
Embedding Dynamic Dataflow
in a Call-by-Value Language�

Gregory H. Cooper and Shriram Krishnamurthi

Brown University, Providence, RI 02912, USA
{greg, sk}@cs.brown.edu

Abstract. This paper describes FrTime, an extension of Scheme designed for
writing interactive applications. Inspired by functional reactive programming, the
language embeds dynamic dataflow within a call-by-value functional language.
The essence of the embedding is to make program expressions evaluate to nodes
in a dataflow graph. This strategy eases importation of legacy code and permits in-
cremental program construction. We have integrated FrTime with the DrScheme
programming environment and have used it to develop several novel applications.
We describe FrTime’s design and implementation in detail and present a formal
semantics of its evaluation model.

1 Introduction

This paper describes FrTime (pronounced “father time”), a programming language built
atop the DrScheme environment [9]. FrTime is an exploration of an important point in
the design space of dynamic dataflow, or functional reactive [7, 16, 19], programming.

To make FrTime as familiar as possible to current programmers, the language reuses
much of the infrastructure, including the syntax, of an existing call-by-value language.
In this case the host language is a purely functional subset of Scheme, although the
strategy we describe could be applied to other call-by-value languages as well. The
embedding strategy reuses the host language’s evaluator to make program execution
construct a graph of dataflow dependencies; a dataflow engine subsequently reacts to
events and propagates changes through this graph. FrTime conservatively extends basic
language constructs to trigger graph creation when used in the context of time-varying
values. Pure Scheme programs are also FrTime programs with the same meaning they
have in Scheme and may be incorporated into FrTime programs without modification.

The design of FrTime reflects a desire to satisfy three main goals.

1. Programs should be able to respond to and process events from external sources.
For example, one application of FrTime is as a scripting language for a debug-
ger [15]. A debugger script must respond to events from the program under investi-
gation, which arrive at an unspecified frequency that cannot be known a priori. This
suggests that the language should embrace a push-driven implementation strategy,
where the arrival of an event triggers a computation that propagates up a tree of
dependencies.

� This work is partially supported by NSF grant CCR-0305949.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 294–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Embedding Dynamic Dataflow in a Call-by-Value Language 295

2. FrTime programs should be able to make maximal use of a programming environ-
ment for incremental development. This especially means that programmers must
be able to write expressions in the read-eval-print loop (REPL), observe and name
their values, use them to build larger expressions, and so on. With such support,
the REPL can serve as one of the primary interfaces for many programs, thereby
saving programmers from having to construct a separate, explicit interface. For ex-
ample, the paper about the scriptable debugger [15] discusses the debugging of a
shortest-paths algorithm by interactively adding script fragments that provide in-
creasingly better clues. FrTime’s support for dynamic dataflow graph construction
saves us the need to build an interaction mode for the debugger. Instead we reuse
the DrScheme REPL, inheriting its many features and also its careful handling of
many subtle issues [11].

3. As a practical matter, FrTime needs to reuse as much of an existing evaluator as
possible. In particular, the underlying evaluator in DrScheme is quite complex and
supports a large legacy codebase. Ideally, therefore, FrTime needs an evaluation
strategy that can reuse this evaluator and seamlessly integrate as much legacy code
as possible to inherit a large library of useful functionality. (For example, by in-
heriting DrScheme’s graphics library, the scriptable debugger supports graphical
display of the target program’s state.) A corollary is that legacy programs should be
incrementally convertible into FrTime. That is, it should be possible to begin with
an existing Scheme application and run it under FrTime, then gradually change
fragments of it to use dataflow features. This must not require a significant source
transformation (such as conversion into continuation-passing or monadic style).

In this paper we present the semantics and implementation of FrTime. In particu-
lar, we describe the language’s embedding strategy and how it satisfies the goals stated
above. We also provide an operational semantics that specifies the language’s evalua-
tion model. FrTime has been distributed with the DrScheme programming environment
since 2003 and has been used to develop several non-trivial applications, including a
scriptable debugger [15], a spreadsheet, and a version of the Slideshow [10] presenta-
tion system enhanced with interactive animations.

2 The FrTime Language

FrTime extends the language of DrScheme [9] with support for dynamic dataflow
through a notion of signals, or time-varying values. The language is inspired and in-
formed by work on functional reactive programming (FRP) [7, 16, 19], which extends
Haskell [14] with similar features.

The most basic signals are those that represent time itself. For example, there is a
signal called seconds, which counts the number of seconds elapsed since a specific point
in the past. Seconds is an example of a behavior—a signal that is defined at every point
in time, or continuous. If we apply a primitive function f to a behavior, the result is a
new behavior, whose value is computed by applying f to the argument at (conceptually)
every point in time.1 In other words, FrTime lifts primitive functions to the domain of

1 Operationally, the language only applies f to the argument initially and each time it changes.

296 G.H. Cooper and S. Krishnamurthi

behaviors. For example, if we evaluate (even? seconds), the result is a new behavior
that indicates, at every moment, whether the current value of seconds is even.

In addition to behaviors, there are signals called event streams that carry sequences
of discrete values. For example, we have built an interface to the DrScheme window
toolkit that provides an event stream called key-strokes, which carries key events. Unlike
with behaviors, primitive procedures cannot be applied to event sources. FrTime instead
provides a collection of event-processing combinators that are analogous to common
list-processing routines. For example, the raw key-strokes stream contains events for
key presses and releases. Applications that don’t care about the releases can elide them
with (filter-e char? key-strokes). This produces a new event stream that only carries the
events whose values are characters.

