
Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 262 – 276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Ontology Design Patterns for Semantic Web Content

Aldo Gangemi

Laboratory for Applied Ontology, ISTC-CNR, Rome, Italy
a.gangemi@istc.cnr.it

Abstract. The paper presents a framework for introducing design patterns that
facilitate or improve the techniques used during ontology lifecycle. Some dis-
tinctions are drawn between kinds of ontology design patterns. Some content-
oriented patterns are presented in order to illustrate their utility at different de-
grees of abstraction, and how they can be specialized or composed. The pro-
posed framework and the initial set of patterns are designed in order to function
as a pipeline connecting domain modelling, user requirements, and ontology-
driven tasks/queries to be executed.

1 Introduction

Throughout experiences in ontology engineering projects1 at the Laboratory for
Applied Ontology (LOA) , typical conceptual patterns have emerged out of different
domains, for different tasks, and while working with experts having heterogeneous
backgrounds. For example, a simple participation pattern (including objects taking
part in events) emerges in domain ontologies as different as enterprise models [11],
legal norms [30], sofware management [17], biochemical pathways [9], and fishery
techniques [10]. Other, more complex patterns have also emerged in the same
disparate domains: the role<->task pattern, the information<->realization pattern,
the description<->situation pattern, the design<->object pattern, the attribute
parametrization pattern, etc.

Those emerging patterns are extremely useful in order to acquire, develop, and
refine the ontologies from either experts or documents. Often it’s even the case that a
community of expertise develops its own conceptual pattern, usually of an informal

1 For example, in the projects IKF: http://www.ikfproject.com/About.htm,
 FOS: http://www.fao.org/agris/aos/, and WonderWeb: http://wonderweb.semanticweb.org.
 http://www.loa-cnr.it 2

 http://dolce.semanticweb.org

2,

3

3

The lifecycle of ontologies over the Semantic Web involves different techniques,
ranging from manual to automatic building, refinement, merging, mapping, annota-
tion, etc. Each technique involves the specification of core concepts for the popula-
tion of an ontology, or for its annotation, manipulation, or management
[7][9][10][11][14][19]. For example, an OWL ontology of gene expression for bioin-
formatics can be manually built by encoding experts’ conceptual patterns [20], or can
be automatically learnt e.g. out of a textual corpus by encoding natural language pat-
terns, then refined according to conceptual patterns provided by experts [3], and fi-
nally annotated with meta-level concepts for e.g. confidence measurement, argumen-
tation, etc.

 Ontology Design Patterns for Semantic Web Content 263

diagrammatic sort, which can be reengineered as a specialization of the mentioned
patterns, for the sake of an ontology project. In some situations, experts do not grasp
the utility of ontologies until they realize that an ontology can encode effectively a
domain conceptual pattern. Once experts realize it, they usually start discussions on
how to improve their own rational procedures by means of ontology engineering
techniques!

Following this evidence, for two years a set of conceptual patterns has been used
for practical, domain ontology design while still being based on a full-fledged, richly
axiomatic ontology (currently DOLCE and its extension
s [14][15]). A major attention has been devoted to patterns that are expressible in
OWL [18], and are therefore easily applicable to the Semantic Web community.

Independently, in 2004 the W3C has started a working group on Semantic Web
Best Practices and Deployment, including a task force on Ontology Engineering
Patterns (OEP) [21], which has produced some interesting OWL design patterns that
are close, from the logical viewpoint, to some of the ontology design patterns that the
LOA has been developing.

In this paper a notion of pattern for ontology design is firstly introduced,
contrasting it to other sibling notions. Then a template to present ontology design
patterns that are usable to assist or improve Semantic Web ontology engineering is
sketched, focusing on patterns that can be encoded in OWL(DL). Some distinctions
are drawn between patterns oriented to individuals, to classes or properties, to logical
primitives, and to argumentation. Some content-oriented patterns are discussed in
order to illustrate that notion at different degrees of abstraction, and how they can be
composed. Finally, some conclusions are provided.

