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Abstract. This paper considers the open problem whether there
exists a finite-state hybrid output feedback control to asymptotically sta-
bilize a second-order linear dynamic system. More precisely, for second-
order linear time-invariant systems which are not stabilizable via a single
static output feedback, we find two different output feedback gains and a
switching law orchestrating the feedback gains such that the closed-loop
system is asymptotically stable.

1 Introduction

Given a linear time-invariant dynamic system

ẋ(t) = Ax(t) + Bx(t)
y(t) = Cx(t) (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and A, B, C are matrices of suitable dimensions,
if system (1) is stabilizable and detectable, then there exists a linear dynamic
output feedback law that asymptotically stabilizes the system [1]. In practice,
however, such continuous dynamic feedback might not be implemental, and a
hybrid version of the controller is often desired. We present a motivation example,
which was also discussed in [2], [3] and [4].

Example 1. Consider the harmonic oscillator model, which can be written in the
form of (1) with

A =
(

0 1
−1 0

)
, B =

(
0
1

)
, C =

(
1 0

)
. (2)

Although this system is both controllable and observable, it cannot be stabilized
by a single static output feedback [2]; however, it is stabilizable by a hybrid
output feedback [3], [4]. Letting u = −y and u = y

2 we obtain the following
systems, respectively,

ẋ(t) =
(

0 1
−2 0

)
x(t), (3)

and

ẋ(t) =
(

0 1
− 1

2 0

)
x(t). (4)
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Define V (x) = x2
1 + x2

2. If system (3) is active in the first and third quadrants,
while system (4) is active in the second and fourth quadrants, we will have
V̇ < 0 whenever x1x2 �= 0, which implies that the entire switched system is
asymptotically stable by LaSalle’s Principle (e.g., [15]).

Therefore, the hybrid output feedback stabilization problem can be formulated
as follows [5]: find a finite collection of m × p gain matrices {K1, · · · , Kl}, and
a switching law σ : [0, ∞) → {1, · · · l}, such that the switched linear system
ẋ(t) = Aσ(t)x(t) is asymptotically stable, where Aσ(t) = A + BKσ(t)C, and the
output feedback control is given by u(t) = Kσ(t)y(t). To rule out trivial cases,
we assume the system (1) cannot be static output feedback stabilized.

Stability analysis for switched systems has achieved many results, which
mostly based on the common Lyapunov function or the multiple Lyapunov func-
tion approach [6], [7], [8], [9], [10], [11]. Stabilization problem is the control design
for stability, while available techniques that can be used in the hybrid output
feedback control have been very few. The difficulty led researchers to study it
first in the low-order systems. In [12], it has been shown that if system (1) is
controllable and observable, then it admits a stabilizing hybrid output feedback
that uses a countable number of discrete states. More recently, [5] constructs
a 2-state output feedback for a class of second-order linear systems incorpo-
rated with a conic switching law [13], [14], which provide a description of the
switching law based on the angles of subsystem vector fields and the geometric
properties of the phase plane. However, their approach may be complicated to
work with or determine the exact parametric value for which the switching law
yields instability of the feedback system.

In this paper, we propose an approach for constructing a 2-state hybrid out-
put feedback control to stabilize a second-order linear dynamic system. This
approach is composed of two important parts. First, we consider the asymp-
totic stabilization problem of second-order autonomous switched linear systems
consisting of two subsystems with unstable focus equilibrium. Using the ”most
stabilizing” switching law, we translate the switched system into a piecewise lin-
ear system that yields an easily verifiable sufficient condition for stabilization of
this system. Secondly, 2-state output feedback gains are constructed in terms of
control system matrices (A, B, C), which extends the results in [5].

The rest of the paper is organized as follows. Section 2 analyzes the asymptotic
stabilization for an autonomous switched linear system. Section 3 designs the 2-
state hybrid output feedback control. Numerical examples are given in section
4. Section 5 summarizes.

