ψ = ∃y (x2 + y2 ≤ 1 ∧ x3 − y2 < 0). To solve this formula, we first construct a
CAD for A = {x2+y2−1, x3−y2} ⊂ Z[x, y]. The graph of these two polynomials
is shown in Fig. 1. The Projection command repeats PROJ and returns P[1]=
PROJ0(A) = A and P[2]= PROJ(A) = {x2 − 1, x3 + x2 − 1, x}.

The Base command partitions E1 by using P[2] and returns a list of points
that represent respective sections or sectors. A rational point is taken as a sample
point for a sector, and a unique vanishing polynomial and an isolated interval
are taken for a section. There are four real roots (sections) in P[2] and they
make five open intervals (sectors).

> Base(P[2], x);

[-2, &algn(x+1,-1,-1), -1/2, &algn(x,0,0), 3/8,
&algn(x^3+x^2-1,3/4,7/8), 15/16, &algn(x-1,1,1), 2]

where &algn(f(x), l, r) represents the algebraic number that is a unique root of
f(x) lying between the two rational numbers l and r (l ≤ r).

Fig. 1. The graph of A
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The Lifting command makes a stack for each section or sector. Out of the
nine regions, we have the fifth one displayed. The fifth region is a sector with a
rational sample point [3/8] and the stack on it is represented in a list of nine
sample points of sections/sectors.

> L:=Lifting(P, [x,y]):
> op(L[5]);

[3/8, -2], [3/8, &algn(64*y^2-55,-1,-1/2)], [3/8, -1/2],
[3/8, &algn(512*y^2-27,-1/2,0)],[3/8, 0], [3/8, &algn(512*y^2-27,0,1/2)],
[3/8, 1/2], [3/8, &algn(64*y^2-55,1/2,1)], [3/8, 2]

And the QEbyCAD command returns a quantifier-free equivalent to the input
formula ψ by using the sample points:

> QEbyCAD(&Ex([y],&and(x^2 + y^2 <= 1, x^3 - y^2 < 0)));

&or(&and(0 < -x^2+1, 0 < -x, 0 <= x+1, x <= 0),
&and(x^2-1 = 0, 0 <= x+1, x <= -1), &and(x = 0, 0 <= x, x <= 0),
&and(0 < x, 0 <= x, 0 < -x^3-x^2+1, 8*x <= 7))

4.2 Advantage of QE Based on CAD

Though QE by CAD has a bad computational complexity (doubly exponential
in terms of the number of variables), it has some advantages against specialized
QE algorithms that have already been implemented in SyNRAC, such as QE by
the Sturm-Habicht sequence for positive definiteness of an univariate polyno-
mial with parametric coefficients and QE by virtual substitution for linear and
quadratic formulas with respect to quantified variables:

– QE by CAD is a general-purpose QE algorithm and can handle any first-
order formulas.

– Moreover, one of the big advantages of QE by CAD is its ability to produce
simple solution formula.

Large quantifier-free formulas can be simplified well by using QE by CAD due
to the second advantage. QE by CAD enables us to simplify the output for-
mulas generated by a specialized QE algorithm, which are mostly too large to
understand (see http://www.cs.usna.edu/{∼}qepcad/SLFQ/Home.html). For
a very large formula, repeated operations of QE by CAD to its subformulas may
succeed when a direct application of QE by CAD to the entire formula fails.

4.3 Symbolic-Numeric CAD

Unfortunately, QE by CAD is not practical on real computers, since a CAD pro-
cedure usually consists of many purely symbolic computations and has inherent
bad computational complexity. Therefore, it is strongly desired to develop an
efficient algorithm to realize CAD. One way of tackling this is, as was stated in
the previous subsection, to consider a specialized algorithm for restricted input

http://www.cs.usna.edu/{~}qepcad/SLFQ/Home.html
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formulas. Another effective way for more efficient CAD is achieved by utilizing
numerical computation and by making use of the derived numerical information
on algebraic numbers to the full extent—until it violates the correctness of the
results—instead of by handling symbolic computation. So far there are some
related works to introduce numerical computation into CAD construction [18].

This strategy greatly improves the efficiency, while this causes uncertainty of
the computed results depending on accuracy of numerical computation. Hence
we need an effective validation scheme of the results. Now we are developing a
symbolic-numeric procedure using as small a number of symbolic computations
as possible—they are used only when validating unreliable numerical results.
Symbolic reconstruction procedure in the lifting phase is improved if we uti-
lize a dynamic evaluation (DE) technique [19, 20, 21] combined with successive
representations of algebraic extensions.

5 Visualization

Here we show a newly introduced function for visualizing output of QE compu-
tation, in particular, in the two-dimensional case. By QE computaiton we obtain
a quantifier-free formula in the unquantified variables. We can use the command
DrawDnf2d(dnf,xmin,xmax,ymin,ymax,grid) to visualize the CAD of the two-
dimensional space with colored feasible regions if the output formula is given by a
disjunctive normal form (DNF). The range where the result is shown is given by
the rectangle [xmin, xmax] × [ymin, ymax]. This process is done by analyzing the
topology of the CAD, sweeping through from left to right with repeated incre-
ments of a stride, and marking the appropriate points to the model of the CAD.
This does not change the topology of the model; it makes the picture look pret-
tier. In the plotting where the view is [−2, 2]×[−2, 2], its stride is given by 1/grid.
The DNF given as (x2+y2−1 > 0∧−x+y > 0)∨(x2−y > 0) is drawn as follows;

> DrawDnf2d := define_external(’DrawDnf2d’,’MAPLE’,’LIB’="DrawDnf2d.dll");
DrawDnf2d := proc () option call_external;
call_external(0, 22024192, true, args) end proc

> dnf := "[[x^2+y^2-1>0,-x+y>0]][[x^2-y>0]]";

> DrawDnf2d(dnf, -2, 2, -2, 2, 50);
"ok..."

Our visualizer, as you see, is an external library written in C, hence we call it
from maple via “DrawDnf2d.dll.” Though QE by CAD can generate “adjacency
information” for two-dimensional CADs which allows it to generate topologically
correct plots, we do not care for the adjacency in this implementation.

6 Conclusion and Future Work

We havepresented newly developed functions in Maple-packageSyNRAC. The cur-
rent version of SyNRAC provides QE by CAD and visualization of 2-D resulting
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Fig. 2. 2-D visualization

quantifier-free formulas. The new features greatly extend the applicability and
tractability of SyNRAC for solving real algebraic constraints in engineering.

We are planning to combine QE by CAD with some numerical methods to
improve efficiency. We proceed to implement other known QE algorithms and
improve them, and are setting about developing symbolic-numeric algorithms.
We also plan to advance our toolbox for parametric robust control design on
MATLAB using SyNRAC as a core engine [13], which we keep upgrading.

Acknowledgements. The authors thank Hong Myunghoon for the C code of
the 2-D visualization tool in the present paper.
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