2 Some Bits of History

The term “pattern” appears in English in the 14th century and derives from Middle
Latin “patronus” (meaning “patron”, and, metonymically, “exemplar”, something
proposed for imitation). As Webster’s puts it, a pattern has a set of senses that show a
reasonable degree of similarity (see my italics): «a) a form or model proposed for imi-
tation, b) something designed or used as a model for making things, c) a model for
making a mold, d) an artistic, musical, literary, or mechanical design or form, e) a
natural or chance configuration, etc., and, f) a discernible coherent system based on
the intended interrelationship of component parts».

In the seventies, the architect and mathematician Christopher Alexander introduced
the term “design pattern” for shared guidelines that help solve design problems. In [1]
he argues that a good design can be achieved by means of a set of rules that are
“packaged” in the form of patterns, such as “courtyards which live”, “windows
place”, or “entrance room”. Design patterns are assumed as archetypal solutions to
design problems in a certain context.

Taking seriously the architectural metaphor, the notion has been eagerly endorsed
by software engineering [2][6][13], where it is used as a general term for formatted
guidelines in software reuse, and, more recently, has also appeared in requirements

 Cf. Online Etymology Dictionary: http://www.etymonline.com)

4

 In software engineering, formal approaches to design patterns, based on dedicated ontologies,
are being investigated, e.g. in so-called semantic middleware [17].

4

5

5

264 A. Gangemi

analysis, conceptual modelling, and ontology engineering [12][20][21][24][29].
Traditional desing patterns appear more like a collection of shortcuts and suggestions
related to a class of context-bound problems and success stories. In recent work, there
seems to be a tendency towards a more formal encoding of design patterns (notably in
[2][12][13][19]). [24] also addresses the issue of ontology design patterns for the
Semantic Web, taking a foundational approach that is complementary with that
presented here.

2.1 The Elements of a Design Pattern from Software to Ontology Engineering

For space reasons, a review of the existing literature, and how this proposal differs
from it, is not attempted here. Instead, the typical structure of design patterns in soft-
ware engineering is presented, and contrasted with typical patterns in ontology engi-
neering and with the so-called content patterns.

The mainstream approach in Software Engineering (SE) patterns is to use a
template that can be similar to the following one (adapted from [22]), used to address
a problem of form design in user interfaces:

Slot Value

Type UI form

Examples • Tax forms
• Job application forms
• Ordering merchandise through a catalog

Context The user has to provide preformatted information, usually short (non-
narrative) answers to questions

Problem How should the artifact indicate what kind of information should be
supplied, and the extent of it?

Forces • The user needs to know what kind of information to provide.
• It should be clear what the user is supposed to read, and what to fill

in.
• The user needs to know what is required, and what is optional.
• Users almost never read directions.
• Users generally do not enjoy supplying information this way, and are

satisfied by efficiency, clarity, and a lack of mistakes.

Solution Provide appropriate “blanks” to be filled in, which clearly and cor-
rectly indicate what information should be provided. Visually indicate
those editable blanks consistently, such as with subtle changes in back-
ground color, so that a user can see at a glance what needs to be filled in.
Label them with clear, short labels that use terminology familiar to the
user; place the labels as close to the blanks as is reasonable. Arrange them
all in an order that makes sense semantically, rather than simply grouping
things by visual appearance

 Ontology Design Patterns for Semantic Web Content 265

The slots used here follow quite closely those suggested by Alexander: given an
artifact type, the pattern provides examples of it, its context, the problem addressed by
the pattern, the involved “forces” (requirements and constraints), and a solution.

In ontology engineering, the nature of the artifact (ontologies) requires a more
formal presentation of patterns.5 For example, the pattern for “classes as property
values” [16] produced by the OEP task force [21] can be sketched as follows (only an
excerpt of the pattern is shown here):

Slot Value

General
issue

It is often convenient to put a class (e.g., Animal) as a property value
(e.g., topic or book subject) when building an ontology. While OWL Full
and RDF Schema do not put any restriction on using classes as property
values, in OWL DL and OWL Lite most properties cannot have classes
as their values.

Use case
example

Suppose we have a set of books about animals, and a catalog of these
books. We want to annotate each catalog entry with its subject, which is
a particular species or class of animal that the book is about. Further, we
want to be able to infer that a book about African lions is also a book
about lions. For example, when retrieving all books about lions from a
repository, we want books that are annotated as books about African
lions to be included in the results.

