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Abstract. This paper presents a computational model for pattern analysis and 
classification using symmetry group theory. The model was designed to be part 
of an integrated management system for pattern design cataloguing and re-
trieval in the textile and tile industries. While another reference model [6], uses 
intensive image processing operations, our model is oriented to the use of 
graphic entities. The model starts by detecting the objects present in the initial 
digitized image. These objects are then transformed into Bezier curves and 
grouped to form motifs. The objects and motifs are compared and their symme-
tries are computed. Motif repetition in the pattern provides the fundamental 
parallelogram, the deflexion axes and rotation centres that allow us to classify 
the pattern according its plane symmetry group. This paper summarizes the re-
sults obtained from processing 22 pattern designs from Islamic mosaics in the 
Alcazar of Seville.  

1   Introduction 

The interest of plane symmetry group theory for the design and cataloguing of regular 
plane segmentations can be seen in works such as [1] or [2]. These works analyze, 
with mathematical and geometrical rigor, the design patterns used by the ancient Is-
lamic handcraft workers for covering architectural surfaces and walls. In addition, 
these works have become a key reference for most contributions that, in the form of 
computer models have analyzed their pattern geometries in recent years. Most of 
these research works describe design pattern geometry and provide tools ,like Shape 
Grammars [14], for design pattern generation which are very useful in the world of 
Computer Graphics. However few of such works analyze pattern designs using com-
puter vision. Nevertheless, from this perspective, there are many works on the analy-
sis of independent symmetries, [3] [4] [5], although few works have studied symme-
try groups in images. Among these works, it is worth mentioning the theoretical ap-
proaches of [4] and [5], and particularly the computational model proposed by Y. Liu, 
R.T. Collins and Y. Tsin [6]. This, as opposed to the model presented in this paper, 
works in image space and thus obtains global symmetries, with no specification of 
pattern objects and motifs. We have taken it as a reference model for our work.  
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In this paper we propose an alternative computational model which, based on sym-
metry group theory [1], [2], allows the automatic analysis, decomposition and classi-
fication of the digital image of a regular design pattern. To evaluate this model’s 
capacity to analyze historical Islamic design patterns, the authors analyze the tile 
patterns used in one of the most emblematic Islamic buildings in Spain: the Alcazar of 
Seville, built between 1364 and 1366. This palace possesses one of the largest and 
most beautiful patterns in Islamic Art. 

2   Design Patterns and Tile Designs: Identification of PSG 

Design patterns and tile designs are both the result of a systematic repetition of one 
given geometrical form. However, each has certain inherent characteristics [3]: in the 
case of a design pattern, the repeated geometrical form has no constraints, since the 
result is a set of independent geometrical forms more or less close to each other. In 
the case of tile designs, the repeated form necessarily requires a given shape to avoid 
gaps or overlapping. "Geometrical Form" here means what is perceived or seen, and 
comprises any  figure, image or drawing used as unit motif to create a pattern design. 

Despite these formal differences between design patterns and tile designs, their 
classification in terms of compositive syntax, is similar and in accordance with sym-
metry group theory. This theory states that any 2D pattern can be classified according 
to the set of geometrical transformations that transforms it into itself. Transformations 
that preserve distances are known as isometries, and the plane isometries are: rota-
tions, translations, reflections and glide reflections. The set of isometric transforma-
tions that makes a motif coincide with itself is known as symmetry group. Three types 
or categories of symmetry groups are defined: 

• Point symmetry groups (psg): including cyclic and dihedral symmetry groups. 
The cyclic group Cn has only n-fold rotational symmetry around the center. The 
dihedral group Dn also includes n reflection axes. 

• Frieze symmetry groups (FSG): containing only one translational symmetry 
and other symmetries. 

• Plane symmetry groups (PSG) or Wallpaper groups: containing two transla-
tional symmetries and other symmetries. 

The importance of this theory lies in the fact that all design patterns and tile de-
signs can be classified according to the FSG or PSG to which they belong. It is known 
that there are geometric restrictions, called ‘crystallographic constraints’, which limit 
the number of possible rotations that can be applied to completely fill the plane or 
frieze [7]. Accordingly, the PSG and FSG are limited to 17 and 7 classes respectively. 
We only address the problem of PSG identification.  

