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Abstract. We discuss some rough set tools for perception modelling
that have been developed in our project for a system for modelling net-
works of classifiers for compound concepts. Such networks make it possi-
ble to recognize behavioral patterns of objects and their parts changing
over time. We present a method that we call a method for on-line elimina-
tion of non-relevant parts (ENP). This method was developed for on-line
elimination of complex object parts that are irrelevant for identifying a
given behavioral pattern. Some results of experiments with data from
the road simulator are included.

1 Introduction

Many real life problems can be modelled by systems of complex objects and their
parts changing and interacting over time. The objects are usually linked by some
dependencies, can cooperate between themselves and are able to perform flexible
autonomous complex actions (operations). Such systems are identified as complex
dynamical systems [2] or autonomous multiagent systems [9]. As an example of
such a dynamical system one can consider road traffic. For experiments we have
developed a road simulator, see [15] and [4] for more details.

The identification of behavioral patterns of complex dynamical systems can
be very important for identification or prediction of global behavior of the inves-
tigated system, e.g., behavioral patterns can be used to identify some undesirable
behaviors of complex objects (see [4] for more details).

Studying cognition, and in particular, perception based computing [1,7,8,6]
[10,17] is becoming now one of the very active research directions for methods
of complex concept approximation [3,4,11,12,14,18] and as a consequence for
building intelligent systems.

We discuss an exemplary rough set [13] tool for perception modelling that
was developed in our project for modelling networks of classifiers for compound
concepts. Such networks make it possible to recognize behavioral patterns of
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complex objects and their parts changing over time. We use behavioral graphs
(see Section 2) for representing behavioral patterns of complex objects. The be-
havioral pattern identification for a part of complex object is performed by
testing properties of registered behavior of this part, often during a quite long
period of time. However, in many applications, faster (often in real-time) testing
if parts of complex objects are matching the given behavioral pattern is nec-
essary. Hence, we have developed the ENP method for on-line elimination of
non-relevant for a given behavioral pattern parts of complex object in a short
observational period. In analysis of complex dynamical systems, we usually have
to investigate very many parts of complex objects. Therefore, the fast verification
of parts of complex objects can save time necessary for searching among parts
matching the given behavioral pattern. In Section 3 we show that the testing of
parts of complex objects can be speeded up by using some special decision rules.
The presented ENP method makes it possible to achieve very fast elimination
of many irrelevant parts of a given complex object in identification of a given
behavioral pattern. To illustrate the method and to verify the effectiveness of
classifiers based on behavioral patterns, we have performed several experiments
with the data sets recorded in the road simulator [15]. We present results of our
experiments in Section 4.

2 Behavioral Patterns

In many complex dynamic systems, one can distinguish some elementary actions
(performed by complex objects), that can be expressed by a local change of object
parameters, measured in a very short but a registerable period [4]. However,
the perception of more complicated actions or behaviors requires analysis of
elementary actions performed over a longer period. This longer period we often
call as a time window. Therefore, if we want to predict more compound actions
or discover a behavioral pattern we have to investigate all elementary actions,
that have been performed by the investigated complex object in the current time
window. Hence, one can, e.g., consider the frequency of elementary actions in a
given time window and temporal dependencies between them. These properties
can be expressed using temporal patterns. Any temporal pattern is a function
defined by features parameters of an observed object over the time window [4].
We assume that any temporal pattern is defined by a human expert using domain
knowledge accumulated for the given complex dynamic system.

The temporal patterns can be treated as new attributes (features) that can
be used for approximation of more complex concepts. In this paper we call such
concepts as temporal concepts. We assume that temporal concepts are specified
by a human expert and are usually used in queries about the status of some
objects in the given temporal window. The approximation of temporal concepts
is defined by classifiers [4].

The temporal concepts defined over objects from some complex dynamical
system and approximated by classifiers, are used as nodes of a graph, that we
call as a behavioral graph. The branches in the behavioral graph represent tem-
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poral dependencies between nodes. The behavioral graph can be constructed for
different kinds of objects appearing in the investigated complex dynamic system
(e.g., for a single vehicle, for a group of vehicle, for a short vehicle like a small
car, for long vehicle like a truck with a trailer) and it is usually defined for some
kind of behavior of a complex object (e.g., driving on the strength road, driving
through crossroads, overtaking, passing). For example, if one would like to inves-
tigate the overtaking maneuver, it is necessary to observe at least two vehicles:
an overtaking vehicle and an overtaken vehicle.

In case of perception of a complex behavior (of parts or groups of objects),
when we have to observe the behavior of dynamic systems over a long period of
time, we can construct a behavioral graph for the investigated complex behavior.
Next, using this graph, we can investigate a complex behavior of objects or a
group of objects during some period. It is possible, by observing of transitions
between nodes of behavioral graph and registering a sequence of nodes, that make
some path of temporal patterns. If the path of temporal patterns (registered for
an investigated object or group of objects) is matching a path in the behavioral
graph, we conclude, that the behavior of this object or group is compatible
with the behavioral graph. So, we can use the behavioral graph as a complex
classifier for perception of the complex behavior of objects or groups of object.
Therefore, the behavioral graph constructed for some complex behavior we call
as a behavioral pattern.