There is similarly an analog of map called map-e, which we could use to convert
all of the alphabetic characters to upper case. Another combinator, called collect-e,
resembles Haskell’s scanl; it consumes an event stream, an initial accumulator, and
a transformer. For each event occurrence, collect-e applies the transformer to the new
event and the accumulator, yielding a new accumulator which is emitted on the resulting
event stream. By passing empty and cons as the second and third arguments, we can
build a list of all the occurrences of a given event.

FrTime provides primitives for converting between behaviors and event streams.
One is hold, which consumes an event stream and an initial value and returns a behavior
that starts with the initial value and changes to the last event value each time an event
occurs. Conversely, changes consumes a behavior and returns an event stream that emits
the value of the behavior each time it changes.

On the surface, signals bear some similarity to constructs found in other languages.
Behaviors change over time, like mutable data structures or the return values of impure
procedures, and event streams resemble the infinite lazy lists (also called streams) com-
mon to Haskell and other functional languages. The key difference is that FrTime tracks
dataflow relationships between signals and automatically recomputes them to maintain
programmer-specified invariants.

Fig. 1. Screenshots of a single interactive FrTime session, taken 17 seconds apart

Embedding Dynamic Dataflow in a Call-by-Value Language 297

FrTime runs in the DrScheme programming environment. Figure 1 presents two
screenshots from the same interactive session in DrScheme, taken about seventeen sec-
onds apart. In this session we first evaluate seconds and (even? seconds). Then we load
the FrTime animation library, which creates a new, empty window (not shown). As we
type into this new window, key press and release events arrive on the key-strokes event
stream. We create chrs by filtering out the release events, and uchrs by converting these
to upper-case with map-e. We make collect-e accumulate a list of characters, then apply
hold to produce a behavior, which we reverse and convert to a string.

Evaluating a signal at the DrScheme prompt registers a dependency between that
signal and the graphical object that represents it in the interactions window. Thus, when
the signal’s value changes, FrTime automatically triggers an update of the display. This
explains why the two screenshots in Fig. 1 show different values for many expressions,
even though they are taken from the same session. This is an important example of
integrating the language with the environment in order to respect the language’s uncon-
ventional abstractions. Conversely, the language supports the environment’s notion of
interactive, incremental program construction. For example, as we build up the string of
key-strokes, we can name and observe each intermediate result, checking that it behaves
as we expect before adding the next piece.

3 Evaluation Strategy

In this section we describe FrTime’s evaluation strategy, which satisfies the goals set
forth in the Introduction. Firstly, it employs a push-driven update mechanism: events
initiate computation, and changes cause dependent parts of the program to recompute.
Secondly, the language supports incremental program construction; the programmer
can interleave program construction, evaluation, and observation. Finally, it reuses the
Scheme evaluator and permits reuse of existing Scheme library code, which supports
incremental conversion of Scheme programs to use FrTime’s dataflow features.

FrTime is a collection of syntactic abstractions and value definitions implemented
in Scheme. Executing a FrTime program means running the Scheme evaluator in an
environment containing the FrTime definitions. These definitions make executing the
program build a graph of its dataflow dependencies. The nodes of this graph cor-
respond to program expressions, and the arcs indicate flow of values from one ex-
pression to another. An expression that does not utilize any dataflow elements evalu-
ates as a standard, pure Scheme expression, yielding the same value it would have in
Scheme.

Because evaluation is push-driven, a program’s reactivity originates through de-
pendence on primitive event sources, for example a timer, a keyboard, a mouse, or a
network data stream. The FrTime engine listens to events from these sources and routes
them to the interested parts of the program’s dataflow graph. Values change at the cor-
responding nodes of the dataflow graph and propagate along the dependency arcs.

In the remainder of this section, we explain how evaluating a FrTime expression
constructs a graph of dataflow dependencies, and how the language implements reac-
tivity through subsequent traversal of this graph. We discuss some of the difficulties that
arise from a push-driven update model and how we solve them.

298 G.H. Cooper and S. Krishnamurthi

3.1 Dataflow Graph Construction and Manipulation

Suppose the programmer enters the expression (+ 3 4) at the FrTime REPL. Its evalu-
ation proceeds in the traditional call-by-value fashion, first reducing subexpressions to
values, then applying the specified operation to them.

FrTime is meant to extend pure Scheme with a notion of signals, so if we start with
a pure Scheme expression and replace some constant values with signals, the result
should be a legal FrTime program. For example, we should be able to refer to “the time 3
seconds from now” by writing (+ 3 seconds). However, evaluating such an expression
in a standard Scheme evaluator does not yield the desired dataflow semantics. Scheme
primitives like + only know how to process ordinary, constant Scheme values (in this
case numbers). At best, the result might be to add 3 to the current value of seconds.
This would produce a constant value reflecting the state of the system at the moment of
evaluating the expression, but it would fail to update with the passage of time. In reality,
the situation is worse; FrTime’s signals are implemented as data structures, so passing
seconds to + is a type mismatch and causes a runtime exception.