2 Stabilization for Switched Linear Systems

Consider an autonomous switched linear system given by

ẋ(t) = Aσ(t)x(t)
σ : [0, ∞) → {1, 2} (5)
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where x ∈ R2 and σ(t) is the switching law indicating the active subsystem at
each instant. Let λi,± = αi ± βi be the eigenvalues of Ai, respectively.

Lemma 1. [16]. For the two subsystems of the switched linear system (5), there
exists a nonsingular matrix Q, such that

QA1Q
−1 =

(
α1 β1/E

−Eβ1 α1

)
, QA2Q

−1 =
(

α2 β2
−β2 α2

)
. (6)

Without loss of generally, we only discuss the results for |E| < 1. In the case
of 0 < E < 1, the system trajectory diverges to ∞ clockwisely, while in the case
−1 < E < 0, then counter-clockwisely. Therefore, in the following discussion, we
assume the subsystems’ state matrices have the form (6).

We first observe that the locus of both subsystems circle around the origin
and diverge to clockwisely or counter-clockwisely. We will show that the ”most
stabilizing” switching law corresponds to switching between the two subsys-
tem’s vector fields are parallel. Here, by ”most stabilizing” case, we mean if the
switched system is stabilizable, then the system’s trajectory converges to the
origin under this switching law, that is, select an active subsystem which would
drive the trajectory closer to the origin.

Define l− and l+ as the lines on which the subsystem’s vector field A1xand
A2x are parallel. Then on l± we have

−β2x1 + α2x2

α2x1 + β2x2
=

−Eβ1x1 + α1x2

α1x1 + (1/E)β1x2
. (7)

Solving this equation we obtain that if

D ≥ 0,

then
x2 = ν±x1, (8)

where, when
ρ1 − ρ2

E
�= 0,

we have,

ν± =
(E − (1/E)) ∓ 2

√
D

2(ρ1 − (ρ2/E))
; (9)

or, when
ρ1 − ρ2

E
= 0,

we have,
ν− = ∞

ν+ =
ρ1 − Eρ2

E − (1/E)
. (10)

We denote
D = R2 + 2ρ1ρ2R − (1 + ρ2

1 + ρ2
2)
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and
R =

1
2
(E +

1
E

), ρ1 =
α1

β1
, ρ2 =

α2

β2
.

Define the regions

R1 = {(x1, x2)|ν−x1 > x2 > ν+x1},

R2 = {(x1, x2)|x2 ≥ ν−x1 and x2 ≥ ν+x1},

where −Ri is the opposite region of Ri against the origin on the phase plane,
i = 1, 2, see Fig.1.

In the case 0 < E < 1, the trajectories of subsystems 1, 2 are all clockwise
logarithmic spirals. Then the ”most stabilizing” switching law would be:

Switch to subsystem 1 whenever the system trajectory enters the regions R1
and −R1, and switch to subsystem 2 whenever the system trajectory enters the
regions R2 and −R2.

Fig. 1. Region partition when D > 0

Under the ”most stabilizing” switching law, we have translated system (5)
into a piecewise linear system

ẋ =
{

A1x x ∈ R1
⋃

−R1
A2x x ∈ R2

⋃
−R2

. (11)

Now, if the piecewise linear system (11) is asymptotically stable, then the
switched linear system (5) asymptotically stabilizable.

Theorem 1. [16]. The autonomous switched linear system (5) consisting of two
subsystems with unstable focus equilibrium is asymptotically stabilizable if D > 0,
0 < E < 1 and ρ < 1, where

ρ = exp[ρ1arctan(
ρ1R − ρ2√

D
) + ρ2arctan(

ρ2R − ρ1√
D

) − π

2
(ρ1 + ρ2)]

×
√

(ρ1ρ2+R)+
√

D

(ρ1ρ2+R)−√
D

. (12)
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Remark 1. For D > 0, 0 < E < 1, the trajectories of subsystems 1, 2 are counter-
clockwise, clockwise logarithmic spirals, respectively. In the case we could also
define the ”most stabilizing” switching law and get the similar conclusion as
Theorem 1. When D > 0, then at least on the half phase plane, one subsystem’s
vector field always points on the same side of other. Form the proof of Theorem
1 we know in this case system (5) cannot be asymptotically stabilizable.