3 Discovering Perception Rules for Fast Elimination of
Behavioral Patterns

Let us assume, that we have a family of behavioral patterns BP = {b1, ..., bn}
defined for groups of objects (or parts of a given object). For any pattern bi

from the family BP one can construct a complex classifier based on a suitable
behavioral graph (see Section 2) that makes it possible for us to answer the
question: “Does the behavior of the investigated group (or the part of a com-
plex object) match the pattern bi?”. The identification of behavioral patterns of
any group is performed by investigation of a time window sequence registered
for this group during some period (sometimes quite long). This registration of
time windows is necessary if we want to avoid mistakes in identification of the
investigated object group. However, in many applications, we are forced to make
a faster (often in real-time) decision if some group of objects is matching the
given behavioral pattern. In other words, we would like to check the investigated
group of objects at once, that is, using the first or second temporal window of
our observation only. This is very important from the computational complexity
point of view, because if we investigate complex dynamic systems, we usually
have to investigate very many groups of objects. Hence, the faster verification of
groups can help us to optimize the process of searching among groups matching
the given behavioral pattern.

The verification of complex objects consisting of some groups of objects can
be speeded up by using some special decision rules. Such rules are making it
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possible to exclude very fast many parts (groups of objects) of a given complex
object as irrelevant for identification of a given behavioral pattern. This is pos-
sible because these rules can be often applied at once, that is after only one
temporal window of our observation.

Temporal patterns are constructed over temporal windows. At the beginning
we define a family of temporal patterns TP = {t1, ..., tm} that have influence on
matching of investigated groups to behavioral patterns from family BP . These
temporal patterns should be defined on the basis of information from temporal
windows (for the verification of single object) or from information in behavioral
graphs (for the verification of group of objects). Next, we construct classifiers
for all defined temporal patterns (see [4] for more details).

For any temporal pattern ti from the family TP we create a decision table
DTi that has only two attributes. Any object-row of the table DTi is constructed
on the basis of information registered during a period that is typical for the given
temporal pattern ti. The second attribute of the table DTi (the decision attribute
of this table) is computed using the classifier for ti. The condition attribute
registers the index of behavioral pattern from the family BP . This index can be
obtained by using complex classifiers created for behavioral patterns from the
family BP , because any complex classifier from the family BP can check for a
single temporal window (and its time neighborhood) whether the investigated
group of objects is matching the given behavioral pattern.

Next, we compute decision rules for DTi using methods of attribute values
grouping that have been developed in the RSES system [16]. Any computed de-
cision rule expresses a dependency between a temporal pattern and the set of ba-
havioral patterns that are not matching this temporal pattern. Let us consider a
very simple illustrative example. Assume we are interested in the recognition of
overtaking that can be understand as a behavioral pattern, defined for the group
of two vehicles. Using the methodology presented above, we can obtain the fol-
lowing decision rule: If the vehicle A is overtaking B then the vehicle B is
driving on the right lane. After applying of the transposition low, we obtain
the following rule: If the vehicle B is not driving on the right lane then
the vehicle A is not overtaking B. The last rule allow us for fast verification
whether the investigated group of objects (two vehicle: A and B) is matching the
behavioral pattern of overtaking. Of course, in case of the considered complex dy-
namic system, there are many other rules that can help us in the fast verification
of groups of objects related to the overtaking behavioral pattern. Besides, there

Table 1. Results of experiments for the overtaking pattern

Decision class Method Accuracy
YES BP 0.923

(overtaking) BP-E 0.883
NO BP 0.993

(no overtaking) BP-E 0.998
All classes BP 0.989

(YES + NO) BP-E 0.992
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are many other behavioral patterns in this complex dynamic system and we have
to calculate rules for them using the methodology presented above.

The ENP method is not a method for behavioral pattern recognition. How-
ever, this method allows us to eliminate some behavioral patterns that are not
matched by a given group (or a part) of objects. After such elimination the com-
plex classifiers based on a suitable behavioral graphs should be applied to the
remaining parts of the complex object.

4 Experiments with Data

To verify the effectiveness of classifiers based on behavioral patterns, we have
implemented our algorithms in the Behavioral Patterns programming library
(BP-lib). This is an extension of the RSES-lib 2.2 programming library forming
the computational kernel of the RSES system [16].

The experiments have been performed on the data sets obtained from the
road simulator (see [15]). We have applied the “train and test” method for es-
timating accuracy. A training data set consists of 17553 objects generated by
the road simulator during one thousand of simulation steps. Whereas, a testing
data set consists of 17765 objects collected during another (completely different)
session with the road simulator.

In our experiments, we compared the quality of two classifiers: BP and BP-E.
The classifier BP is based on behavioral patterns (see Section 2) and the classi-
fier BP-E is based on behavioral patterns too but with application of the ENP
method (see Section 3). We compared BP and BP-E using accuracy of classifi-
cation [3]. Table 1 shows the results of the considered classification algorithms
for the concept related to the overtaking behavioral pattern.

One can see that in the case of perception of the overtaking maneuver (deci-
sion class YES) the accuracy of algorithm BP-E is 4% lower than the accuracy
of the algorithm BP. However, the algorithm BP-E allows us to reduce the time
of perception, because during perception we can usually identify the lack of over-
taking much earlier than in the algorithm BP. This means that we do not need
to collect and investigate the whole sequence of time windows (that is required
in the BP method) but only an initial part of this sequence. In our experiments
with the classifier BP-E it was only necessary to check on the average 47% of
the whole window sequence for objects from the decision class NO (the lack of
overtaking in the time window sequence).

5 Summary

We discussed some rough set tools for perception modelling. They make it possi-
ble to recognize behavioral patterns of objects and their parts changing over time.
The presented approach is based on behavioral graphs and the ENP method.
Note, that the ENP method is only one of the examples of perception methods
that we have developed to speed up the identification of complex patterns (e.g.,
one can consider rules based on the hierarchical domain knowledge representa-
tion used for elimination of non-relevant parts of complex objects).
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