Clearly, ordinary Scheme evaluation does not work for FrTime. This means that
we must either write a new evaluator for FrTime, or extend Scheme evaluation to ac-
commodate FrTime’s novel features. Since we want to reuse as much of Scheme as
possible, we take the latter approach by interposing a mechanism that prevents the di-
rect application of Scheme primitives to signals. Specifically, we define the FrTime
evaluation environment so that the names of Scheme primitives refer to lifted versions
of the same. Lifting wraps a primitive with code that checks for signal arguments and, if
there are any, constructs and returns a new signal. For example, the FrTime expression
(+ 3 seconds) reduces to the following Scheme code:

(if (or (signal? 3) (signal? seconds))
(make-signal (λ () (+ (current-value 3) (current-value seconds))) 3 seconds)
(+ 3 seconds))

This first tests for signals among the argument subexpressions. Since seconds is a signal,
the conditional selects the first branch. The procedure make-signal consumes a thunk
(nullary procedure), boxed above, and any number of producer values to which the
thunk refers. It returns a new signal whose value is defined, at any point in time, by the
result of calling the thunk. In this case, it applies the addition primitive to the current
values of the constant 3 and the signal seconds. The procedure current-value acts like
the identity function on constant values, so (current-value 3) reduces to 3. On signals,
current-value projects the signal’s current value, an ordinary Scheme constant. Thus
the addition primitive inside the thunk sees only constants, so there are no errors. The
fact that signals like seconds change over time underscores the necessity of the thunk:
the language needs to re-evaluate the procedure to update the signal when any of the
producers change.

The additional arguments to make-signal (here 3 and seconds) are the producers
on which the new signal depends. They may include both constants and signals; make-
signal ignores the constants and registers a dependency with each of the signals. Regis-
tration gives the producers explicit references to the new signal (instead of the other way
around, as a reader might initially assume). These reverse references are essential to

Embedding Dynamic Dataflow in a Call-by-Value Language 299

10440(+ 3 seconds):

seconds: 10437

3

Fig. 2. Dataflow graph for (+ 3 seconds)

(* 2 (+ 3 seconds)): 20880

10440(+ 3 seconds):

seconds: 10437

2

3

Fig. 3. Dataflow graph for (* 2 (+ 3 seconds))

implementing push-driven evaluation: when a signal changes, the runtime system fol-
lows them to determine which signals need recomputation. Figure 2 shows the resulting
signal graph. Rounded boxes depict signals, solid arrows are normal data references,
and dashed arrows represent the reverse references needed for push-driven updates.

The addition of these reverse references would ordinarily expand reachability into
a symmetric relation, to the detriment of effective memory management. To solve this
problem, we make the reverse references weak, which tells the memory manager to
ignore them when computing reachability. If a signal is no longer reachable from the
application, it will be reclaimed. Since there may be a significant delay between objects’
becoming unreachable and their reclamation by the garbage-collector, it is possible that
the engine will continue recomputing such dead signals for some time. This strategy is
unacceptable in general, so we need a mechanism for deleting signals when they cease
to belong in the system. We describe such a mechanism in Sect. 3.3.

The FrTime evaluation model applies to all expressions, even those that do not use
signals. For example, the FrTime expression (+ 3 4) reduces to the following Scheme
expression:

(if (or (signal? 3) (signal? 4))
(make-signal (λ () (+ (current-value 3) (current-value 4))) 3 4)
(+ 3 4))

Because the constants 3 and 4 are not signals, the entire expression is clearly equivalent
to its raw Scheme counterpart, and yields the constant 7. This illustrates one of our
design goals: that pure Scheme expressions should evaluate in FrTime as they would
in standard Scheme. This means that programmers can easily mix pure Scheme and
FrTime code, which creates a smooth migration path for porting Scheme code.

Because user-defined signals like (+ 3 seconds) are indistinguishable from primitive
signals like seconds, evaluation of FrTime expressions works even when operations on
signals nest. For example, if a programmer writes (∗ 2 (+ 3 seconds)), the inner (+ . . .)
subexpression evaluates first, yielding a signal like the one described above. The evalua-
tion of the (∗ . . .) application proceeds in an analogous manner, constructing a new sig-
nal that depends upon the value of (+ 3 seconds). We show the resulting graph in Fig. 3.

Expressions can arbitrarily nest and mix computations involving constants and sig-
nals. For example, if we write (+ (+ 1 2) seconds), the (+ 1 2) evaluates as in Scheme,
reducing to the constant 3, after which evaluation proceeds exactly as above for

300 G.H. Cooper and S. Krishnamurthi

(+ 3 seconds). Only one new signal is created, and the resulting dataflow graph is
identical to the one shown in Fig. 2.

The dataflow graph construction that occurs when a FrTime program runs is just the
first step in its evaluation. The interesting part—the program’s reactivity—begins once
the graph is constructed and continues as long as the system runs and events arrive.
This involves primitive signals changing in response to external events and propagating
through the dataflow graph. For example, once every second, a timer triggers a change
in seconds, which in turn triggers recomputation of every signal that depends on sec-
onds, such as (+ 3 seconds) in our example above. Changes then propagate to transitive
dependents, such as (∗ 2 (+ 3 seconds)).

When the engine recomputes a signal, it compares the new value with the previous
one. If they are the same (according to Scheme’s eq? procedure), the engine does not
schedule the signal’s dependents. For example, a signal defined by an expression like
(quotient seconds 10) depends on seconds but only changes after seconds increases by
ten. Consumers of this signal, like (> (quotient seconds 10) 100), only recompute every
ten seconds, not every second.

