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Abstract. In keystroke dynamics-based authentication, novelty detec-
tion methods have been used since only the valid user’s patterns are
available when a classifier is built. After a while, however, impostors’
keystroke patterns become also available from failed login attempts. We
propose to retrain the novelty detector with the impostor patterns to
enhance the performance. In this paper the support vector data descrip-
tion (SVDD) and the one-class learning vector quantization (1-LVQ) are
retrained with the impostor patterns. Experiments on 21 keystroke pat-
tern datasets show that the performance improves after retraining and
that the one-class learning vector quantization outperforms other widely
used novelty detectors.

1 Introduction

While passwords are the most popular in identity verification, they become vul-
nerable when they have been leaked out or stolen. To make up for the weakness,
keystroke dynamics-based authentication has been motivated by the observation
that a user’s keystroke patterns are repeatable and distinct from those of other
users [I]. It can be combined with passwords in almost a user-transparent fash-
ion. Even if an impostor has obtained the password, the account can be protected
from the intrusion through the keystroke-based authentication as illustrated in
Figure [l Other biometric methods have been also proposed for complementing
or replacing the password method, e.g. fingerprint, iris, voice, etc. [2]. However,
these methods need very expensive devices [3] and, more importantly, users may
be reluctant to provide their biometric information. On the other hand, the
keystroke-based method needs no additional device and keystroke data can be
collected relatively easily.

Every time a user types his or her password, a keystroke pattern is defined.
The times that each key is stroked and then released are measured by millisec-
ond. A “duration” denotes a time interval during which a key is pressed and
an “interval” a latency between a key and the next key. Then, a password of
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Fig. 1. The framework of a keystroke dynamics-based authentication: If a user types an
incorrect password, the access will be immediately denied. Even if the correct password
is presented, the keystroke pattern should be more or less accordant to the registered
patterns to be allowed.

| — |
I 1

I A. 1

I a4

i Duration 1 Interval
] 1

D =

=

h

>

Time (ms)
-+ [25,40,20,15,20,10,20, —5,20]

Fig. 2. Transforming a keystroke pattern into a timing vector when a user inputs a
string ‘ABCD’: The duration and interval times are measured by millisecond

m characters can be transformed into a (2m + 1)-dimensional timing vector.
Figure [ illustrates how a string ‘ABCD’ can be represented as a 9D timing
vector. The negative value means that the user released the ‘D’ after stroking
the enter key.

After a number of the user’s keystroke patterns are collected, a classifier is
constructed based on them. One can employ a statistical model [3], [], [5] or a
neural network model [6]. Many of previous researches have used discrimination-
based learning techniques, for which one needs to collect patterns from not only
the valid user but also impostors. However, when building a classifier in the
beginning, impostor patterns are impossible and undesirable to collect. This
limitation can be overcome by the novelty detection framework [7], [§]. In nov-
elty detection, the valid user’s patterns are denoted as normal and all other
individuals’ patterns as novel. Then, a model learns characteristics of normal
patterns and detects novel patterns that are different from the normal ones. In
a geometric sense, the novelty detector defines closed boundaries around the
normal patterns in input space [9].

Most of novelty detectors also have limitations that they are unsupervised
learners assuming that novel patterns do not exist. So they utilize only normal
patterns during training even though in some cases there exist, if few, novel
patterns. For instance, intrusions may be attempted and somehow detected. Or
even valid users may type their own passwords much differently from their typ-
ical keystroke patterns, so those patterns become impostor patterns. Although
the impostor patterns are not sufficient to train a classifier, they can help a nov-
elty detector generate more accurate and tighter boundaries. After impostors’
keystroke patterns become available from those failed login attempts, the nov-
elty detector which was trained only with the user’s patterns can be retrained
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with the impostor patterns. A few methods have been proposed to exploit novel
patterns [I0], [II]. It has been experimentally shown that one can achieve a
higher accuracy by utilizing them. Recently, the authors proposed a method to
take advantage of the novel patterns [I1]. We propose to utilize, if available, the
novel patterns for retraining. In particular, so-called one class learning vector
quantization (1-LVQ) method [11] is recommended.