3 Hybrid Output Feedback Control

In this section, we construct 2-state hybrid output feedback gains in terms of
control system matrices (A, B, C), which deduced closed-loop system matrices
satisfy the conditions of Theorem 1. For simply, we only focus discussion on
second-order single-input-single-output (SISO) systems, i.e., m = 2, n = p = 1
in system (1). Since a nonsingular linear transformation does not change the
stabilization property, we consider system (1) in the following form:

A =
(

a11 a12
a21 a22

)
, B =

(
0
1

)
, C =

(
1 c

)
, (13)

where aij , c ∈ R, i, j = 1, 2.

Theorem 2. For the second-order linear time-invariant system (13), if c = 0,
and a12 �= 0, then it is stabilizable via a static or 2-state hybrid output feedback.

Proof. For system (13), the closed-loop system with output feedback u = kiy is
given by ẋ = Aix, i = 1, 2, where

Ai = A + kiBC =
(

a11 a12
a21 + ki a22

)
. (14)

Since a12 �= 0 , if a11 + a22 < 0, obviously there exists output feedback gain
ki such that Ai is Hurwitz stable, that is, system (13) could be static output
feedback stabilizable. As for the case a11 +a22 ≥ 0 , let Δi is the discriminant of
the characteristic equation for the coefficient matrices Ai, i = 1, 2, If we chooseki

such that
Δi = 4(α2 − |A| + a12ki) < 0 (15)

then Ai’s eigenvalues are express as λi± = α + jβi , where

α =
a11 + a22

2
,

βi =
√

|A| − α2 − a12ki.

From Lemma 1, we know there exists a coordinate transformation y = Qx,
Q = (qij)2×2, changes the closed-loop system into ẏ = A

′

iy, where A
′

i = QAiQ
−1,

i = 1, 2, and

A
′

1 =
(

α β1/E
−Eβ1 α

)
, A

′

2 =
(

α β2
−β2 α

)
. (16)
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Solving the equation QAi = A
′

iQ, i = 1, 2, we obtain that E = β1
β2

, q12 = 0,
and

(a11 − a22)q22 = 2a12q21,

β2q22 = a12Q11.

If we further assume that

β1 < β2, (17)

then according the discussion in Section 2, we have

0 < E < 1, D =
1
4
(E − 1

E
)2 > 0,

and

ρ =
2∏

i=1

exp ρi(arctanρi − π

2
) ×

√
α2 + β2

2

α2 + β2
1
. (18)

Under the coordinate transformation y = Qx, we obtain that at the parallel
lines

ν
′

± =
y2

y1
=

q21x1 + q22x2

q11x1 + q12x2
,

that is,

ν± =
q21 − ν

′

±
q12ν

′
± − q12

.

Therefore

ρ1 − ρ2

E
= 0, ν

′

− = ∞, ν
′

+ = − α

β2
.

In view of the discussion thus far, we should choose the constants ki satisfies
(15), (18), and such that βi satisfies ρ < 1. It is not difficult to show that such
ki always exist. Therefore, we conclude that in this case system (13) always
stabilizable via the 2-state hybrid output feedback control

u =

⎧⎨
⎩

k1y x2 ≤ −a22
a12

x1, and x1 ≥ 0, or

x2 ≥ −a22
a12

x1, and x1 ≤ 0
k2y otherwise

. (19)

The proof is complete.

