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Abstract. Recently, many attack detection methods adopts machine learning 
algorithm to improve attack detection accuracy and automatically react to the 
attacks. However, the previous mechanisms based on machine learning have 
some disadvantages such as high false positive rate and computing overhead. In 
this paper, we propose a new DDoS detection model based on multiple SVMs 
(Support Vector Machine) in order to reduce the false positive rate. We employ 
TRA (Traffic Rate Analysis) to analyze the characteristics of network traffic for 
DDoS attacks. Experimental results show that the proposed model is a highly 
useful classifier for detecting DDoS attacks. 

1   Introduction 

As we can see in the incidents of Distributed Denial of Service (DDoS) attacks 
against commercial web sites such as Yahoo, e-Bay, and E*Trade, computing re-
sources connected to the Internet  are vulnerable to DDoS attacks [1], [2], [3]. DDoS 
attacks can temporarily disable the network services or damage systems by flooding a 
huge number of network packets for several minutes or longer.  

Since these DDoS attacks are harmful to almost all networked systems which have 
limited computing resources (e.g. network bandwidth, memory, CPU, etc), these 
attacks are regarded as a serious problem, and thus much research is in progress to 
detect and prevent them [4] ,[5], [6].  

In our earlier research, we presented Traffic Rate Analysis (TRA) to analyze the 
characteristics of network traffic for the DDoS attacks [7], [8], [9]. TRA is a network 
traffic analyzing method which examines the occurrence rate of a specific type of 
packet within the stream of monitored network traffic and is composed of a TCP flag 
rate and a Protocol rate. The result of analyzing network traffic using TRA showed us 
that there are distinct and predictable differences between normal traffic and DDoS 
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attack traffic. We were able to generate DDoS detection rules by compiling the ex-
perimental results with a SVM [10]. However, the false positive rate of the model 
using single SVM is too high.  In order to reduce the false positive rate and to in-
crease the detection rate, we propose the model based on multiple SVMs instead of 
single one. The experimental results show the proposed detection method has high 
degree of performance, and detects various DDoS attacks successfully with low false 
positive rate. 

We introduce related research in section 2, and explain TRA in section 3. The 
background knowledge of SVM is discussed in section 4. In section 5, the experimen-
tal environment is introduced and the detection performance of SVM and other ma-
chine learning algorithms are tested and compared. Lastly, we mention the conclusion 
of this research and the direction of future work in section 6. 

2   Related Work 

Detecting the DDoS attacks is an essential step to defend DDoS attacks. Thus, there 
have been many researches to detect the DDoS attacks [4], [5], [6]. When DDoS at-
tacks occur, there is a big mismatch between the packet flows “to-rate” toward the 
victim and “from-rate” from the victim. Gil and Poletto propose the method that ex-
amines the disproportion between “to-rate” and “from-rate” in order to detect DDoS 
attacks [4]. Kulkarni et al [5] presents DDoS detection methods based on randomness 
of IP spoofing. Almost DDoS attackers use IP spoofing to hide their real IP addresses 
and locations. Since spoofed IP addresses are generated randomly, this characteristic 
of randomness may be used to reveal the occurrence of DDoS attacks. Kulkarni’s 
method uses Komogorov complexity metrics to measure the randomness of source IP 
addresses in network packet headers [11]. Wang et al. proposed the method that de-
tects DDoS attack based on the protocol behavior of SYN-FIN(RST) pairs [6]. In the 
normal situation, the ratio of SYN and FIN is balanced because of the characteristic of 
the TCP 3-Way handshake. However, the ratio of SYN packet increases drastically 
during the SYN flooding attack. By monitoring sudden change of the ratio of SYN and 
FIN, the method detects SYN flooding attacks.  

However, these approaches are based on the specific characteristics of the attacks 
such as mismatch of “to-rate” and “from-rate”, effect of IP spoofing, and unbalance of 
the ratio of SYN and FIN packet. Thus, these may not properly detect the attack that 
use undefined characteristic. For example, Gil’s method is not applicable to detect 
attacks using IP spoofing since the method cannot discriminate legitimated packet and 
spoofed packet, and Wang’s method is only applicable to SYN flooding attacks. On 
the other hand, the proposed detection model automatically generates detection rules 
using TRA and multiple SVM. 

