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Abstract. Co-array notation provides a compact syntax for program-
ming parallel programs. Co-array Fortran (CAF) introduced and imple-
ments this notation, and CAF is currently proposed as an extension to
the Fortran language standard. We believe that co-array notation re-
quires a revised semantic definition beyond that specified by CAF for
both pragmatic reasons within Fortran and to make the notation attrac-
tive for incorporation into other programming languages. The revised
semantics make the language model easier to understand and reduces
the potential for programmer error. Furthermore, these revised seman-
tics allow CAF to be extended to capture collective operations in co-array
notation.

1 Introduction

Co-Array Fortran (CAF) is a simple, parallel extension to Fortran [3]. For CAF,
a single program is replicated p number of times in SPMD fashion (Single Pro-
gram, Multiple Data). Each copy of the program (referred to as an image) ex-
ecutes asynchronously with its own set of data objects. The co-array notation
extends the normal array syntax with an additional array dimension called the
co-dimension. The local portion of a co-array is denoted with the normal paren-
theses while the co-dimension is specified with square brackets.

For example, if a and b both have local rank 1, local size 100, and a co-rank
1, they are declared as

integer :: a(100)[*], b(100)[*]

The co-dimension is declared to be assumed size, i.e. [*], as the co-size depends
on the number of participating images (a compile time or run-time parameter).

Indexing in the co-dimension is the same as in the local dimension. For exam-
ple, given constants i and j that are identical on all images, a(1)[i] = b(1)[j]
states that the first element of the array b on image j is to be copied to the first
element of the array a on image i. Because this assignment, as written, would
be executed on every image, it is actually illegal (a non-conforming program)
because concurrent writes into the same storage location are not allowed.

To emphasis this point, consider the simple assignment, a(1)[i] = 3. With-
out additional context, all images will execute this statement and cause the
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constant 3 to be stored in the first element of a on image i. As this is a con-
current write and therefore illegal, the programmer must embed the statement
within other control structures to ensure that it adheres to the rules established
for CAF. One must explicitly declare which image is to cause the store to occur,
e.g.,

if (this_image() == j) a(1)[i] = 3
sync_all()

If image j is not equal to i, image j puts the value 3 to image i.
We suggest that this is an unfortunate definition for the result of the CAF

assignment operator. Assuredly all images must execute an assignment statement
(unless restricted by an if statement), but there is no reason all images must cause
data to be transferred to image i. Certainly in this case, the value of a(1)[i]
will be 3 after the sync all is executed, no matter which image caused the store
to occur. (The intrinsic function sync all is a barrier that all images must reach
before any image may continue execution.)

In particular, this execution model causes problems if array sections are al-
lowed in the co-dimension (co-sections). For example, the assignment statement
a(1)[:] = 3 would require that all images store 3 into co-memory on all im-
ages. Indeed, although co-sections were allowed in the original Reid and Numrich
definition [3], they were removed in a recent CAF specification [4]. One reason
they were removed, is that they are not present in CAF implementations and
limiting co-subscripts to scalars simplifies the language specification [5]. The goal
of this paper is to examine the ramifications of permitting co-sections, with the
hope that they can be restored to the language.

Specifically, we propose that one-sided get semantics be adopted in all assign-
ment statements involving co-array variables, making the image that “owns”
the memory the only one allowed to initiate a write operation to it. This simpli-
fies the language specification and automatically satisfies the requirement that
concurrent stores to the same memory location should not occur. In this paper
we examine the consequences of this change. The rules defining the result of a
co-variable assignment statement are described in Section 3 and then applied to
collective operations in Section 4. Section 5 contains two programming examples
employing these changes and Section 6 summarizes the paper.