This paper is organized as follows. The next section introduces two novelty de-
tectors which can utilize impostor patterns, the support vector data description
(SVDD) [10] and the 1-LVQ. In Section B, the SVDD and the 1-LVQ are ap-
plied to keystroke pattern datasets and compared with other novelty detectors.
Finally, in Section [ conclusions and discussion are given.

2 Retraining a Novelty Detector with Impostor Patterns

A valid user’s timing vector pattern set constitutes training data U = {(x;, y;)|i =
1,2,---, Ny}, where x; € R? is a keystroke pattern represented as a timing vector
and y; = +1 is its class label. Then, a novelty detector can be trained with this
training dataset. When a person tries to access a system, his keystroke pattern is
measured and input to the novelty detector. If the detector recognizes the pattern
as normal, he will be allowed access. If the detector rejects the pattern as novel, on
the other hand, he will be denied access.

In the beginning, only the user’s keystroke patterns are available. However, as
time passes, impostor patterns may appear in some cases. First, some impostors
may attempt access and be somehow detected and denied access. Second, even
the valid user may type inconsistently. When he is rejected as an impostor, that
pattern is regarded as an impostor pattern. In these cases, a set of impostor
patterns can be denoted as I = {(x;,¥;)},y: = —1. Then, a combined training
dataset X = U UI can be formed. Usually, the number of the valid user’s
patterns is much greater than that of impostor patterns, i.e. |U| > |I], making it
impossible to train a binary classifier. Instead, a novelty detector is trained with
the user’s patterns and then later retrained when the impostor patterns become
available. Among novelty detectors that can be retrained with the impostor
patterns, the SVDD [I0] and the 1-LVQ [II] are considered in this paper.

2.1 Support Vector Data Description (SVDD)

An SVDD tries to define a hypersphere with a minimal volume so that it sur-
rounds as many normal patterns and as few novel patterns as possible [10]. The
radius and the center of the hypersphere is denoted respectively as R and a. They
can be found by, like a support vector machine (SVM), the standard quadratic
programming techniques. In the authentication process, an unknown keystroke
pattern z is accepted as the genuine user’s if ||z — a||? < R2, or rejected as
an impostor’s otherwise. Using Mercer kernels allows to define boundaries more
flexible than just a hypersphere. If a radial basis function (RBF) kernel is em-
ployed, the SVDD provides a solution in essentially the same form as the Parzen
window or the one-class support vector machine (1-SVM).
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2.2 One-Class Learning Vector Quantization (1-LVQ)

The 1-LVQ algorithm is a modified form of the original LVQ [11]. Just as an
LVQ, a 1-LVQ is initialized by updating codebooks using a conventional SOM.
When updating initial codebooks, only the normal patterns are used. The SOM
generates a set of codebooks W = {w|k = 1,2,..., K}, K < N to represent
the normal data. When codebook update is done, the codebook m(x) of an input
pattern x and the Voronoi region Sy of each codebook wy, are defined.

When the training set includes the novel patterns, a learning rule different
from the conventional one can be obtained as follows,

Wk, if X; ¢ Sk,
Wy — 8 Wi +n(x; —wyg), if x; € Uy, (1)
wi —n(x; —wg), if x; €I,

where U, = UNSy and Iy = INSy. According to this rule, the normal patterns
“pull” their codebooks while the novel patterns “push away” theirs.

Since the 1-LVQ, unlike the LVQ, assigns all the codebooks to the normal
data, thresholds should be explicitly determined. While some codebooks lie inside
dense lumps of input patterns, others lie in regions where patterns are sparsely
scattered. For that reason, it is desirable to set different thresholds for different
codebooks. For each Voronoi region, a hypersphere with a center at wy and a
minimal radius can be obtained, so that it surrounds as many normal patterns
and as few novel patterns as possible. Now, classification is done as follows. Given
a keystroke pattern z, its codebook m(z) = wy is found. Then, z is accepted if
|z — wql[* < (r})?, or rejected otherwise.