3.2 Glitch Prevention

Scheduling recomputation is an important semantic issue. For example, consider the
expression (< seconds (+ 1 seconds)). This evaluates to a signal that should always
have the value true, since n is always less than n + 1.

However, life is not so simple in a push-driven update model. Each change in sec-
onds triggers recomputation of the overall expression and the inner (+ 1 seconds) sig-
nal, and the order in which FrTime recomputes these signals affects the answer. If it
updates the (+ 1 seconds) signal first, then the top-level < compares up-to-date ver-
sions of seconds and (+ 1 seconds), yielding true. On the other hand, if it updates
the top-level signal first, it then compares the up-to-date seconds with the stale (+ 1
seconds)—which is equal to the new value of seconds—yielding false.

This situation, where a signal is recomputed before all of its subordinate signals are
up-to-date, is called a glitch [5]. Such behavior is unacceptable as it results in redundant
computation and, much worse, causes signals to violate invariants.

We need a traversal strategy that prevents glitches. The crucial property is that no
signal should update until everything on which it depends is also up-to-date. Unfortu-
nately, the obvious candidates of depth-first and breadth-first search are susceptible to
glitches, as the preceding example shows. However, a slightly modified breadth-first
search achieves the goal. Specifically, we approximate the graph’s structure by assign-
ing each signal a height, which exceeds that of all its producers. To make a valid depth
assignment possible, the dataflow graph must be acyclic. This restriction has the benefit
of guaranteeing that update propagation terminates, but it also seems to impose a se-
vere limit on the language’s the expressive power. We explain in Sect. 3.5 how FrTime
supports programs with cyclic dependencies.

Computing signal heights is relatively simple. Since make-signal receives all of the
new signal’s producers, it only needs to compute their maximum and add 1 to it. Instead
of a standard first-in-first-out queue, the engine uses a priority queue to process nodes
in order of increasing height. Since each signal is higher than everything on which it
depends, this strategy guarantees the absence of glitches and redundant computation.

Embedding Dynamic Dataflow in a Call-by-Value Language 301

3.3 Dynamic Reconfiguration

The height-guided recomputation strategy works under the assumption that the dataflow
graph does not change in the middle of an update cycle. Unfortunately, this is an un-
reasonable assumption: the need to reconfigure the graph dynamically arises naturally
from combining behaviors with basic Scheme features.

We illustrate some of the intricacies of dynamic reconfiguration through a simple
example involving the use of a time-varying condition in an if expression:

(let∗ ([len (modulo seconds 4)]
[lst (build-list len add1)])

(if (zero? len)
0
(list-ref lst (sub1 len))))

In this program, len cycles through the values 0, 1, 2, 3, and lst is the list (1 . . . len).
When len is 0, the value of the whole expression is 0, and otherwise it is the last element
of lst, which is also equal to len.

Evaluating this program proves to be somewhat tricky. Since the if’s condition
is time-varying, the result of the whole expression needs to switch dynamically be-
tween the branches (either of which may also be time-varying), forwarding the value of
whichever branch the condition currently selects.

In general, evaluating a branch is only legal when the condition selects it. For exam-
ple, when the first branch is selected above, evaluating the second branch would raise an
exception by attempting to extract the element of lst at position −1. The threat of such
problems means that, when the condition changes, a new branch must be constructed
and the old one disabled, or deleted, before evaluation proceeds. Thus the structure
of the dataflow graph must change in the middle of an update cycle. In this example,
the need arises from the use of behaviors in conditionals; an analogous situation arises
when the function position of an application is time-varying.

Changing the structure of the dataflow graph in the middle of an update cycle cre-
ates a number of hazards that must be handled carefully. Constructing new dataflow
graph fragments is precarious because the existing graph may be in an inconsistent state,
with some signals updated but others stale. In this example, lst has a large height be-
cause build-list is a recursive procedure that constructs a complex fragment of dataflow
graph. However, since zero? is a primitive, (zero? len) has height 2, and when it be-
comes false (triggering construction of the second branch), lst still has the stale value
empty. Evaluating the new branch (which tries to extract an element from lst) would
raise an exception. To avoid this problem, FrTime constructs the new branch without
computing the initial node values. Instead it enqueues the new nodes for update, and
the recomputation algorithm initializes them after reaching the proper height.

Another problem is that the new fragment’s height may exceed that of the old one.
To prevent glitches, the engine needs to adjust height assignments to reflect the new
graph topology before performing any more updates. It must also notify the priority
queue of any changes in heights of signals that are already enqueued for update.

Deleting a fragment of the dataflow graph is also subtle. To prevent any unwanted
evaluation, FrTime must delete all of the signals in the dead branch, including those

302 G.H. Cooper and S. Krishnamurthi

already enqueued for recomputation. This means that the height of all of these signals
must strictly exceed that of the condition. Deleting a signal involves removing all edges
incident on it, which makes it unreachable and ensures that it will not be scheduled for
recomputation again. However, since a change may have already scheduled the deleted
signal for recomputation, deletion replaces the signal’s update procedure with a no-op,
preventing ill effects from any final update attempt. (This technique is more efficient
than the alternative of removing the deleted signals from the priority queue.)