3   Traffic Rate Analysis 

3.1   Definition of Traffic Rate Analysis  

Traffic rate analysis was defined as measuring packet traffic in a network [7]. It ex-
amines the occurrence rate of a specific type of packets within the stream of moni-
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tored network traffic, and is composed of TCP flag rate and Protocol rate. TCP flag 
rate is defined in the following equation. 

∑
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headerTCPainFflag
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TCP flag rate means the ratio of the number of a specific TCP flag to the total 
number of TCP packets. In the equation (1), a TCP flag ’F’ can be one of  SYN, FIN, 
RST, ACK, PSH, URG, and NULL, and ’td’ is the time interval used to calculate the 
value. The direction of network traffic is expressed as ’i’ (inbound) and ’o’ (out-
bound). For example, R1[Si] means the occurrence rate of SYN flags within TCP 
packets when measuring inbound network traffic (toward the monitored network) 
during interval 1. 
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Protocol rate is defined in equation (2). It means the ratio of specific Transport-
Layer protocol (e.g. TCP, UDP, and ICMP) packets to total Network-Layer (IP) pro-
tocol packets. For instance, R1[TCPi]  means the occurrence rate of TCP packets 
within IP packets when measuring outbound network traffic (from the monitored 
network) during interval 1. 

3.2   Network Traffic Changes Under DDoS Attacks 

To analyze the change of network traffic from normal web traffic to DDoS attack 
traffic or vice versa, it is necessary to make a network environment truly identical 
with the real Internet environment.  

Our experimental target is web traffic, and web traffic is composed of HTTP re-
quests and replies based on TCP sessions. For example, when a user clicks a certain 
web site address on his or her web browser, the web browser establishes TCP connec-
tions to the relevant web server. After that, the web browser sends HTTP requests to 
the web server, and the web server sends HTTP replies to the web browser.  

 

Fig. 1. Network traffic under SYN flooding attack 
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Since web service is based on TCP connection, the number of HTTP requests in a 
TCP session (R/C: Requests per connection) and the number of TCP sessions simul-
taneously established (SC: Simultaneous Connection) are the key features of web 
traffic in terms of network traffic analysis. In other words, we can simulate various 
web traffic environments by adjusting these two features (R/C and SC). 

R/C values include 1, 2, 5, and 10, and SC can take on values of 5, 10, 50, 100, 150, 
and 200. Thus we have twenty-four different network environments. With these vari-
ous web traffic settings, we compared normal web traffic with DDoS attack traffic. 

Fig. 1 shows us that R1[Si] and R1[Ui] drastically change (go up to almost 1.0) and 
the other flags decrease (almost 0.0) relatively under SYN flooding attack. When web 
traffic flows from the 9th second to the 83rd second, a SYN flooding attack occurs 
between the 26th and 67th second. This phenomenon is caused by the burst of SYN 
and URG packets, which are generated by SYN flooding attack. 

 Furthermore, we can also see big changes of network traffic during other types of 
DDoS attacks such as ICMP flooding attacks or UDP flooding attacks [7], [8], [9]. 

4   Support Vector Machine 

4.1   Background 

Support Vector Machine (SVM) is a learning machine that plots the training vectors 
in high-dimensional feature space, and labels each vector by its class. SVM views the 
classification problem as a quadratic optimization problem. It combines generaliza-
tion control with a technique to avoid the “curse of dimensionality” by placing an 
upper bound on a margin between the different classes, making it a practical tool for 
large and dynamic data sets. SVM classifies data by determining a set of support 
vectors, which are members of the set of training inputs that outline a hyper plane in 
feature space.  The SVM is based on the idea of structural risk minimization, which 
minimizes the generalization error, i.e. true error on unseen examples. The number of 
free parameters used in the SVM depends on the margin that separates the data points 
to classes but not on the number of input features. Thus SVM does not require a re-
duction in the number of features in order to avoid over fitting. SVM provides a ge-
neric mechanism to fit the data within a surface of a hyper-plane of a class through 
the use of a kernel function. The user may provide a kernel function, such as a linear, 
polynomial, or sigmoid curve, to the SVM during the training process, which selects 
support vectors along the surface of the function. This capability allows classifying a 
broader range of problems [12], [13]. 

