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Abstract. The accuracy of promoter recognition depends upon not only
the appropriate representation of the promoter sequence but also the
essential features of the sequence. These two important issues are ad-
dressed in this paper. Firstly, a promoter sequence is captured in form
of a Chaos Game Representation (CGR). Then, based on the concept of
Mahalanobis distance, a new statistical feature extraction is introduced
to select a set of the most significant pixels from the CGR. The recog-
nition is performed by a supervised neural network. This proposed tech-
nique achieved 100% accuracy when it is tested with the E.coli promoter
sequences using a leave-one-out method. Our approach also outperforms
other techniques.

1 Introduction

Currently, promoter prediction is one of the most challenging problems in bioin-
formatics studied by many researchers. A promoter is the region of DNA se-
quence which is usually located on the upstream of a transcription start site
(TSS). If the position of promoter is known then the starting position of the
coding region, which will be translated into the protein sequence, can be cor-
rectly located. In this paper we focus on recognition of E.coli promoter.

E.coli promoter contains two binding sites are the -35 and -10 hexamer boxes
upstream of the T'SS (position +1). The consensus sequences, i.e. the prototype
sequences are composed of the most frequently occurring nucleotides at each
position, for the -35 box is TTGACA and -10 box is TATAAT. However, very
few of existing E.coli promoters exactly contains the two consensus sequences
[1]. The region between two binding sites is called the spacer. Figure 1 shows the
structure of promoter with two binding sites and two spacers. The distance of
spacer between the -35 box and the -10 box varies from 15 to 21 bases. Another
spacer between the -10 box and the transcription start site varies from 3 to
11 bases. Since the distances and positions of two binding sites are uncertain,
recognizing the correct location of the promoter is rather difficult. Therefore,
these features are not appropriate for promoter prediction. In this paper we do
not try to find these regions.

Several algorithms have been proposed for E.coli promoter recognition, includ-
ing artificial neural network (ANN) [2,[3,[4[5L[6], hidden markov models (HMM)
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-35box ¢ 15-21 bp -10box  &=3-11bp— +1region

ccatcggca | TTGACA | gatccgatgcacatgaa | TATAAT | atcgctac | tss

Fig. 1. The structure of E.coli promoter with two binding sites are known as the -35
and the -10 hexamer boxes and two spacers

[7], weight matrices [8], as well as graph-based induction method [9]. Many al-
gorithms used hybrid systems which integrated neural network (NN) and other
statistical decision techniques. Ma et al. [I] combined expectation maximization
(EM) algorithms with NN. The EM algorithm is used for locating the -35 and -10
binding sites. Then, the features in each training promoter are chosen according
to their information content and fed to an ANN for promoter recognition. Mat-
suyama and Kawamura [10] proposed Independent Component Analysis (ICA)
algorithm including a position-dependent conversion based on symbol frequen-
cies. Huang and Wang [I1] proposed a hybrid learning system to calculate the
distribution of oligo-nucleotides statistics as position weight matrices and fed
as inputs to the KBANN, SVM and multilayer feed-forward neural network for
discriminate promoters and non-promoters. Their result is better than other
promoter prediction methods [3, 9, 11, 20, 21] with 97.2% accuracy.

The accuracy of promoter prediction is based on two factors, i.e. the repre-
sentation of the given DNA sequence and the essential features of the sequence.
The goal of this paper concerns both issues of above solutions that can provide
a distinct classification between the promoter and non-promoter sequences. A
chaos game representation (CGR) is adopted for transforming a DNA sequence
having promoters and non-promoters into an image. The essential features of
the CGR is selected by applying the concept of Mahalanobis distance. Then,
the recognition is performed by a supervised neural network. Our method com-
pared with [11] using same dataset, the result shown 100% accuracy. The rest of
the paper is organized as follows. Section 2 presents our proposed methods that
are composed of CGR for representing DNA sequences, feature selection and
structure of neural network used in this problem. Section 3 shows the dataset
that used in this paper, explain the evaluation methods and the results. The
conclusion is in Section 4.

2 Proposed Methods

A DNA sequence are composed of four different nucleotides, adenine (A),
thymine (T"), cytosine (C) and guanine (G). The important features of each
sequence must be extracted in order to classify it as in the promoter class of in
non-promoter class. Here, the classification is achieved by using a supervised neu-
ral network. An important issue in applying neural networks to classify promoter
and non-promoter sequences is how to extract the important features represent-
ing a given DNA sequence [12]. The key concept is based on the observation that
all features of promoter sequences must be distinguishable from all features of
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non-promoter sequences. This implies that each DNA sequence must be uniquely
captured. In this paper, we used a chaos game representation (CGR) to capture
a given DNA sequence. Some quadrants of the CGR are systematically selected
as important features of the DNA sequence using the concept of Mahalanobis
distance. The details of CGR and feature selection are discussed in the next two
following subsections.

2.1 Chaos Game Representation (CGR)

Chaos Game Representation (CGR) is a method for uniquely representing DNA
sequence patterns in forms of an image [I3,[14,[5[T6]. The value of each pixel
in the image is based on iterated function systems of fractal theory mapping
a discrete sequence of symbols onto a continuous space. Initially, the image is
divided into four quadrants which each of them represents one of the four possible
nucleotides (A, C, G and T). CGR position is calculated by moving a pointer
to a half way between the previous point and the corner of current symbol in
the sequence. Let S = (s182...5,) be a DNA sequence, either having promoters
or having no promoters, where s; € {A,C,G,T} and [ denotes the length of
S. Initially, quadrants whose corners are at coordinates (0,0), (0,1), (1,1), and
(1,0) are assigned to nucleotides A, C, G, and T', respectively. Each s; is mapped
to the appropriate quadrant corresponding to its nucleotide symbol. The position
of s;, denoted by p;, is defined by the following steps.