Determining which signals to delete can be tricky, too. It is not simply the set of all
signals reachable from the root of the deleted fragment; this would include many signals
merely referenced within the branch (in the example, signals like len and lst). However,
taking only the signals directly created by evaluation of the branch yields an underap-
proximation. This is because the branch may contain other dynamic expressions, which
in turn constructed signals after the creation of the enclosing branch. FrTime needs to
track construction within this extended notion of the expression’s dynamic extent. The
semantics presented in Sect. 4 provides an abstract model of this mechanism, but the
details involved in implementing it efficiently are beyond the scope of this paper.

3.4 Incremental Construction

FrTime’s evaluation model differs from the approaches taken in the Haskell FRP sys-
tems [7, 16]. In those, a program specifies the structure of a dynamic dataflow compu-
tation, but the actual reactivity is implemented in an interpreter called reactimate. This
interpreter runs in an infinite loop, blocking interaction through the REPL until the com-
putation is finished. In many applications, we need to support REPL-style interaction in
the middle of the reactive program’s execution.

FrTime supports REPL interaction by implementing reactivity in a separate thread.
The user is assigned one thread, typically corresponding to the DrScheme REPL, while
the FrTime dataflow engine, which constructs and manipulates the program’s dataflow
graph, runs in a separate thread. These threads communicate through a message queue;
at the beginning of each update cycle, the engine empties the queue and processes the
messages. Each message corresponds either to an event occurrence or to a request for
construction of a new dataflow graph fragment. When the user enters an expression at
the REPL prompt, the REPL sends a message to the dataflow engine, which evaluates it
and responds with the root of the resulting graph. Control returns to the REPL, which is-
sues a new prompt for the user, while in the background the engine continues processing
events and updating signals.

On the surface, it may appear that the Haskell systems could achieve similar be-
havior simply by spawning a new thread to evaluate the call to reactimate. Control flow
would return to the REPL, apparently allowing the user to extend or modify the program.
However, this background process would still not return a value or offer an interface for
probing or extending the running dataflow computation. The values of signals running
inside a reactimate session, like the dataflow program itself, reside in the procedure’s
scope and hence cannot escape or be affected from the outside. In contrast, FrTime’s
message queue allows users to submit new program fragments dynamically, and eval-
uating an expression returns a live signal which, because of the engine’s background
execution, reflects part of a running computation.

Embedding Dynamic Dataflow in a Call-by-Value Language 303

x ∈ 〈var〉 ::= (variable names)

σ ∈ 〈loc〉 ::= (store locations)

p ∈ 〈prim〉 ::= + | - | * | / | < | > | . . .

t, n ∈ 〈num〉 ::= 0 | 1 | 2 | . . .

u, v ∈ 〈v〉 ::= ⊥ | true | false | 〈num〉 | 〈prim〉 | (λ(〈var〉∗) 〈e〉) | 〈loc〉
e ∈ 〈e〉 ::= 〈v〉 | 〈var〉 | (〈e〉 〈e〉∗) | (delay 〈e〉 〈num〉) | (if 〈e〉 〈e〉 〈e〉)

E ∈ 〈E〉 ::= [] | (〈v〉∗ 〈E〉 〈e〉∗) | (delay 〈E〉 〈num〉) | (if 〈E〉 〈e〉 〈e〉)
s ∈ 〈sig-type〉 ::= (lift 〈prim〉 〈v〉∗) | (delay 〈loc〉 〈num〉 〈loc〉) | input

| (dyn(λ(〈var〉) 〈e〉) 〈loc〉 〈loc〉) | (fwd 〈loc〉) | const

Fig. 4. Grammars for FrTime values, expressions, evaluation contexts, and signal types

3.5 Cycles

We explain in Sect. 3.2 how our height assignment strategy restricts the dataflow graph
to be acyclic. However, programs with cyclic signal networks arise naturally in many
applications. For example, in user interfaces, we often want two sets of widgets that
display and control the same underlying model, such as RGB and HSV views in a color-
selection window. Since either set of widgets must be able to influence the other, they
are mutually dependent. Forbidding cycles altogether would disallow expression of
such patterns, making the language unacceptably weak.

In the current implementation, we make a compromise consistent with that made by
other dataflow languages [4, 5, 16, 18, 19]. We provide a delay operator that reflects the
value that its argument had at a specific interval in the past. If a cycle includes a signal
created by delay, then that cycle cannot cause the system to enter a tight loop, since
the delay halts update propagation until the future. We therefore assign a height of 0
to delay-ed signals. As long as each cycle passes through a delay, a consistent height
assignment is possible, and evaluation is safe.

4 Semantics

We have developed a formal semantics of FrTime’s evaluation model, which highlights
the push-driven update strategy and the embedding in a call-by-value functional host
language. Figure 4 shows the grammars for values, expressions, evaluation contexts,
and signal types. Values include the undefined value (⊥), booleans, numbers, primi-
tive procedures, λ-abstractions, and store locations (which identify signals). Expres-
sions include values, procedure applications, delays, and conditionals. Evaluation
contexts [8] enforce a left-to-right, call-by-value order on subexpression evaluation.
Signal types, which we explain in detail below, describe the different signal variants.