In a previous work [8] we studied the specific aspects used to identify the PSG. 
Following other works in the literature, we suggested that the basic information on the 
pattern structure resides in three features: 

• Fundamental Parallelogram (FP): the smallest part of the pattern that by repli-
cating and displacing is able to generate the whole pattern. The FP is defined by 
two displacement vectors, the parallelogram sides, which can be used to locate the 
centre position of all motifs in the pattern. In [6] the FP is known as the unit lattice. 
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• Design symmetries axes (DSA): the reflection or glide reflection symmetry axes 
of motifs present in the pattern. 

• Design rotation centers (DRC): the points around the motifs can rotate to find 
another repetition of  themselves in the pattern. According with the crystallo-
graphic constraints above mentioned, there are a limited number of possible rota-
tions.. The corresponding DRC or n-fold rotation centers are featured by an order  
n = 2, 3, 4 and 6 which indicate rotations of 180º, 120º, 90º and 60º respectively.  

Thus, we propose using these three features to identify the PSG of a given pattern. 
Table 1 shows the strict relation between these structural descriptors and each of the 
17 PSG. The first column shows standard PSG nomenclature.  

 

Table 1. PSG classification using FP, DSA, and DRC features 

PSG FP DSA DRC DSA and DRC with respect to FP 

P1 S,RE, ERO,RO, P None 

PM S,RE RA || FP side P1    PM   

PG S,RE GRA || FP side 

CM S,RO,ERO RA || FP diag 

None 

PG    CM    

P2 S,RE, ERO,RO, P None 

PMM S,RE RA || FP sides 
P2    PMM      

PMG S,RE 
GRA || FP side 

RA ||  2nd FP side 

PGG S,RE GRA || FP sides 
PMG    PGG     

CMM S, RO,ROE RA || FP diag. 
RA || FP 2nd diag. 

 
 
 
 
 

2-fold (180º) 

 
 
 

CMM    

 

P3 ERO None 

P31M ERO RA || FP sides 
RA ||  FP diag. P3    P31M   

P3M1 ERO 
RA _|_ FP sides 
RA ||  FP diag. 

 
 
 

3-fold (120º) 

 
 

P3M1    

 

P4 S None 

P4M S RA || FP sides 
RA ||  FP diags P4     P4M     

P4G S 
GRA || FP sides 
RA ||  FP diags 

 
 

4-fold (90º) 
 

 
2-fold (180º) 

 

P4G     

 

P6 ERO None 

P6M ERO 
RA || FP sides 
RA ||  FP diags 
RA _|_ FP sides 

 
6-fold (60º) 

 
 

3-fold (120º) 
2-fold (180º) 

P6     P6M      

FP = parallelogram (P), square (S), rhombus (RO), rectangle (RE) and  
equilateral rhombus (ERO) 

DSA = reflection axe (RA), glide reflection axe 
(GRA)  

3   A Reference Computational Model 

As mentioned above, Y. Liu, R.T. Collins and Y. Tsin have recently proposed a com-
putational model (afterwards LCT Model) for periodic pattern perception based on 
crystallographic group theory [6]. LCT Model input is the image containing 1D or 2D 
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periodic pattern. LCT outputs are the frieze or wallpaper group the image belongs to 
and its median tile. Figure 1 shows a scheme of the main LCT components. 

The model has four main stages: (i) Lattice detection, which is the extraction of 
two linearly independent vectors that describe the translational symmetry of the pat-
tern.  (ii) Median tile, which is a representative tile extracted using the median of 
pixels in all tile-shaped regions formed by the lattice. (iii) Test symmetries, which 
extract the rotation and reflection symmetries in the pattern. (iv) Classification, which 
classifies the pattern in one of the 17 wallpaper or 7 frieze symmetry groups. 

Fig. 1. A schematic workflow of the computational model reported in [6] 

To prove this computational model, several synthetic and real-world pattern sam-
ples were used. The problems arise from two main causes. Firstly, real-world patterns 
are very noisy so they depart from ideal frieze or wallpaper patterns.  Secondly, sym-
metry groups have hierarchical relationships among themselves, so they are not mutu-
ally exclusive classes. That means a given pattern can be classified in several symme-
try groups. To address these problems, the authors propose a modified version of their 
computational model that uses a measurement of symmetry group distances and Geo-
metric AIC (Akaike Information Criterion) [13].  The result is a very robust and 
successful algorithm only limited by practical issues, such as the use of distorted or 
damaged samples from the real world. 