2 Refined CAF Assignment Operators

In this section we propose a set of semantic rules for co-array notation that
define the result of a co-variable assignment statement. These rules are intended
to provide the compiler with as much freedom as reasonable to generate efficient
parallel code by removing the burden of explicit delegation of message passing
initiation from the user. Like CAF, as defined in [4], these rules are such that
the compiler is able to make decisions solely on the basis of an analysis of the
program as a sequential entity, without requiring cross image analysis to perform
messaging optimizations. In addition, they allow the use of array sections in the
co-dimension.
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The Fortran grammar defines an assignment statement as variable = expr [2].
The first rule describes the result of a co-array expression: For any co-array
expression b(:)[begin:end:stride] executed on any image i, the result will
be as if a temporary rank 2 array tmp were created on i and initialized as,

do k = begin, end, stride
do j = 1, nrows
tmp(j,k) = b(j)[k]

end do
end do

This rule generalizes to other co-array ranks. In general, the rank of the tem-
porary array will be equal to the total rank (the sum of the local rank and the
co-rank) of the co-array. Note that the elements of tmp are obtained using get
semantics.

The second rule defines the result of an assignment statement if the variable is
a co-array and is sectioned (using subscript triplet notation) in the co-dimension.
We define this as a parallel assignment statement. Consider a(:)[begin:end:
stride] = tmp(:), where tmp is a local array and may be a temporary array
resulting from the evaluation of a co-array expression, as defined above (note the
change in the rank of the temporary). The results of the assignment statement,
when executed on all images, is

do i = begin, end, stride
if (this_image() == i) then
a(:)[i] = tmp(:)

end if
end do

This rule also generalizes to other co-array ranks. In general, the local rank
of the co-array variable must be equal to the rank of the array temporary and
their shapes must conform.

In addition, we propose that a put assignment operator be provided. This
would allow third party transfers, not allowed with get semantics. While not
intending to provide guidance for the syntax of a put assignment, the following,

if (this_image() == 2) then
a(1)[1] .recvs. b(1)[3]

end if

could be adopted to cause image two to copy memory from image three to image
one. The same code segment with standard assignment syntax,

if (this_image() == 2) then
a(1)[1] = b(1)[3]

end if

results in no change to the state of the program because of the implied
if (this image() == 1) with the standard assignment operator.
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These are the only two changes proposed for CAF: 1. Get semantics as em-
bodied in the second rule above; and 2. a put assignment statement. Nothing
has been removed from the language. Only a clear distinction between the syn-
tax for the two assignment statements, thus removing the overloading of the
assignment operator. Furthermore, this removes ambiguity with respect to the
meaning (get vs. put) of co-array notation when it appears on different sides of
the = operator. With serial execution this distinction is unimportant. However,
this is not true for parallel execution (multiple images). The put assignment
(with no implied if statement) can lead to unnecessary and repetitious memory
transfer, .e.g., a(1)[1] = 3, and concurrent stores. Therefore, it is suggested
that the distinguishing syntax is helpful to the programmer.

3 Collective Assignment Statements

Given the rules specified in Section 2, we can now enumerate the outcome of
the 16 possible combinations (of array subscript versus array section) that can
occur in the assignment statement a(i)[j] = b(k)[l]. This is done in order
to insure that the results of any statement containing a co-section, i.e. [:], is
well understood.

The examples are shown in two columns: the left-hand column is written using
array section notation in both the local and the co-dimensions, while the right-
hand column is written using it only for the local dimension. The statements all
assume that me = this image(), p = num images(), and that the local size of
the arrays equals p.

Simple scalar and array assignment are well understood, as can be seen below:

a(1)[1] = b(3)[3] ; if (me == 1) a(1) = b(3)[3]
a(:)[1] = b(3)[3] ; if (me == 1) a(:) = b(3)[3]
a(:)[1] = b(:)[3] ; if (me == 1) a(:) = b(:)[3]

Likewise are the scalar and array broadcasts:

a(1)[:] = b(3)[3] ; a(1) = b(3)[3]
a(:)[:] = b(3)[3] ; a(:) = b(3)[3]
a(:)[:] = b(:)[3] ; a(:) = b(:)[3]

Broadcast statements execute on all images, with result that the same data are
stored in the local portion of a on each image. Strictly speaking, these are not
broadcasts, as the assignment has get semantics, though the implementation
may be a broadcast by recognizing the array section in the co-dimension.