Figure 5 presents semantic domains and operations over them. δ, a parameter to
the system, defines reduction for primitives. Σ denotes a set of signal locations and
X means a set of external events, each of which contains a location, a value, and an
occurrence time (when it enters the system). I refers to a set of internal events, which
contain only target locations and (optionally) values. A store S maps signal locations to
triples containing a current value, a signal type, and a set of dependents. For notational

304 G.H. Cooper and S. Krishnamurthi

δ : 〈prim〉 × 〈v〉 × . . . → 〈v〉 (primitive evaluation)
Σ ⊂ 〈loc〉 (store location set)
I ⊂ 〈loc〉 ∪ (〈loc〉 × 〈v〉) (internal event set)

X ⊂ 〈loc〉 × 〈v〉 × 〈num〉 (external event set)

S : 〈v〉 → 〈v〉 × 〈sig-type〉 × 2〈loc〉 (signal in store)
VS(v) = v′, where S(v) = (v′, ,) (current value projection)

A(Σ, v0, v) =
�

Σ if v �= v0

∅ otherwise
(signals affected by change)

reg(σ, Σ, S) = S[σ′
→ (v, s, Σ′ ∪ {σ})]∀σ′∈Σ|S(σ′)=(v,s,Σ′) (dependency registration)
DS(Σ) =

�
σ∈Σ Σ′, where S(σ) = (, , Σ′) (dependency lookup)

dfrdS(I) = D+
S ({σ | σ ∈ I ∨ (σ,) ∈ I}) (deferred recomputations)

del(S, Σ) =

�
�S[σ
→ (v, s, Σ′ \ Σ)]∀σ|S(σ)=(v,s,Σ′),�

σ∈Σ

�
Σ′ if S(σ) = (, (dyn), Σ′)
∅ otherwise

�
� (dependency removal)

Fig. 5. Semantic domains and operations

convenience when dealing with behaviors and constants, the store permits lookup of
constants, which const signals. This simplifies the definition of VS , which projects the
current value of any signal or constant. Other important operations include reg, which
registers one signal’s dependence on a set of other signals, and DS , which computes
the set of signals dependent upon any of a set of signals. dfrd computes the set of stale
signals that are deferred, or not ready for immediate update (the + indicates transitive,
irreflexive closure). Finally, del eliminates references to deleted signals from a given
store. As explained in Sect. 3.3, FrTime needs to delete signals recursively from nested
dynamic branches. To facilitate this, del not only returns the modified store but also
finds all the nested dyn signals, whose children must be deleted.

FrTime’s evaluation model divides naturally into two layers. One is the context-
sensitive rewriting system that captures the call-by-value functional core and the ex-
tension that constructs the dataflow graph. Figure 6 shows the transformation rules that
comprise this layer. These construction rules reduce expressions in the context of a store
and a set of internal events. The δ, βv, and IF reductions are standard for languages de-
rived from the λ-calculus; they neither read nor change any of the additional elements
in the tuple. The LIFTed versions of these rules describe how the system extends the
dataflow graph when behaviors are used with primitive procedures, user-defined proce-
dures, and conditionals.

The LIFTed rules explain only the construction of the dataflow graph. The reactivity
is described by the layer of update rules, which are presented in Fig. 7. These specify
how the system evolves when each variety of signal updates:

lift Application of a primitive to one or more behaviors results in the lifting of the
application (rule δ-LIFT). This yields a new lift signal that records the primitive
and its arguments. The new signal is enqueued for update, which invokes rule U-
LIFT after all the arguments are up-to-date. The rule computes the signal’s value
by applying the primitive to the current values of the arguments. If the new value
differs from the old one, the signal’s dependents are enqueued for update.

Embedding Dynamic Dataflow in a Call-by-Value Language 305

{v1, . . . , vn} ∧ 〈loc〉 = ∅
〈S, I,E[(p v1 . . . vn)]〉 → 〈S, I,E[δ(p, v1, . . . , vn)]〉

(δ)

{v1, . . . , vn} ∧ 〈loc〉 = {σ1, . . . , σk} �= ∅ ∀i ∈ [1..k].S(σi) = (vi, si, Σi)
S′ = reg(σ, {σ1, . . . , σk}, S[σ
→ (⊥, (lift p v1 . . . vn), ∅)])

〈S, I,E[(p v1 . . . vn)]〉 → 〈S′, I ∪ {σ}, E[σ]〉
(δ-LIFT)

〈S, I,E[((λ (x1 . . . xn) e) v1 . . . vn)]〉 → 〈S, I, E[e[v1/x1] . . . [vn/xn]]〉 (βv)

S′ = S[σ1
→ (⊥, (dyn (λ (x) (x v1 . . . v1)) σ σ2), ∅)][σ2
→ (⊥, (fwd ⊥), ∅)]
〈S, I,E[(σ v1 . . . vn)]〉 → 〈reg(σ1, {σ}, S′), I ∪ {σ1}, E[σ2]〉

(βv -LIFT)

〈S, I, E[(if true e1 e2)]〉 → 〈S, I, E[e1]〉
〈S, I,E[(if false e1 e2)]〉 → 〈S, I,E[e2]〉 (IF)

S′ = S[σ1
→ (⊥, (dyn (λ (x) (if x e1 e2)) σ σ2), ∅)][σ2
→ (⊥, (fwd ⊥), ∅)]
〈S, I, E[(σ v1 . . . vn)]〉 → 〈reg(σ1, {σ}, S′), I ∪ {σ1}, E[σ2]〉

(IF-LIFT)

S′ = reg(σ2, {σ}, S[σ1
→ (⊥,input, ∅)][σ2
→ (⊥, (delay σ n σ1), ∅)])
〈S, I, E[(delay σ n)]〉 → 〈S′, I ∪ {σ2}, E[σ1]〉