It is significant that most of the task proposed by the model is performed in the im-
age space using pixel values. Only in the last stage are feature vectors (symmetry 
scores or group distances) used to classify the pattern. All the other stages require  
an intensive use of bitmap manipulations, with the subsequent computational  
requirements.  

4   The Proposed Computational Model 

We propose an alternative to the LCT model that, with the same aim and scope, at-
tempts to  approach the  problem  from the  point of view of the  graphic world, rather  
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Fig. 2. Main components of the proposed computational model 

than the image world. Figure 2 shows a scheme of proposed model’s main  
components. 

The underlying idea of our proposal is to reverse the typical process of producing a 
pattern in contexts such as ceramics, textile or graphic arts. In these contexts, the artist 
or graphic designer creates graphical entities or motifs using state of the art computer 
and acquisition tools. Then, they combine these motifs, regularly repeating them us-
ing geometric transformations, filling a flat area and producing the pattern design. 
Similarly, tiling can be produced including the motif inside a tile, with defined geo-
metric form, and repeating the tiles with no gaps or overlapping. As indicated before, 
only a subset of geometric transformations is possible, as dictated by Symmetry 
Group Theory. 

We propose extracting the motifs from the pattern image in the form of graphic en-
tities, and using these entities to perform most of the work, such as computing geo-
metric features, unit lattice or placement rules and, finally, to classify the pattern 
according to the symmetry group. In the process, we obtain many graphic objects, in 
parametric forms, such as Bezier curves or B-splines, which can be stored for later 
use in re-design tasks. 

With this aim, we propose a computational model which has five main stages, de-
pending on the feature space used to represent the data in each case. Below we briefly 
explain each stage: 

Step 1. Image Segmentation. In this first stage the image is acquired and pre-
processed to reduce noise and enhance its quality. Then, a colour segmentation algo-
rithm is applied to decompose the image in homogeneous regions differentiated by 
colour or texture attributes. In [9] we proposed the use of CIE Luv colour spaces and 
clustering algorithms such as Mean-Shift or K-Means for this purpose. The output is 
again an image but each region (object) has been properly labelled with an index that 
differentiates it from the other regions and from the background. 
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Fig. 3. Illustrative image of a historical tile design (left), detail (centre) and vectorization result 
(right) showing the Bezier curve nodes. 

Step 2. Object Extraction. Using the labelled image as input, a vector data structure 
is generated. It is formed by a list of objects -which will constitute the output data-, 
each one of which contains a number of properties (colour, area, etc) and a list of 
contours (an external one and any number –zero included– of internal contours) that 
delimit the object’s region. The contours are formed by a piece-wise sequence of 
Bezier curves arranged cyclically. Figure 3 (right) shows the vectorized objects found 
in the detail of figure 3 (centre). Within this stage there are three clearly differentiated 
phases: 
− Contour vectorization [10]: The stage begins with a piecewise primitive approxi-

mation of the object contours using Bezier curves, by means of a two pass process: 
first, to obtain the border pixels sequence with a contour retrieval algorithm, and 
then, breaking down the point sequence into sub-sequences that are approximated 
by Bezier curves using a least-square method. This representation is more manage-
able and compact and allows scale invariance.  

− Object comparison: The second sub-stage is an object comparison that attempts to 
obtain similar objects repeated in the image. Each set of similar objects is referred 
to as an ‘object class’. Object comparison is limited to the external contour. To 
compare contours we use a more manageable feature called normalized signature, 
which is a representation of a fixed number of re-sampled contour points. The 
normalized signatures are translation and scale invariant. In [11] we describe the 
geometric symmetries that can be computed using signatures (reflection, rotations 
and shifts), and a dissimilarity measure that allows us to compare two contours. 
The proposed comparison method can indicate if both objects are similar (they do 
not exceed the similarity threshold), and the geometric transformation which links 
them. Figure 4 shows an example of object comparison where similar objects are 
drawn with the same color. 

− Object symmetries: By comparing one object with itself we obtain its circular or 
reflected symmetry axis 

Step 3. Motif Creation. A motif is a set of objects that are related by perceptual fea-
tures. They are what humans first detect on visual analysis of a pattern. Even though 
the use of motifs to perform the PSG classification is not mandatory, we think that 
these entities provide us with a greater degree of abstraction and allow us to simplify 
the processing. In addition, they are the valuable graphic entities that users want to 
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recover from a pattern to use in re-design tasks. This could be one of the most inter-
esting contributions of this work.  