3 Experimental Results

A program was developed to measure keystroke patterns. The data were col-
lected via the keyboard connected to a workstation from 21 valid users, whose
passwords are listed in the first column of Table [l Many of them would not
be understandable, since they are written in Korean alphabet, e.g. ‘rhkdwo’,
‘dhfpqgl.’; and ‘tjddmswjd’. They are simply shown in the corresponding Eng-
lish characters, with regard to their positions on the keyboard. The 21 users
typed their own passwords with lengths ranging from six to ten characters, gen-
erating the normal class of data, and to simulate potential intrusion attempts,
15 “impostors”, who had practiced the passwords, typed the 21 users’ pass-
words. In all, 21 datasets were constructed for 21 passwords. For each user’s
password, 76 to 388 normal patterns were collected for training and 75 for test
and 75 novel patterns were also collected. Since we assumed that the training set
should be highly imbalanced, 50 user’s patterns and 5 impostor patterns were
randomly sampled for training. The 75 normal patterns and the rest of 70 novel
patterns constituted the test set. A total of 30 different training and test sets
were randomly sampled for each password to reduce a sampling bias.
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We applied a total of six novelty detectors including the SVDD and the 1-LVQ.
The other models are the Gaussian (Gauss) and the Parzen (Parzen) density es-
timator, the auto-associative neural network (AANN) and the 1-SVM, all of
which cannot utilize impostor patterns even when they are available. The key-
stroke authentication has two types of error, i.e. false acceptance rate (FAR) and
false rejection rate (FRR) [12]. Since one type of error can be reduced at the
expense of the other, choosing an appropriate trade-off point should be critical
to authentication accuracy. In order to avoid the biases introduced by possi-
bly arbitrary parameters and threshold selection, we compared these models in
terms of the ingetrated error [I0] which was obtained from an ROC curve by
integrating the FARs over the FRR from 0 to 50%.

We are interested in the effects of utilizing impostor patterns. For each pass-
word, the SVDD and the 1-LVQ were trained with two types of training dataset,
one with both the user’s and impostors’ keystroke patterns and the other with
only the user’s. In other words, we compared the novelty detectors retrained with
impostor patterns and the detectors trained only with the user’s patterns. The
average integrated errors for 21 passwords are listed in Table [l For 16 out of
21 passwords, the 1-LVQ trained with the both classes performed better and its
integrated errors were statistically lower with a significant level of 10%. For three
passwords, ‘autumnman’, ‘dusru427’, and ‘yuhwalkk’, both models could achieve
the minimum error, i.e. 0%. The 1-LVQ trained only with the user’s patterns has
never produced lower error rates. To sum up, when utilizing impostor patterns,
the 1-LVQ produced errors as much as 67% lower and, on average, 27% lower.
The SVDD trained with the both classes gave lower, though at best marginally,
errors only for 4 passwords. Table [[] shows that by utilizing impostor patterns,
the 1-LVQ improved much more than the SVDD did.

The SVDD and the 1-LVQ were compared with other four novelty detectors.
It was assumed that the SVDD and the 1-LVQ were retrained with the impostor
patterns while the other four models were trained only with 50 user’s patterns.
It may sound unfair, but in practice there is nothing that the four models can
do with the impostor patterns anyway. The integrated errors of six models for
21 passwords are listed in Table [l The 1-LVQ turns out to be the best, result-
ing in the lowest errors for 13 out of 21 passwords. Among them, the errors for
11 passwords were statistically lower than those of other models with a signifi-
cance level of 10%. On average, the 1-LVQ produced 26% lower errors than the
second best model, the 1-SVM. The 1-SVM has not produced the lowest error
for any of the passwords, but ranked second in most cases. For four passwords,
‘autumnman’, ‘d1tjdgml’; ‘dusrud27’, and ‘yuhwalkk’, most models achieved a
perfect classification. The users of these passwords probably have very unique
keystroke patterns. The errors of the SVDD were slightly, but not significantly,
higher than those of the 1-SVM, another support vector-based method. The
SVDD were as accurate as the other models except the 1-LVQ. The Gauss pro-
duced the lowest errors for two passwords and, on average, was comparable to
the Parzen, suggesting that keystroke patterns probably are distributed in a
unimodal manner and that just a hyperellipsoid can be a decent solution. The
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Table 1. The average integrated errors (%) for six novelty detectors: The columns
denoted as ‘Both’ and ‘Normal’ for the 1-LVQ and the SVDD respectively indicate
models trained with the both classes of patterns and with only the user’s patterns. The
bold faced figures indicate the lowest errors for the corresponding password. An asterisk
indicates that the marked model is better than the other models with a significance
level of 10%.