(DELAY)

Fig. 6. Construction rules

delay, input Delaying a signal requires two new signals: a consumer (of type delay)
observes changes in the argument and directs events to a producer that arrive af-
ter the given interval (rule U-DELAY). The producer has type INPUT and simply
forwards the delayed value carried by the latest event (rule U-INPUT). Because
communication passes through the external event mechanism, there is no direct de-
pendence; this is why delay breaks cycles. In general, input signals can channel
values into the system from the external event queue. They are thus useful not only
for delay but can also model events from all manner of input sources, such as a
mouse or a network port.

dyn, fwd Signals of type dyn modify the structure of the dataflow graph in response
to changes in a given trigger signal. These signals are used to implement both
conditionals (if expressions) and applications with a signal in the function position.
For conditionals, the trigger is the condition, while for applications the trigger is
the function. Each dyn signal contains an update procedure (the u field in rule
U-DYN), which FrTime applies to the current value of the trigger (σ1) to yield a
new branch of dataflow graph (rooted at σ3). The branch is connected to the rest
of the graph by a permanent fwd signal, which forwards the value of the current
branch. The dyn signal’s Σ field, normally used to track dependents, tracks all the
signals created by the most recent invocation of the update procedure. These are the
signals that must be deleted when a change in the trigger invalidates the existing
branch. Each application of del removes references to these signals in the store and
accumulates the set of signals created by nested dyn signals. These also must be
deleted and may in turn have children requiring deletion. The language thus applies
del repeatedly until no deletions remain.

The rules described above leave the precise scheduling of updates non-deterministic.
However, they enforce a topological order, which guarantees the absence of glitches and

306 G.H. Cooper and S. Krishnamurthi

I � σ �∈ dfrdS(I) S(σ) = (v0, (lift p v1 . . .), Σ) δ(p, VS(v1), . . .) = v

〈X, S, I, t〉 ↪→ 〈X, S[σ
→ (v, (lift p v1 . . .), Σ)], I \ {σ} ∪ A(Σ, v0, v), t〉
(U-LIFT)

σ ∈ I S(σ) = (⊥, (delay σ n σ1), Σ)
〈X, S, I, t〉 ↪→ 〈X ∪ {(σ1, VS(σ), t + n)}, S, I \ {σ}, t〉

(U-DELAY)

(σ, v) ∈ I S(σ) = (v0,input, Σ)
〈X, S, I, t〉 ↪→ 〈X, S[σ
→ (v,input, Σ)], I \ {σ} ∪ A(Σ, v0, v), t〉

(U-INPUT)

σ ∈ I S(σ) = (⊥, (dyn u σ1 σ2), Σ)
S(σ2) = (v, (fwd), Σ2) (S∗, ∅) = del∗(S, Σ)

〈S∗, I, (u VS(σ1))〉 →∗ 〈S′, I ′, σ3〉 Σ′ = dom(S′) \ dom(S)
S1 = reg(σ2, {σ3}, S′[σ
→ (⊥, (dyn u σ1 σ2), Σ′)][σ2
→ (v, (fwd σ3), Σ2)])

〈X, S, I, t〉 ↪→ 〈X, S1, (I ′ \ Σ) \ {σ}, t〉
(U-DYN)

σ ∈ I S(σ) = (v0, (fwd σ′), Σ) S(σ′) = (v, ,)
〈X, S, I, t〉 ↪→ 〈X, S[σ
→ (v, (fwd σ′), Σ)], I \ {σ} ∪ A(Σ, v0, v), t〉

(U-FWD)

〈X, S, ∅, t〉 ↪→ 〈X, S, {(σ, v) | (σ, v, t + 1) ∈ X}, t + 1〉 (U-SHIFT)

Fig. 7. Update rules

makes the state at the end of each update cycle well-defined. When there are no more
internal update events to process, the system is stable and awaits the arrival of new
events. Time advances to the next step, and any external events scheduled for the new
time shift into the set of internal events (rule U-SHIFT).

5 Related Work

There is a large body of research on dataflow programming. An early language was Lu-
cid [18], a pure, first-order dataflow language based on synchronous streams. Lustre [4]
offers a similar programming model to that of Lucid, but with restrictions that support
compilation to finite automata and real-time performance guarantees. Lustre also adds
a notion of user-defined clocks, allowing streams to compute at different rates. Lucid
Synchrone [12] extends Lustre with ML-style type inference, pattern-matching, and
first-class functions. Signal [2] is similar to Lustre but is based on relations rather than
functions, so the evaluation model is non-deterministic. There are other synchronous
languages, such as Esterel [3], whose programming models are imperative.

Functional reactive programming (FRP) [7, 16, 17, 19] merges the model of syn-
chronous dataflow programming with the expressive power of Haskell, a statically-
typed, higher-order functional language. In addition, it adds support for switching (dy-
namically reconfiguring a program’s dataflow structure) and introduces a conceptual
separation of signals into (continuous) behaviors and (discrete) events.