4.2   SVM for Categorization  

In this section we review some basic ideas of SVM. Given the training data set 
( ){ }N

iii dx 1, = with input data N
i Rx ∈ and corresponding binary class labels { }1,1−∈id , 

the SVM classifier formulation starts from the following assumption. The classes 
represented by the subset 1=id and 1−=id are linearly separable, where NRw∈∃ , 

Rb ∈ such that  
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  The goal of SVM is to find an optimal hyper plane for which the margin of sepa-
ration, ρ , is maximized. ρ  is defined by the separation between the separating hyper-
plane and the closest data point. If the optimal hyperplane is defined by 
( ) 000 =+⋅ bxw T , then the function 00)( bxwxg T +⋅= gives a measure of the distance 
from x to the optimal hyperplane.  

Support Vectors are defined by data points )(sx that lie the closest to the decision 
surface. For a support vector )(sx and the canonical optimal hyperplane g , we have  
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Since, the margin of separation is 0

1

w
∝ρ .  0w  should be minimal to 

achieve the maximal separation margin. Mathematical formulation for finding the 
canonical optimal separation hyperplane, given the training data set ( ){ }N

iii dx 1, = , 
solves the following quadratic problem  
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Note that the global minimum of above problem must exist, because 
2

02

1
)( ww =Φ is convex in w and the constrains are linear in w and b. This 

constrained optimization problem is dealt with by introducing Lagrange multipliers 
0≥ia and a Lagrangian function given by  
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which leads to  
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The solution vector thus has an expansion in terms of a subset of the training pat-
terns, namely those patterns whose ia is non-zero, called Support Vectors. By the 
Karush-Kuhn-Tucker complementarity conditions, we have,  

( )[ ] Niforbxwda i
T

ii ,,101 K==−+  (9) 

by substituting (7),(8) and (9) into equation (6), find multipliers ia  for which  
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The hyperplane decision function can thus be written as  
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where b is computed using (9).  
To construct the SVM, the optimal hyperplane algorithm has to be augmented by a 

method for computing dot products in feature spaces nonlinearly related to input spac
e. The basic idea is to map the data into some other dot product space (called the featu
re space) F via a nonlinear map Φ , and to perform the above linear algorithm in F, i.e 
nonseparable data ( ){ }N

iii dx 1, = , where Ni Rx ∈ , { }1,1 −+∈id , preprocess the dat
a with, 

)dim()(: FNwherexRN <<Θ→Φ  
 

(13) 

Here w and xiare not calculated. According to Mercer's theorem,  

( ) ( )( ) ( )jjji xxKxx ,=Φ⋅Φ   

(14) 

and K(x, y) can be computed easily on the input space. Finally the nonlinear SVM 
classifier becomes  
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5   Experiment 

5.1   DDoS Detection Process 

Fig. 2 shows the overall composition of the DDoS detection process. 
It is composed of two steps. One is the preprocessing step, and the other is the train-
ing and testing step. In the preprocessing step, it captures raw network traffic from 
both DDoS and legitimate network traffics, and extracts features from the captured 
raw network traffic using TRA method for each training and test set. For both training 
and testing, we used 10 features; R1[Si], R1[Fi], R1[Ri], R1[Ai], R1[Pi], R1[Ui], R1[Ni], 
R1[TCPi], R1[UDPi], and R1[ICMPi].  

In the training and testing step, they are trained by each machine using the training 
set. To train the machine, we classify input packets of the training set as attack (-1) 
and normal (+1). Normal web traffic was categorized as normal, and the various 
DDoS attack traffic was categorized as attack. The trained machines evaluate test 
sets, and discriminate legitimate traffic and DDoS traffic. In the experiments, we used 
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two different machine learning models; single SVM and multiple SVMs model. Mul-
tiple SVMs model consists of several SVMs that are learned by different training 
data, and each SVM is specialized to specific attacks (e.g., Smurf attack, Tfn2k at-
tack, SYN flooding). In the experiment, we categorized the attacks into three types; 
DoS attack, DDoS attack, and DrDoS attack.  