Notation In all the figures below, ovals represent classes and rectangles represent
individuals. The orange color signifies classes or individuals that are
specific to a particular approach. Green arrows with green labels are
OWL annotation properties. We use N3 syntax to represent the exam-
ples.

Approaches Approach 1: Use classes directly as property values
In the first approach, we can simply use classes from the subject hierar-
chy as values for properties (in our example, as values for the dc:subject
property). We can define a class Book to represent all books.

Consideratio-
ns

 • The resulting ontology is compatible with RDF Schema and OWL
Full, but it is outside OWL DL and OWL Lite.

 • This approach is probably the most succinct and intuitive among all the
approaches proposed here.

 • Applications using this representation can directly access the informa-
tion needed to infer that Lion (the subject of the LionsLifeIn-
ThePrideBook individual) is a subclass of Animal and that Afri-
canLion (the subject of the TheAfricanLionBook individual) is a sub-
class of Lion.

OWL code
(N3 syntax)

default:BookAboutAnimals
 a owl:Class ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf
 [a owl:Class ;
 owl:unionOf ([a owl:Restriction ;

266 A. Gangemi

Slot Value

 owl:onProperty dc:subject ;
 owl:someValuesFrom default:Animal
] [a owl:Restriction ;
 owl:onProperty dc:subject ;
 owl:someValuesFrom
 [a owl:Restriction ;
 owl:hasValue default:Animal ;
 owl:onProperty rdfs:subClassOf]])]

As evidenced from the examples, an ontology engineering pattern includes some

formal encoding, due to the nature of ontological artifacts. OEP slots seem to “merge”
some SE slots: examples and context are merged in the “use case”, while the slot
“forces” is missing, except for some “considerations” related to the “solution” slot
(called “approach” in OEP).

In this paper, a step towards the encoding of conceptual, rather than logical design
patterns, is made. In other words, while OEP is proposing patterns for solving design
problems for OWL, independently of a particular conceptualization, this paper
proposes patterns for solving (in OWL or another logical language) design problems
for the domain classes and properties that populate an ontology, therefore addressing
content problems.

3 Conceptual Ontology Design Patterns

3.1 Generic Use Cases

The first move towards conceptual ontology design patterns requires the notion of a
“Generic Use Case” (GUC), i.e. a generalization of use cases that can be provided as
examples for an issue of domain modelling. Differently from the “artifact type” slot in
SE patterns and from the “issue” slot in OEP patterns, a GUC should be the expres-
sion of a recurrent issue in many domain modelling projects, independently of the
particular logical language adopted. For example, this is a partial list of the recurrent
questions that arise in the modelling practice during an ontology project:

• Who does what, when and where?
• Which objects take part in a certain event?
• What are the parts of something?
• What’s an object made of?
• What’s the place of something?
• What’s the time frame of something?
• What technique, method, practice is being used?
• Which tasks should be executed in order to achieve a certain goal?
• Does this behaviour conform to a certain rule?
• What’s the function of that artifact?
• How is that object built?

 Ontology Design Patterns for Semantic Web Content 267

• What’s the design of that artifact?
• How did that phenomenon happen?
• What’s your role in that transaction?
• What that information is about? How is it realized?
• What argumentation model are you adopting for negotiating an agreement?
• What’s the degree of confidence that you give to this axiom?

Being generic at the use case level allows us to decouple, or to refactor the design
problems of a use case, by composing different GUCs. Ideally, a library of GUCs
should include a hierarchy from the most generic to the most specific ones, and from
the “purest” (like most of the examples above) to the most articulated and applied
ones (e.g.: “what protein is involved in the Jack/Stat biochemical pathway?”).

 The intuition underlying GUC hierarchies is based on a methodological
observation: ontologies must be built out of domain tasks that can be captured by
means of competency questions [11]. A competency question is a typical query that an
expert might want to submit to a knowledge base of its target domain, for a certain
task. In principle, an accurate domain ontology should specify all and only the
conceptualizations required in order to answer all the competency questions
formulated by, or acquired from, experts.