1-LVQ SVDD

Both Normal Both Normal Gauss Parzen AANN 1-8VM
90200jdg 1.88 2.15 197 1.97 1.58* 266 3.43 1.91
ahrfus88 0.33* 0.46 0.50 0.50 0.73 0.59 0.77 0.48
anehwksu 0.28 0.38 0.33 0.33 0.16* 0.43 1.46 0.30
autumnman 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00
beaupowe 0.02 0.02 0.01 0.01 0.01 0.02 0.81 0.01
c.s.93/ksy 0.14* 0.19 0.19 0.19 0.82 0.22 0.23 0.19
dhfpgl. 0.71* 0.89 0.86 0.87 0.85 1.12 1.99 0.80
dirdhfmw 0.37* 0.83 0.96 0.96 1.30 1.37 213 0.87
dlfjs wp 0.42* 045 045 045 0.49 0.50 2.26 0.45
dltjdgml  0.00 0.00 0.00 0.00 0.02 0.00 0.17  0.00
drizzle 0.06 0.10 0.09 0.09 0.26 0.18 0.74 0.08
dusru427 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
ilove 3 0.86 1.04 113 1.14 0.87 1.22 2.68 1.05
love wid 0.85* 1.39 1.70 1.72 2.24 214 3.38 1.59
loveis. 0.32* 044 042 042 0.93 0.50 0.98 0.41
manseiii  0.59* 1.02 1.19 1.20 2.45 1.46 1.94 1.08
rhkdwo 0.77* 132 145 145 1.58 2.23 2.66 1.38
rla sua 0.01 0.03 0.01 0.01 0.06 0.06 0.38 0.01
tjddmswjd 0.24* 0.38 0.46 0.46 1.23 0.96 2.31 0.40
tmdwnsll 1.13* 1.18 1.22 1.22 1.36 1.32 2.07 1.20
yuhwalkk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TotalAvg 0.43 0.59 0.62 0.62 0.81 0.81 1.47  0.58

Passwords

AANN might have difficulties in training, since a lot of training patterns are
necessary to train an AANN in a high-dimensional space.

4 Conclusions and Discussion

We applied two novelty detectors to keystroke dynamics authentication. Even
though impostor patterns are not available in the beginning, they become avail-
able later from failed login attempts. We proposed to retrain the novelty de-
tectors using them. Experiments on 21 keystroke pattern datasets have demon-
strated that the 1-LVQ can take advantage of the impostor patterns, though
the improvements of the SVDD were no more than marginal. Compared with
other widely used novelty detectors, the 1-LVQ has shown its competence as an
authenticator, resulting in significantly lower integrated errors.

A few limitations and future directions should be addressed. First, while we
have not considered the issue of parameter selection, in practice a particular set of
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parameters should be specified in advance. It is tricky to select proper parameters
for both the SVDD and the 1-LVQ. Second, while we have arbitrarily sampled 5
impostor patterns, it demands an investigation on how many impostor patterns
are needed for the SVDD or the 1-LVQ. Third, we have included all the features
for training. However, some features are more important than others while some
features may be useless or even be harmful. So, a good feture selection scheme
can improve the accuracy. Fourth, one might want to know in advance whether
retraining with impostor patterns will be useful. Certain quality measures may
be employed to determine the utility of retraining.
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