Po = (05,05)
Di = pi—1 + 05(1’1 _pifl)a i=1,2,...,n (1)

x; is the coordinate variable of nucleotide s;. The value of z; is set as follows.
Position p; is denoted by a dot. The corresponding CGR image can be viewed as

s; i (coordinate)
(0,0)
0,1
1,1
1,0

)

HoQQaQ»

an image of distributed dots. This image is, then, partitioned by grids into a set
of square entries of equal size. The number of square entries is equal to 2™ x 2".
For example, suppose a considered DNA sequence is the following. The value [
for this sequence is equal to 18.

ATAACATCGTGTCGGACT

This sequence is captured by a CGR as shown in Figure 2(a) and the CGR is
partitioned into a set of square entries of equal size. Suppose n is set to 2. The
number of entries is equal to 22 x 22 or 16 and the partitioned CGR. is shown
un Figure 2(b).
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Fig. 2. The CGR of sequence GATCCGATGCACATGAA. (a) The CGR after map-
ping each mucleotide to its corresponding position. (b) The CGR after being partitioned
into 16 equal square entries.

2.2 Feature Selection of DNA Sequences

The number of dots in each square entry is counted and used as a feature. Thus,
there are 2™ x 2" features for each DNA sequence of length [. This number
can make a neural training non-convergent. To overcome this problem, only
relevant square entries or features must be selected from the CGR image and
used as the training input. Feature selection is an effective technique in dealing
with dimensionality reduction [I7]. Our selection is based on the concept of
Mahalanobis distance. All DNA sequences having promoters are assigned to
class 1 denoted by set S; and those having no promoters are assigned to class
0 denoted by set Sp. All sequences in both S; and Sy are represented by a set
of CGR images. Let f i k0 € € 10,1}, be the value of square entry (i, ) of the
k" CGR image for class ¢. A distance measure between promoter class and
non-promoter class at entry (i, 7) is defined as follows.

(m3 —mg)
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5] 6% _ 68 ( )
Sreso fron
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51— Zkesl(fz%‘?k —my)?

The high value of D; ; implies that the features of promoter and non-promoter
at this entry can be highly distinguished. The first d square entries with highest
values of D; ;’s are selected as the essential features for training. The value of d
in our experiment is set to 16

2.3 Artificial Neural Network (ANN) Classifier

From the proposed method, a feed-forward backpropagation neural network with
a single hidden layer was used. There are one output unit for two target classes,
class 1 for promoter and class 0 for non-promoter. Figure 3 shows the net-
work architecture composed of input, hidden and output layers. In this paper,
the ANN implementation was achieved using Stuttgart Neural Network Simula-
tor (SNNS) 4.2 which is freely downloadable at http://www-ra.informatik.uni-
tuebingen.de/SNNS/. At the beginning of each simulation, the weights were
initialized with random values. The training of the network was carried out us-
ing error back-propagation with a sum square error function. In this study, there
are 16 input units, 10 hidden units and one output unit.

Feature
Extraction

Output layer

TTCAAACTAATGTATAATAT..

ATCC
Chaos Game Representation (CGR)

5

CTCTC

Input layer
DNA sequence

Hidden layer

Fig. 3. The structure of neural network used in this problem

3 Experiments and Results

3.1 Data

In this paper, the data sets were taken from the UCI Machine Learning Repos-
itory [18]. It consists of 106 sequences including 53 promoter sequences and 53
non-promoter sequences. All sequences are 57 bp long. Each promoter sequence
contains 49 bp upstream and 7 bp downstream of the TSS.
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3.2 Performance Evaluation

Prediction performance was determined by measuring the precision, specificity
(sp) and sensitivity (sn). These are defined as Eqgs. (7)-(9), respectively

Precision = TP+TN (7)
~ TP+TN+FP+FN
e TP
Speci ficity = TP+ FP (8)
. TP
Sensitivity = TP+ FN 9)

where TP, TN, FP, FN are the number of true positives, true negatives, false
positives and false negatives, respectively. A true positive is a promoter sequence
that was also classified as a promoter sequence. A false positive is a non-promoter
sequence that was misclassified as a promoter sequence.

3.3 Results

In this paper, our method was compared with Huang and Wang [11]. They
used leave-one-out method for evaluating the performance and comparing the
result with several other promoter prediction systems. We used the same data
sets and the same evaluation method as theirs. Table 1 shows the number of
errors compared with other methods including our method. The first number
denotes the number of error patterns and the second one is the total number of
testing patterns. Table 2 we compared our method with [I1] by using precision,
specificity and sensitivity criteria. It is clear that our method performs better
than the others.

Table 1. Number of errors on several methods

Methods Errors Methods Errors

ID3[I9] 19/106 BP 8/106
C4.5[20] 18/106 NTSS[2I]  7/106
GBI[ 16/106 HM-layer  6/106
KNN  13/106 KBANN  4/106
O’Neill[g] 12/106 HSVM[II] 3/106
FTSS[2I] 9/106 Our method 0/106

Table 2. Performances evaluation using precision, specificity and sensitivity

HSVM[II] Our method

Precision 97.2% 100%
Specificity  96.2% 100%
Sensitivity 98.1% 100%
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4 Conclusion

In this paper, we proposed a new method for selecting all essential features in
recognizing E.coli promoters in DNA sequences captured by Chaos Game Rep-
resentation. These good features are used for training and classifying the given
promoter sequences. Each selected feature is determined by using a distance
based on the concept of Mahalanobis distance. We do not consider some well-
known patterns around TSS, such as TATAAT-box and TTGACA-box, which
were previously used by many researchers. The experimental results indicated
that our proposed method perform better than the others’. The future research
will focus on applying this technique to predict promoter in different species.
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