A GUC can thus be seen as the preliminary motivation to build the pipeline
connecting modelling requirements, expected queries (semantic services), and
ontology population. Following the distinction between tasks, problem-solving
methods, and ontologies that underlies recent architectures for Semantic Web
Services [26], GUCs can be used to access at a macroscopic level (partly similar to
“use-case diagrams” in UML) the profile (or registries) for a service, the available
ontology design patterns (see next section), as well as existing ontologies and
knowledge bases. GUC taxonomy is not addressed here for space reasons.

3.2 Features of Conceptual Ontology Design Patterns

A GUC cannot do much as a guideline, unless we are able to find formal patterns that
encode it. A formal pattern that encodes a GUC is called here a Conceptual (or Con-
tent) Ontology Design Pattern (CODeP).

CODePs are characterized here in a twofold way. Firstly, through an intuitive set
of features that a CODeP should have; secondly, through a minimal semantic
characterization, and its formal encoding, with the help of some examples.

• A CODeP is a template to represent, and possibly solve, a modelling problem.
• A CODeP “extracts” a fragment of either a foundational [14] or core [8] ontology,

which constitutes its background. For example, a connected path of two relations
and three classes (Ax ∧ By ∧ Cz ∧ Rxy ∧ Syz) can be extracted because of its do-
main relevance. Thus, a CODeP lives in a reference ontology, which provides its
taxonomic and axiomatic context. A CODeP is axiomatized according to the frag-
ment it extracts. Since it depends on its background, a CODeP inherits the axioma-
tization (and the related reasoning service) that is already in place.

• Mapping and composition of patterns require a reference ontology, in order to check
the consistency of the composition, or to compare the sets of axioms that are to be
mapped. Operations on CODePs depend on operations on the reference ontologies.
However, for a pattern user, these operations should be (almost) invisible.

268 A. Gangemi

• A CODeP can be represented in any ontology representation language whatsoever
(depending on its reference ontology), but its intuitive and compact visualization
seems an essential requirement. It requires a critical size, so that its diagrammatical
visulization is aesthetically acceptable and easily memorizable.

• A CODeP can be an element in a partial order, where the ordering relation requires
that at least one of the classes or relations in the pattern is specialized. A hierarchy
of CODePs can be built by specializing or generalizing some of the elements (either
classes or relations). For example, the participation pattern can be specialized to the
taking part in a public enterprise pattern.

• A CODeP should be intuitively exemplified, and should catch relevant, “core” no-
tions of a domain. Independently of the generality at which a CODeP is singled out,
it must contain the central notions that “make rational thinking move” for an expert
in a given domain for a given task.

• A CODeP can be often built from informal or simplified schemata used by domain
experts, together with the support of other reusable CODePs or reference ontolo-
gies, and a methodology for domain ontology analysis. Typically, experts sponta-
neously develop schemata to improve their business, and to store relevant know-
how. These schemata can be reengineered with appropriate methods
(e.g. [10]).

• A CODeP can/should be used to describe a “best practice” of modelling.
• A CODeP can be similar to a database schema, but a pattern is defined wrt to a ref-

erence ontology, and has a general character, independent of system design.

4 Examples of CODePs

4.1 Some Foundational and Core Patterns

Some examples of CODePs are shown here, but many others have been built or are
being investigated. Due to space restrictions, the presentation is necessarily sketchy.

As proposed in the previous section, a CODeP emerges out of an existing or
dedicated reference ontology (or ontologies), since it needs a context that facilitates
its use, mapping, specialization, and composition.

Fig. 1. The basic DOLCE design pattern: participation at spatio-temporal location

 Ontology Design Patterns for Semantic Web Content 269

A first, basic example (Fig. 1) is provided by the participation pattern, extracted
from the DOLCE [14] foundational ontology, developed within the WonderWeb
Project [5]. It consists of a “participant-in” relation between objects and events, and
assumes a time indexing for it. Time indexing is provided by the temporal location of
the event at a time interval, while the respective spatial location at a space region is
provided by the participating object.