Remark 2. For c �= 0, and a12 �= 0, we could also design the output feedback
gains such that closed-loop switched system satisfies the condition of Theorem
1. Of course they might be nonexistence. When a12 = 0, system (13) is uncon-
trollable, then unstabilizable.
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4 A Numerical Example

Example 2. Consider the linear system of type (13) with

A =
(

−1 2
−2 3

)
, B =

(
0
1

)
, C =

(
1 0

)
. (20)

We can easily verify that the pair (k1, k2) = (−1, −38) satisfies the required
conditions (15), (18), and ρ = 0.8697 < 1. Then the 2-state hybrid output
feedback stabilizable control is

u =
{

−y 0 ≤ x1 ≤ − 2
3x2, or − 2

3x2 ≤ x1 ≤ 0
−38y otherwise

. (21)

Fig. 2 shows the trajectory of the system with the initial condition x(0) = (2, 2).

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

Fig. 2. The trajectory for Example 2

5 Conclusion

This paper studies the hybrid output feedback stabilization of second-order linear
dynamic systems. For a class of such systems, we showed that the system is
stabilizable via a 2-state static output feedback incorporated with an appropriate
switching law. Output feedback gains and switching law are constructed in terms
of control system matrices. Extension of the proposed results to general high-
dimensional linear systems is considered to be an interesting future work.

Acknowledgements

This paper was supported in part by the National Natural Science Foundation
of China (No.60374007), and in part by the Beijing Natural Science Foundation
of China (No.4042006).



Stabilizing Second-Order Linear Dynamic Systems 485

References

1. Syrmos, V.L., Abdallah, C.T., Dorato, P., and Grigoriadis, K.: Static output feed-
back: a survey. Automatica. 33 (1997) 125-137

2. Artstein, Z.: Examples of stabilization with hybrid feedback, in: R. Alur et al.
(Eds.), Hybrid Systems III: Verification and Control, (1996) 173-185

3. Liberzon, D.: Stabilizing a linear system with finite-state hybrid output feedback,
in: Proceedings of the 7th IEEE Mediterranean Conference on Control and Au-
tomation, (1999) 176-183

4. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched sys-
tems, IEEE Control Systems Magazine 19 (1999) 59-70

5. Hu, B., Zhai, G., Michel, A.N.: Hybrid output feedback stabilization of two-
dimensional linear control systems, in: Proceedings of the 2000 American Control
Conference, (2000) 2184-2188

6. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems, IEEE Trans. Automat. Control 43 (1998) 475-482

7. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson,B.: Perspectives and results
on the stability and stabilizability of hybrid systems, Proc. IEEE 88 (2000) 1069-
1082

8. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov func-
tions for hybrid systems, IEEE Trans. Automat. Control 43 (1998) 555-559

9. Michel, A.N.: Recent trends in the stability analysis of hybrid dynamical systems,
IEEE Trans. Circuit and Systems-I: Fundamental Theory and Applications 45
(1999) 120-134

10. Morse, A.S.: Control using logic-based switching, in: A. Isidori (Ed.), Trends in
Control: a European Perspective, Springer, Berlin, (1995) 69-113

11. Peleties, P., DeCarlo, R.: Asymptotic stability of m-switched systems using
Lyapunov-like functions, in: Proceedings of the 1991 American Control Confer-
ence, (1991) 1679-1684

12. Litsyn, E., Nepomnyashchikh, Y.V., and Ponosov, A.: Stabilization of linear dif-
ferential systems via hybrid feedback controls, SIAM J. Control Optim. 38 (2000)
1468-1480

13. Xu, X., Antsaklis, P.J.: Design of stabilizing control laws for second-order switched
systems, in: Proceedings of the 14th IFAC World Congress, vol. C, (1999) 181-186

14. Xu, X., Antsaklis, P.J.: Stabilization of second-order LTI switched systems, Int. J.
Control 73 (2000) 1261-1279

15. Sastry, S.: Nonlinear Systems, Springer, New York, (1999)
16. Zhang, L., Chen, Y., and Cui, P.: Stabilization of a Class of Switched Linear

Systems, Nonlinear Analysis: Theory, Methods and Applications, Special Issue on
Hybrid Systems and Applications, 62 (2005) 1527-1535


	Introduction
	Stabilization for Switched Linear Systems
	Hybrid Output Feedback Control
	A Numerical Example
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