Using the data structure with the list of objects as input, we can generate a list of 
groups or motifs, each represented by a number of related objects and a contour 
(minimal convex polygon that includes such objects). Figure 4 shows an example of 
object grouping and motif creation. This stage is similar to object extraction, in that 
first the working units (objects / motifs) are obtained and then compared, although the 
procedures used are very different: 
− Object grouping: The related objects are grouped using perceptual criteria (inclu-

sion, contact, co-circularity, co-linearity and overlapping). 
− Group comparison: The comparison is done at two levels, first it is checked that 

the groups (motifs) contain a certain percentage of similar objects, and then the 
transformations relating the objects to the two motifs are compared (displacements, 
rotations or symmetries). The presence of a predominant transformation indicates 
that both motifs are formed by similar objects that are equally distributed inside the 
motif they belong to. Such motifs are considered to be similar, even if there are 
some disjoint objects, and they are sub-classified as the same class. It is very com-
mon for incomplete motifs (in the borders of the image) or motifs with gaps to ap-
pear. 

− Motif symmetries: Global motif symmetries are obtained by comparing the symme-
try axes and rotation centres of the objects in each motif class. 

 

 

Fig. 4. Object comparison (left), motif creation (centre) and final classification (right) showing 
the fundamental parallelogram (black square), the symmetry axes (broken lines) and the rota-
tion centres (circles) 

− Motif reconstruction: This is the first moment at which we have enough informa-
tion to start correcting errors. This correction, or reconstruction, covers two differ-
ent aspects: (i) Restitution, which restores missing objects to a motif by bringing 
them from another motif in the same class and, (ii) unification, which unifies dif-
ferent objects located in the same position in their respective class. In [12] we in-
troduced a set of rules to perform these tasks. 
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Step 4. Lattice Detection. In this stage we obtain the translational symmetry of the 
pattern.  Two operations are carried out: 

− Fundamental parallelogram: There are motifs in each class related by displace-
ments. We obtain the two unique displacement vectors that, through linear combi-
nations, make them to coincide. These two vectors act as the basis of the vector 
space defined by the positions of similar motifs. As usually there are several motifs 
there will be several bases, so we will choose the one with an n-times area, since 
pattern repeatability is that of the less frequently repeated elements. Such vectors 
form two sides of the Fundamental Parallelogram or unit lattice: the smallest part 
able to generate the whole pattern by replicating and displacing. 

− Lattice reconstruction [12]: While in the case of motif reconstruction we worked 
with loose objects, now we work with complete motifs. The repetition of funda-
mental parallelograms will form a mesh where all the motifs located in the same 
relative position within each mesh cell must be equal. If they are not, we remove 
some and replicate others to unify the pattern. 

Step 5. Classification. In this last stage we perform the whole PSG classification. 
The operations in this stage are the following: 

− Classification: Considering the geometry of the FP, the symmetry axes and the 
rotation centres, the FP is classified in accordance with Table 1. 

− Simplification: The pattern is simplified, since the content of the FP and its PSG 
will suffice to define the whole pattern; therefore we can suppress all redundant in-
formation without decomposing any objects or motifs. 

− Pattern reconstruction [12]: Once the plane symmetry group has become avail-
able, the defects can be corrected since the reflections and rotations involve the 
content of the motifs and even the object regions. For this purpose we check that 
all the objects or motifs related by symmetry axes or rotation centres are equal and 
following the correct orientation; otherwise, we choose the best alternatives (those 
which fulfil the symmetry criterion) and any incorrect ones are replaced. 
Figure 4 (right) shows the analysis result for the pattern in Figure 3 (left). Only the 

motifs contained in the FP have been left, without dividing any of them. 