Some inferences are automatically drawn when composing the participation
CODeP with the part CODeP (not shown here, see [14]). For example, if an object
constantly participates in an event, a temporary part of that object (a part that can be
detached), will simply participate in that event, because we cannot be sure that the
part will be a part at all times the whole participates. For example, we cannot infer for
each member of a gang that she participated in a crime, just because she is a member.

An alternative CODeP (Fig. 2) for time-indexed participation can be given by
reifying the participation relation (in OWL a ternary relation cannot be expressed
conveniently). The reified participation pattern features a kind of “situation” (see next
example), called time-indexed-participation, which is a setting for exactly one object,
one event, and one time interval. This simple reification pattern can be made as
complex as needed, by adding parameters, more participants, places, etc.

A third, more complex example, is the Role<->Task CODeP (Fig. 3). This CODeP is
based on an extension of DOLCE, called D&S (Descriptions and Situations) [9][15],
partly developed within the Metokis Project [4]. D&S provides a vocabulary and an
axiomatization to type-reified [27] classes and relations (“concepts” and “descriptions”),
and to token-reified [27] tuples (“situations”; for a semantics of D&S, see [28]).

Fig. 2. A pattern for reification of time-indexed relations (in this case, participation): a
situation (like time-indexed participation) is a setting for an event, the entities participating in
that event, and the time interval at which the event occurs

In practice, the Role<->Task pattern allows the expression, in OWL(DL), of the
temporary roles that objects can play, and of the tasks that events/actions allow to
execute. The reified relation specifying roles and tasks is a description, the reified
tuple that satisfies the relation for certain individual objects and events is called
situation. Roles can have assigned tasks as modal targets. This CODeP is very
expressive, and can be specialized in many domains, solving design issues that are
quite hard without reification. For example, the assignments of tasks to role-players in
a workflow can be easily expressed, as well as plan models [28].

270 A. Gangemi

Fig. 3. A pattern for roles and tasks defined by descriptions and executed within situations

By composing the Role<->Task pattern with the Collection<->Role pattern (not
shown here), and specializing such composition to the domain of material design, we
obtain the so-called Design<->Artifact CODeP (Fig. 4). This pattern is very
expressive and quite complex. Starting from Role<->Task, and Collection<->Role,
and specializing objects to material artifacts, descriptions to designs, situations to
design materialization, and substituting tasks with functions, we can conceive of a
functional unification relation holding between a design model and a material artifact.
The internal axiomatization operates by unifying the collection of “relevant”
components (“proper parts”) of the material artifact within a “collection”, where each
component plays a functional role defined by the design model.

Fig. 4. A pattern for talking about relations between design models and material artifacts

The design materialization keeps together the actual physical components of an
individual material artifact. This CODeP can be easily specialized for manufacturing,
commercial warehouses, etc.

The previous CODePs are foundational. An example of a core CODeP is instead
provided here with reference to the NCI ontology of cancer research and treatment
[23] (Fig. 5). It specializes the foundational Role<->Task CODeP (Fig. 3).

 Ontology Design Patterns for Semantic Web Content 271

Fig. 5. A core pattern for chemotherapy, specializing the Role<->Task CODeP

4.2 How to Introduce a CODeP

A template can be used to annotate CODePs, to share them in pre-formatted docu-
ments, to contextualize them appropriately, etc. Here the following frame is proposed,
and presented through the previous example from the NCI ontology [23]:

Slot Value

Generic use
case (GUC)

Chemicals playing roles in biological processes for chemotherapy.

Local use
case(s)

Various chemical agents, mostly drugs, are used to control
biological processes within a chemotherapeutical treatment.
When talking about drugs and processes, there is a network of
senses implying a dependence on roles and functions (or tasks)
within a clinical treatment.
Intended meanings include the possible functional roles played by
certain substances, as well as the actual administration of
amounts of drugs for controlling actually occurring biological
processes. Therefore, both class- and instance-variables are
present in the maximal relation for this pattern.