The gather collectives read data from all images and store the results either
on one image (gather) or on all images (allgather).

a(:)[1] = b(3)[:] ; if (me == 1) then ! gather
do i = 1, p; a(i) = b(3)[i]; end do

end if
a(:)[:] = b(3)[:] ; do i = 1, p; a(i) = b(3)[i]; end do



Co-Array Collectives: Refined Semantics for Co-Array Fortran 949

There is no collective assignment statement corresponding to a scatter oper-
ation. It would have to be expressed explicitly:

a(1)[me] = b(me)[3]

There are several statements (of the 16 combinations) that are well defined
but result in illegal assignments:

a(1)[1] = b(:)[3] ; if (me == 1) a(1) = b(:)[3]
a(1)[1] = b(3)[:] ; if (me == 1) a(1) = b(3)[:]
a(1)[1] = b(:)[:] ; if (me == 1) a(1) = b(:)[:]
a(:)[1] = b(:)[:] ; if (me == 1) a(:) = b(:)[:]
a(1)[:] = b(:)[3] ; a(1) = b(:)[3]
a(1)[:] = b(3)[:] ; do i = 1, p; a(1) = b(3)[i]; end do
a(1)[:] = b(:)[:] ; do i = 1, p; a(1) = b(:)[i]; end do
a(:)[:] = b(:)[:] ; do i = 1, p; a(:) = b(:)[i]; end do

All of these statements could be made legal by increasing the rank of a by one,
or by a reduction of the right-hand side, .e.g., a(1)[:] = sum(b(:)[3]).

4 Examples

Two algorithms are implemented using co-arrays. The first example requires
a high degree of synchronization while the second does not. These examples
were chosen to compare and contrast the differences between the current CAF
definition of the assignment operator, with that of our proposed definition.

4.1 Maximum Value of a Co-Array

The original Reid and Numrich Co-Array Fortran paper [3] contains several
examples. One in particular, an algorithm that finds the maximum value of a
co-array, was chosen because it highlights many important points. It should be
noted that this example is inefficient and therefore, the actual CAF intrinsic
function CO MAXVAL is preferred.

Consider the following subroutine that will return the maximum value of co-
array a in the co-scalar great:

subroutine greatest(a, great) ! find maximum value of a(:)[*]
real, intent(in) :: a(:)[*]
real, intent(out) :: great[*]
great[:] = maxval(a(:)) ! all calculate local maxima
sync_all() ! wait for all to calc local max
great[1] = maxval(great[:]) ! gather to 1, then find maximum
sync_all() ! wait for 1 to calc global max
great[:] = great[1] ! all collect the results
sync_all() ! wait for all to finish

end subroutine greatest
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The algorithm first computes local maxima on all local portions of a. It then
gathers the local maxima to image one, where the global maximum is calculated.
This global maximum is then copied by the other images.

Note the three synchronization calls in the example. The second is required
because all images (other than one) must wait for the global maximum to be
calculated before getting a copy of it. The code section containing the outer
sync all calls could be replaced by:

sync_all() ! wait for all to finish
great[1] = maxval(great[:]) ! gather to 1, then find maximum
if (this_image() == 1) then
great[:] .recvs. great[1] ! broadcast the results to all

end if
sync_all() ! wait for all to finish

This implementation using puts requires one less synchronization call because
image one broadcasts the global maximum, only after it has calculated it. This
example points out subtle differences between put and get semantics. Different
control flow and synchronization patterns may be required, as demonstrated.