5   Experiments and Results 

To validate the proposed methodology we have successfully used 22 different tiling 
patterns, with repetition in two plane directions, from the mosaic collection of Pedro 
I’s Palace in the Alcazar of Seville (Spain). Figure 5 shows an example of such mosa-
ics. Two problems arise: the first one is related to the historical nature of these tiles 
which were made in the 14th century using handcraft techniques. Consequently, there 
are inaccuracies in the position and finish of the mosaic tiles. The second problem is 
the use of a tile design technique widely extended in Islamic decoration of that period, 
known as “lacería” or “interlace” (Figure 5 right). They can be defined as figures,  
built from regular polygons or stars, developed in the form of a band that extend its 
sides in such a way that they alternatively cross each other, generating a composition 
of artistically arranged loops. 
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Original image Detail 
 

 
 

Fig. 5. Original image (left) and detail (right) from a mosaic of the Alcazar of Seville 

Result of the Analysis Reconstruction 
With interlaced objects 

 
FP: Equilateral Rhombus 

PSG: P6 

Without interlaced objects 

 
FP: Equilateral Rhombus 

PSG: P6M 

 

Fig. 6. Simplified result of the analysis (left) with interlaced objects (up) and without them 
(down), and pattern reconstruction (right) of the original  mosaic in figure 5 
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The treatment of the lacerias was twofold. Firstly we increased the color toler-
ances of the segmentation operator achieving fusion of lacerias, which were then 
considered as background. And secondly, we reduced the color tolerances in such a 
way that lacerias appeared as independent objects. Figure 6 shows the results ob-
tained in both cases. The upper image is the simplified result of the analysis consider-
ing all the objects of the pattern, while the lower image is the result without consider-
ing the interlaced objects. The fact that the interlaced objects are always arranged 
circularly, without symmetry axes common to all of them, makes Plane Symmetry 
Group different in both cases. The image on the right shows the pattern reconstruction 
from the simplified analysis with interlaced objects, by repetition and displacement 
using the FP directions. 

 
Objects 

Motifs (P6) 
Interlaced (P6) Non interlaced (P6M) 

 

 

 

 

     

 

Fig. 7. Motifs and objects obtained after simplification. The interlaced objects have been sepa-
rated from the rest. Symmetry axes are represented with a dashed black line and different orien-
tations are showed by different colours. 

Finally, Figure 7 shows the main motifs and their objects obtained from the analy-
sis, including all symmetry axes. As this figure shows, the interlaced objects either do 
not have symmetry axes, or they are not common to all, while the other objects have 
symmetry axes and are common to all, so that the Plane Symmetry Groups of each 
type of objects, have the same PF and rotation centers, but one has symmetry axes 
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(P6M) and the other does not (P6). The motifs that contain the interlaced objects have 
the less restrictive PSG, which is P6. 

The experiments show that this computational model satisfactorily reached its ob-
jectives with most of the processed images. In some cases, the user must tune system 
parameters to obtain a correct classification. Figure 8 summarizes the results obtained 
showing the obtained PSG for the two possible classifications. Observe the high num-
ber of P4-P4M tile designs in this kind of mosaics. 

Typical processing time is presented in Table 2. In the segmentation stage the time 
depends on the image size but, in the other stages, it depends heavily on the number 
of existing objects, (motifs) and their complexity, with the longest time requirement 
for processing the tiles with interlaced objects. 

Fig. 8. Number of patterns in each PSG with and without considering interlaced objects 

Table 2. Processing time for several examples on a Pentium III 450 MHz computer 

 Minimum Median Maximum 
Time 24” 1’10” 4’26” 

Image size 3264x2448 3264x2448 3264x2448 
Number of objects 54 162 699 

6   Conclusions 

This paper presents a computational model for analyzing periodic design patterns. 
The successful results obtained after analysis of tiling design patterns in the Alcazar 
of Seville are also reported. The main findings can be summarized as follows: 

• All the tiling patterns used were successfully classified. Their structures (funda-
mental parallelogram and plane symmetry group) and elements (objects and mo-
tifs) were obtained in the form of graphic entities. 

• The problems derived from the use of interlaced objects in most of the tiles ana-
lyzed were solved. From the data obtained, we can conclude that in the case of in-
terlace tile design patterns it is advisable to provide the two possible classifica-
tions rather than their more generic classification (without symmetry axes). 

• Compression ratios up to 1:1000, with respect to the original image in jpeg format, 
were obtained. The pattern structure was reduced to its fundamental parallelogram 
geometry and content and one object/motif per class. 
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The proposed computational model behaves perfectly with all the mosaic samples 
used and its output data represents a meaningful and compact design description of 
the original pattern. This data reduction is very convenient for storing and retrieval 
purposes in information systems, which are a current issue in the ceramic and textile 
industries. 
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