Logic
addressed

OWL, DL species

Reference
ontologies

DOLCE-Lite-Plus, NCI Ontology

272 A. Gangemi

Slot Value

Specialized
CODeP

Role<->Task

Composed
CODePs

Time-Indexed-Participation, Concept<->Description, Description<-
>Situation

Formal
relation

rChemical_or_Drug_Plays_Role_in_Biological_Process(,ψ,x,y,t,
c1,c2,d,s), where (x) is a chemical agent class, ψ(y) is a
biological process class, t is a time interval, c1 and c2 are two
reified intensional concepts, d is a reified intensional relation, and
s is a reified extensional relation.

Sensitive
axioms

rChemical_or_Drug_Plays_Role_in_Biological_Process(,ψ) =df
∀x,y,t((x) ∧ ψ(y) ∧ participates-in(x,y,t) ∧ Chemical-Agent(x) ∧
Biological-Process(y) ∧ Time-Interval(t)) ↔ ∃c1,c2,d(CF(x,c1,t) ∧
MT(c1,c2) ∧ CF(y,c2,t) ∧ DF(d,c1) ∧ DF(d,c2) ∧ ∀s(SAT(s,d)) ↔
(SETF(s,x) ∧ SETF(s,y) ∧ SETF(s,t))

Explanation Since OWL(DL) does not support relations with >2 arity, reification
is required. The Description<->Situation pattern provides typing
for such reification.
Since OWL(DL) does not support classes in variable position, we
need reification for class-variables. The Concept<->Description
pattern provides typing for such reification.
Similarly, since participation is time-indexed, we need the time-
indexed-participation pattern, which is here composed with the
previous two patterns (time indexing appears in the setting of the
general treatment situation).

OWL(DL)
encoding
(abstract
syntax)

Class(Chemical_Plays_Role_in_Bio_Process complete
 Description
 restriction(defines someValuesFrom(Chemical-Agent))
 restriction(defines someValuesFrom(Biological-Task)))
Class(Chemical-Agent complete
 Role
 restriction(defined-by
someValuesFrom(Chemical_Plays_Role_in_Bio_Process))
 restriction(classifies allValuesFrom(Substance))
 restriction(modal-target someValuesFrom(Biological-Task)))
Class(Biological-Task complete
Task
 restriction(classifies allValuesFrom(Biological-Process))
 restriction(modal-target-of someValuesFrom(Chemical-Agent)))
Class(Chemical-in-Biological-Process_Situation complete

φ
φ

φ
φ

 Ontology Design Patterns for Semantic Web Content 273

Slot Value

 Situation
 restriction(satisfies
someValuesFrom(Chemical_Plays_Role_in_Bio_Process))
 restriction(setting-for someValuesFrom(Substance))
 restriction(setting-for someValuesFrom(Biological-Process))
 restriction(setting-for someValuesFrom(Time-Interval)))

Class
diagram

The CODeP frame consists of:

• Two slots for the generic use case, and the local use cases, which includes a de-
scription of context, problem, and constraints/requirements.

• Two slots for the addressed logic, and the reference ontologies used as a back-
ground for the pattern.

• Two slots for -if any- the specialized pattern and the composed patterns.
• Two slots for the maximal relation that encodes the case space, and its intended

axiomatization: a full first-order logic with meta-level is assumed here, but the slot
can be empty without affecting the functionality of a CODeP frame.

• Two slots for explanation of the approach, and its encoding in the logic of choice.
• A last slot for a class diagram that visually reproduces the approach.

The frame for introducing CODePs can be easily encoded in XSD or in richer
frameworks, like semantic web services (e.g. [25]) or knowledge content objects [26],
for optimal exploitation within Semantic Web technologies. The high reusability of
CODePs and their formal and pragmatic nature make them suitable not only for
isolated ontology engineering practices, but ideally in distributed, collaborative
environments like intranets, the Web or the Grid.

CODePs can also be used to generate intuitive, friendly UIs, which can present the
user with only the relevant pattern diagram, avoiding the awkward, entangled graphs
currently visualized for medium-to-large ontologies.

5 Conclusions

Conceptual Ontology Design Patterns (CODePs) have been introduced as a useful
resource and design method for engineering ontology content over the Semantic Web.
CODePs are distinguished from architectural, software engineering, and logic-
oriented design patterns, and a template has been proposed to describe, visualize, and
make operations over them.