Network 
Traffic

1  Preprocessing with TRA 

Training 
Set

Training

2 Training and Detection

DoS attack Classifier

DDoS attack Classifier

DrDoS attack Classifier

Multiple SVM

Preprocessing
Testing 

Set

Training 
Set

Training

Trained SVM

Single SVM
Testing 

Set

Evaluate

Evaluate

Attack Traffic

Legitimate 
Traffic

Legitimate 
Traffic

Attack Traffic

Network traffic data

Control data  

Fig. 2. Overall composition of DDoS detection process 

5.2   Experimental Environment 

Our traffic monitor was developed with the network packet capturing library libpcap. 
It is divided into two modules. One is the module for capturing network traffic and 
calculating TCP flag rate and protocol rate from the monitored network, and the other 
is the DDoS attack detection module tuned by the support vector machine. The TRA 
analyzer is located on the adjacent site of a target Web server and captures both in-
bound and outbound network traffic packets through an Ethernet hub, and then calcu-
lates TCP flag rate and protocol rate in every second. 

Web clients are composed of four hosts using SPECweb99 to generate normal web 
traffic toward an Apache web server. To generate DDoS attack traffic toward the web 
server we used several attack tools as shown in the Table 1. We collected network 
traffic for 100 seconds during training and testing time. Web clients continually gen-
erated normal web traffic toward the web server, and various attacks occurred be-
tween the 25th and 75th seconds. 

In the multiple SVMs model, each attack classifier is trained by own training sets 
(e.g., DoS training set, DDoS training set, and DrDoS training set), and each training 
set consists of 500 normal data and 500 attack data. On the other hand, the training 
data set of single SVM model consists of 1500 normal data and 1500 attack data, and 
the attack data is not classified. Table 2 shows the composition of training data sets. 
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Table 1. Classification of Attack Tools  

Attack tool Attacks 
Targa3 (DoS) bonk, jolt, land, nestea, newtear, syndrop, teardrop, winnuke,  sai

hyousen, oshare, etc. 
TFN2K (DDoS) ICMP flooding, UDP flooding, etc. 
pHorgam (DrDos) DrDoS 

Table 2. Composition of training data sets 

Model Classifier Data Type Number of Data 
DoS attack 500 DoS attack classifier 
Normal 500 
DDoS attack 500 DDoS attack classifier 
Normal 500 
DrDoS attack 500 

Multiple SVM 

DrDoS attack classifier 
Normal 500 
Attack 1500 Single SVM  
Normal 1500 

5.3   Detection Performance Analysis 

For each training set, we used dot and polynomial kernel with epsilon 0.01. We used 
1000 as capacity parameter and +0.01 as epsilon parameter. The detection perform-
ance using multiple SVM and single is shown in Table 3. 

Table 3. Detection performance of multiple SVM and single SVM 

Kernel Model False Positive (%) False Negative (%) 
   DoS DDoS DrDoS 

Multiple SVM 26.82 4.33 0.80 0.19 
Poly 

SVM 40.15 5.32 1.60 1.38 
Multiple SVM 9.84 0.19 1.40 1.36 Linear 

SVM 20.47 2.95 2.60 8.87 

As we can see in Table 3, multiple SVMs show slightly higher detection perform-
ance than single SVM with decrease of false positive rate.  Since SVM is a binary 
classifier, the normal region decreases according to increasing of attack region. De-
creasing of normal region means that the increasing of probability of false positive. 
Fig. 3 shows the relation between normal region and attack region. Each attack type 
(e.g., DoS, DrDoS, and DDoS) has own attack region. In the experiment, single 
SVM model merged these regions into a single huge attack region, while multiple 
SVMs model does not merge these attack regions. The reason is that multiple SVMs 
trains each attack classifier independently using different training data. Thus, the 
false positive rate of multiple SVM model is lower than single the rate of single 
SVM model. 
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Fig. 3. Relation between normal region and attack region in SVM 

6   Conclusions  

In this paper, we utilized a TRA (Traffic Rate Analysis) method proposed in earlier 
research [7], [8]. In addition, we adopted multiple SVMs (Support Vector Machine) 
model instead of single SVM model in order to compile detection rules. As a result, 
multiple SVMs model shows slightly higher detection accuracy and lower false posi-
tive rate. We expect that our approach will be useful in providing early detection of 
DDoS attacks against the Internet infrastructure. However, our machine learning 
scheme does not have unsupervised feature but supervised feature. It may mean some-
times if our scheme meet a kind of unexpected situation, it is difficult it can work well 
or not. Thus, we need additional work using unsupervised learning method without 
pre-existing knowledge. In our future work, we will use other kernel function meth-
ods of SVM and various machine learning methods. Moreover, we are going to focus 
on detecting and defending against other types of attacks like worms. 
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