The relevant code segment implementing greatest using the original CAF
execution model is shown below:

real :: work(num_images())
great = maxval(a(:)) ! all calculate local maxima
sync_all() ! wait for all to calc local max
if (this_image(great) == 1) then
do i = 1, num_images() ! gather local maxima
work(i) = great[i]

end do
great = maxval(work)
do i = 1, num_images()
great[i] = great ! broadcast the results to all

end do
end if
sync_all() ! all wait for image 1 to finish

Note the lack of explicit, temporary arrays (work), if statements, and do loops
in the first implementation. We suggest that the lack of these constructs (in the
first implementation) makes the code more readable and their overuse can get
in the way of program understanding. The first implementation is expressed at
a higher level of abstraction; the programmer instructs the compiler regarding
what should be done, without unnecessarily informing the compiler how it should
be accomplished. This is left up to the compiler to decide.

4.2 Producer/Consumer

The second example we consider is that of an agent producing information that
another consumes. This example was chosen to examine implementation of an
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algorithm that is more loosely coupled than the first, requiring no algorithmic
synchronization.

A genetic algorithm (GA) [1] implementation could be run in parallel by
instructing each image to work on an entirely separate and distinct population,
with no communication between images. This would be as if a real population
were evolving on an island, separated by other populations of the same species.
A population is a set of individual genomes that exchange genetic information
during the creation (breeding) of a new generation. We define a population as
an integer co-array pop with both a local and a co-rank of one, integer ::
pop(pop size)[*].

For better results, it is desirable to exchange genetic information between
separate populations. The algorithm does not require synchronization between
images because the timing of the information exchange is not crucial. For each
population and at each generation, we choose to replace one individual chosen
randomly with another individual, also chosen randomly from the global popu-
lation:

do n = 1, num_generations
call new_generation(pop) ! create new generation, local memory
i = random_image(); k = random_index(); l = random_index()
pop(k) = pop(l)[i] ! (*) replace local individual

end do

The implementation of this GA is identical, whether using the original or our
revised CAF assignment operator definition.

Note that while no synchronization is required by the algorithm, two sync all
calls would be necessary around the statement (*) to ensure that no remote reads
can occur while the local population is being modified. This becomes clear when
the elements representing individuals in the pop array are not atomic with re-
spect to local memory stores operations. Global synchronization is an expensive
operation. Thus, this example points out the need for a CAF language construct
to provide mutually exclusive access to non-atomic data structures. To do this,
however, consideration must be given to performance aspects, because such a
language construct could harm the performance of all remote read operations.

5 Conclusions

We have proposed an alternative definition of the assignment operator for Co-
Array Fortran. This new definition was required to allow collective operations
to be expressed using co-array section notation while ensuring that the language
specification does not imply that excessive and redundant messages would re-
sult. Our alternative definition specifies that assignment statements involving
cooperating images have one-sided, get semantics. Get semantics allow the use
of collective assignment statements without causing inefficiencies to arise, as un-
needed data is transferred, or causing illegal, concurrent writes to memory. Put
semantics are allowed only via a different syntax. The proposed changes provide
the following advantages:
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– Array-section notation may be specified in either the local or the co-dimen-
sions, thus unifying its usage.

– If statements denying concurrent writes are not needed. A programmer is
not able to express concurrent writes to a single address in the language,
unless the separate .recvs. syntax is used.

– The programmer is able to express collectives without explicit loops.
– Explicit temporaries can be eliminated when expressing collective all-reduce

and gather-scatter operations.
– The programmer does not need to be artificially aware of memory affinity, as

may occur with the explicit use of if blocks to restrict execution to a single
image; get semantics allows a programmer to think of the co-dimension as a
memory address, rather than an image index.

– While get semantics is specified as the pattern to which a programmer de-
signs, the compiler is free to choose the optimal method for data transfer,
provided that these semantics hold for the program.

– Collective notation allows the programmer to explicitly specify which images
are expected to participate within an expression or assignment statement.

Perhaps most importantly, the new Co-Array Fortran semantics leave room
for future extensions to the language in ways that the original semantics do
not. For example, suppose CAF could be extended to allow a generalized vector
subscript notation (or generalized section notation), that would select co-array
elements from the combined local and co-dimensions.
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