274 A. Gangemi

The advantages of CODePs for ontology lifecycle over the Semantic Web are
straightforward: firstly, patterns make ontology design easier for both knowledge
engineers and domain experts (imagine having a menu of pre-built, formally
consistent components, pro-actively suggested to the modeller); secondly, patterned
design makes it easier ontology integration - perhaps the most difficult problem in
ontology engineering. For example, the time-indexed participation presented in this
paper requires non-trivial knowledge engineering ability to be optimally represented
and adapted to a use case: a CODeP within an appropriate ontology management tool
can greatly facilitate such representation.

The CODeP examples and the related frame and methods introduced in this paper
have been applied for two years (some of them even before) in several administration,
business and industrial projects, e.g. in fishery information systems [10], insurance
CRM, biomedical ontology integration [9], anti-money-laundering systems for banks
[30], service-level agreements for information systems, biomolecular ontology
learning [3], legal norms formalization, and management of digital content [26].

Current work focuses on building a tool that assists development, discussion,
retrieval, and interchange of CODePs over the Semantic Web, and towards
establishing the model-theoretical and operational foundations of CODeP
manipulation and reasoning. In particular, for CODePs to be a real advantage in
ontology lifecycle, the following functionalities will be available:

• Categorization of CODePs, based either on the use cases they support, or on the
concepts they encode.

• Pattern-matching algorithms for retrieving the pattern that best fits a set of
requirements, e.g. from a natural language specification, or from a draft ontology.

• Support for specialization and composition of CODePs. A CODeP p1 specializes
another p2 when at least one of the classes or properties from p2 is a sub-class or a
sub-property of some class resp. property from p1, while the remainder of the
CODeP is identical. A CODeP p1 expands p2 when p1 contains p2, while adding
some other class, property, or axiom. A CODeP p1 composes p2 and p3 when p1
contains both p2 and p3. The formal semantics of these operations is ensured by the
underlying (reference) ontology for the patterns, and will be given in an extended
version of this paper.

• Interfacing of CODePs for visualization, discussion, and knowledge-base creation

• A rich set of metadata for CODeP manipulation and exploitation within
applications.

References

1. Alexander, C.: The Timeless way of building. Oxford University Press, New York (1979).
2. Baker, N., A. Bazan, G. Chevenier, Z. Kovacs, T Le Flour, J-M Le Goff, R. McClatchey,

S. Murray: Design Patterns for Description-Driven Systems.
3. Ciaramita, M., Gangemi, A., Ratsch, E., Rojas, I., Saric, J.: Unsupervised Learning of Se-

mantic Relations between Concepts of a Molecular Biology Ontology. To appear in the
proceedings of the Nineteenth IJCAI, Edimburgh, Scotland (2005).

4. EU FP6 Metokis Project: http://metokis.salzburgresearch.at
5. EU FP5 WonderWeb Project: http://wonderweb.semanticweb.org

 Ontology Design Patterns for Semantic Web Content 275

6. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reus-
able Object-Oriented Software. Addison-Wesley, Reading, MA (1995).

7. Gangemi, A., Navigli, R., Velardi, P.: ML: The OntoWordNet Project: extension and
axiomatisation of conceptual relations in WordNet. International Conference on Ontolo-
gies, Databases and Applications of SEmantics (ODBASE 2003), Catania, (Italy), (2003).

8. Gangemi, A., Borgo, S. (eds.): Proceedings of the EKAW*04 Workshop on Core Ontolo-
gies in Ontology Engineering. Available from:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-118/ (2004).

9. Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation Ontology Design Pattern: an Ex-
ercise in Building a Core Biomedical Ontology with Descriptions and Situations.D.M.
Pisanelli (ed.) Ontologies in Medicine, IOS Press, Amsterdam (2004).

10. Gangemi, A., F. Fisseha, J. Keizer, J. Lehmann, A. Liang, I. Pettman, M. Sini, M. Taconet:
A Core Ontology of Fishery and its Use in the FOS Project, in [8] (2004).

11. Gruninger, M., and Fox, M.S.: The Role of Competency Questions in Enterprise Engineer-
ing. Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and Practice,
Trondheim, Norway (1994).

12. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-
Founded Profile for UML Conceptual Models. A. Persson, J. Stirna (eds.) Advanced In-
formation Systems Engineering, Proceedings of16th CAiSE Conference, Riga, Springer
(2004).

13. Maplesden, D., Hosking, J.G. and Grundy, J.C.: Design Pattern Modelling and Instantia-
tion using DPML, Proceedings of the Tools Pacific 2002, Sydney, CRPIT Press (2002).

14. Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider: WonderWeb Deliv-
erable D18: The WonderWeb Library of Foundational Ontologies (2004).

15. Masolo, C., L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi and N. Guarino:
Social Roles and their Descriptions. Procedings of the Ninth International Conference on
the Principles of Knowledge Representation and Reasoning, Whistler (2004).

16. Noy, N.: Representing Classes As Property Values on the Semantic Web. W3C Note,
http://www.w3.org/2001/sw/BestPractices/OEP/ClassesAsValues-20050405/ (2005).

17. Oberle, D., Mika, P., Gangemi, A., Sabou, M.: Foundations for service ontologies: Align-
ing OWL-S to DOLCE. Staab S and Patel-Schneider P (eds.), Proceedings of the World
Wide Web Conference (WWW2004), Semantic Web Track, (2004).

18. OWL Web Ontology Language Overview, D. L. McGuinness and F. van Harmelen, Edi-
tors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-
features-20040210/ (2004).

19. Rector, A.L., Rogers, J.: Patterns, Properties and Minimizing Commitment: Reconstruc-
tion of the GALEN Upper Ontology in OWL, in [8] (2004).

20. Reich, J.R.: Ontological Design Patterns: Modelling the Metadata of Molecular Biological
Ontologies, Information and Knowledge. In DEXA 2000 (2000).

21. Semantic Web Best Practices and Deployment Working Group, Task Force on Ontology
Engineering Patterns. Description of work, archives, W3C Notes and recommendations
available from http://www.w3.org/2001/sw/BestPractices/OEP/ (2004-5).

22. Tidwell, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface
Design. http://www.mit.edu/%7Ejtidwell/interaction_patterns.html (1999).

23. Golbeck, J., G. Fragoso, F. Hartel, J. Hendler, B. Parsia, J. Oberthaler: The national can-
cer institute's thesaurus and ontology. Journal of Web Semantics, 1(1), (2003).

24. Svatek V.: Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In:
7th Conference on Business Information Systems, Poznaň (2004).

276 A. Gangemi

25. Motta, E., Domingue, J., Cabral, L., Gaspari, M. (2003) IRS-II: A Framework and Infra-
structure for Semantic Web Services. 2nd International Semantic Web Conference
(ISWC2003) 20-23 October 2003, Sundial Resort, Sanibel Island, Florida, USA (2003).

26. Behrent, W., Gangemi, A., Maass, W., Westenthaler, R.: Towards an Ontology-based Dis-
tributed Architecture for Paid Content. To appear in A. Gomez-Perez (ed.), Proceedings of
the Second European Semantic Web Conference, Heraklion, Greece (2005).

27. Galton, A.: Reified Temporal Theories and How To Unreify Them. Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 1991.

28. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for Knowledge
Content. Deliverable D07 of the Metokis Project. Available at http://www.loa-cnr.it.

29. Soshnikov, D.: Ontological Design Patterns in Distributed Frame Hierarchy. In Proceed-
ings of the 5th International Workshop on Computer Science and Information Technolo-
gies, Ufa, Russia, 2003.

30. Gangemi A, Pisanelli DM, Steve G,: An Ontological Framework to Represent Norm Dy-
namics. In R Winkels (ed.), Proceedings of the 2001 Jurix Conference, Workshop on Le-
gal Ontologies, University of Amsterdam, 2001.

	Introduction
	Some Bits of History
	The Elements of a Design Pattern from Software to Ontology Engineering

	Conceptual Ontology Design Patterns
	Generic Use Cases
	Features of Conceptual Ontology Design Patterns

	Examples of CODePs
	Some Foundational and Core Patterns
	How to Introduce a CODeP

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