There has been significant work on implementation models for FRP. Real-time
FRP [20] FRP is close in spirit to the synchronous dataflow languages, where the focus is
on bounding resource consumption. Parallel FRP [17] adds a notion of non-determinism
and explores compilation of FRP programs to parallel code. Elliott discusses several
functional implementation strategies for FRP systems [6], which suffer from various

Embedding Dynamic Dataflow in a Call-by-Value Language 307

practical problems such as time- and space-leaks. A newer version, Yampa [16], fixes
these problems at the expense of some expressive power: while Fran [7] extended
Haskell with first-class signals, the Yampa programmer builds a network of signal func-
tions in a custom syntax, through a set of arrow combinators [13]. FrTime’s linguistic
goals are more in line with those of Fran—integrating signals with the Scheme lan-
guage in as seamless a manner as possible. Importantly, because Scheme is eager, the
implementation has precise control over when signals begin evaluating, which helps to
prevent time-leaks. In addition, the use of state in the implementation allows more con-
trol over memory usage, which helps to avoid space-leaks. The evaluation model leads
to several other differences, as described in Section 3.

Frappé [5] is a Java library for building FRP-style dynamic dataflow graphs. Its
evaluation model is similar to FrTime’s, in the sense that computation is driven by
external events, not by a central clock. However, the propagation strategy is based on a
“hybrid push-pull” algorithm, whereas FrTime’s is entirely push-driven, which makes
conditional evaluation more challenging. A more important difference from FrTime is
that Frappé is a library, not a language. It is intended less for end-user programming
than as runtime support for an FRP compiler that targets Java.

Adaptive functional programming (AFP) [1] supports incremental recomputation
of function results when their inputs change. As in FrTime, execution occurs in two
stages. First the program runs, constructing a graph of its data dependencies. The user
then changes input values and tells the system to recompute their dependents. The key
difference from FrTime is that AFP requires transforming the program into destination-
passing style. This prevents the easy import of legacy code and complicates the task
of porting existing libraries. The structure of AFP also leads to a more linear recom-
putation process, where the program re-executes from the first point affected by the
changes.

6 Conclusions and Future Work

We have presented FrTime, an implementation of functional reactive programming for
a call-by-value language. We have described its novel evaluation model, which accom-
plishes the goals set forth in the Introduction. We have also provided a formal semantic
model for reasoning about FrTime evaluation more abstractly. The language is inte-
grated and distributed with the DrScheme programming environment. We have devel-
oped interfaces for various libraries and built several non-trivial applications with it.

Our primary focus for future research is to improve performance of the update
strategy. Currently, there is significant overhead involved when moving from Scheme’s
top-down, stack-based execution model to FrTime’s push-driven, queue-based update
algorithm. In particular, we have noticed severe degradations in performance when run-
ning code from existing Scheme libraries under FrTime. FrTime permits fine control
(not described in this paper) over the boundary between the two execution strategies,
and we are interested in developing mechanical techniques for optimizing the decision.

Acknowledgements. We are grateful to Antony Courtney, Paul Hudak, Guillaume
Marceau, and John Peterson for valuable discussions about this work. We also thank
the anonymous reviewers for their suggestions.

308 G.H. Cooper and S. Krishnamurthi

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 247–259, 2002.

2. A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchronous programming with events
and relations: the signal language and its semantics. Science of Computer Programming,
16(2):103–149, 1991.

3. G. Berry. The Foundations of Esterel. MIT Press, 1998.
4. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative language for

programming synchronous systems. In ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 178–188, 1987.

5. A. Courtney. Frappé: Functional reactive programming in Java. In Practical Aspects of
Declarative Languages, pages 29–44, 2001.

6. C. Elliott. Functional implementations of continuous modeled animation. In Programming
Languages: Implementations, Logics, and Programs, pages 284–299, 1998.

7. C. Elliott and P. Hudak. Functional reactive animation. In ACM SIGPLAN International
Conference on Functional Programming, pages 263–277, 1997.

8. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 102(2):235–271, 1992.

9. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: A programming environment for Scheme. Journal of Functional
Programming, 12(2):159–182, 2002.

10. R. B. Findler and M. Flatt. Slideshow: Functional presentations. In ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 224–235, 2004.

11. M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programming languages as oper-
ating systems (or, Revenge of the Son of the Lisp Machine). In ACM SIGPLAN International
Conference on Functional Programming, pages 138–147, 1999.

12. G. Hamon and M. Pouzet. Modular Resetting of Synchronous Data-flow Programs. In
ACM SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, pages 289–300, 2000.

13. J. Hughes. Generalizing monads to arrows. Science of Computer Programming, 37(1-3):67–
111, 2000.

14. S. P. Jones and J. Hughes, editors. Report on the Programming Language Haskell 98. 1999.
15. G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss. A dataflow language for

scriptable debugging. In IEEE International Symposium on Automated Software Engineer-
ing, pages 218–227, 2004.

16. H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, continued. In
ACM SIGPLAN Workshop on Haskell, pages 51–64, 2002.

17. J. Peterson, V. Trifonov, and A. Serjantov. Parallel functional reactive programming. In
Practical Aspects of Declarative Languages, pages 16–31, 2000.

18. W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language. Academic
Press U.K., 1985.

19. Z. Wan and P. Hudak. Functional reactive programming from first principles. In ACM
Conference on Programming Language Design and Implementation, pages 242–252, 2000.

20. Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In ACM SIGPLAN International Conference
on Functional Programming, pages 146–156, 2001.

	Introduction
	The FrTime Language
	Evaluation Strategy
	Dataflow Graph Construction and Manipulation
	Glitch Prevention
	 Dynamic Reconfiguration
	Incremental Construction
	Cycles

	Semantics
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

