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Abstract. The construction of population atlases is a key issue in med-
ical image analysis, and particularly in brain mapping. Large sets of
images are mapped into a common coordinate system to study intra-
population variability and inter-population differences, to provide voxel-
wise mapping of functional sites, and to facilitate tissue and object seg-
mentation via registration of anatomical labels. We formulate the un-
biased atlas construction problem as a Fréchet mean estimation in the
space of diffeomorphisms via large deformations metric mapping. A novel
method for computing constant speed velocity fields and an analysis of
atlas stability and robustness using entropy are presented. We address
the question: how many images are required to build a stable brain atlas?
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1 Introduction

Computational anatomy is the study of anatomical variation [1]. For a set of
images representing a population, a natural problem in computational anatomy
is the construction of an atlas — an image that serves as a representative for
the population. Such an atlas must represent the anatomical variation present
in the image population [2]. A major focus of computational anatomy has been
the development of image mapping algorithms [3,4,5,6] that map and transform
a single brain atlas onto a population.

In the recent and related work of [7], the authors developed a large defor-
mation template estimation algorithm by averaging velocity fields. Most other
previous work [8,9] in atlas formation has focused on the small deformation set-
ting in which arithmetic averaging of displacement fields in well defined. We do
not make this small deformation assumption.

To generate the deformations for producing atlases, we apply the theory
of large deformation diffeomorphisms [10,4]. We simultaneously estimate the
unbiased atlas and the transformations which map the atlas to each population
image. Linear averaging cannot be applied directly to the large deformation
setting as, under the large deformation model, the space of transformations is not
a vector space, but rather the infinite dimensional group H of diffeomorphisms
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of an underlying coordinate system Ω. In our previous work [11], we address this
problem by posing anatomical atlas creation as a statistical estimation problem
where the notion of simple intensity averaging is extended to general metric
spaces first proposed by Fréchet [12]. In [11], we developed a method for unbiased
construction of atlases based on an iterative greedy method for generating large
deformation diffeomorphisms.

In this paper, we present a complete large deformations metric mapping
(LDMM) methodology introduced by [13]. Both the greedy and LDMM im-
plementations provide large deformation coordinate system transformations. In
[11], the solution to the atlas formation problem generates paths through the
space of diffeomorphisms, the length of which cannot be used to define a metric
as the method provides a locally optimal rather than full space-time solution.
In contrast, the variational optimization of the atlas formation cost function in
the LDMM algorithm, gives geodesic paths on the manifold of diffeomorphic
transformations, G, the lengths of which places the orbit of transformed images
into a metric space. In this way, we build a geodesic atlas.

We use the entropy of voxel intensities to measure the robustness and sta-
bility of unbiased atlases. In the context of in MR images, entropy is often used
to assess the degree to which an image differs from an ideal where an ideal im-
age intensity histogram consists of a small number of modes representing tissue
classes [14,15]. We study the stability of atlases produced by our method by
building atlases, of increasing population size, using multiple permutations of
images from a database of images.

The remainder of this paper is organized as follows: in Section 2, the unbiased
atlas formation problem is developed; in Section 3, the Euler-Lagrange equations
used to characterize the LDMM and implementation details and a novel method
for constant velocity computation are presented; and in Section 4, an analysis of
the atlas stability and robustness using entropy are reported.

2 Method

In our previous work [11], we exemplify the atlas estimation problem by first
considering a population of N images {Ii}i=1...N acquired by the same imaging
modality which have been rigidly aligned. We seek the representative image, Î,
that requires the minimum amount of energy to deform into each population
image Ii. In the spirit of [13], we define dense transformations, from the infinite
dimensional group of diffeomorphisms H, and fluid flow vector fields in the fol-
lowing manner: the group elements of the change of coordinates ϕi such that
Î = ϕ−1

i Ii = Ii ◦ ϕi are generated as the end-points ϕi = φi(1) of the flows of
time-dependent vector fields vi(·, t), t ∈ [0, 1] from the space of smooth vector
fields V via

φ̇v
i (t) =

d

dt
φv

i (t) = vi(φv
i , t)

where the superscript v in φv
i is used to explicitly denote the dependence of φi

on the associated velocity field v. The terminal point of the curve φv
i at t = 0 is
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φv
i (0) = e ∈ G where e is the identity transformation e(x) = x, ∀x ∈ Ω. The end

point of the curve φv
i at t = 1 is the particular diffeomorphism φv

i (1) = ϕi ∈ G
that links the images Î and Ii such that Î = ϕ−1

i Ii = Ii◦ϕi. The transformations
ϕi are generated by integrating velocity fields, vi, forward in time.

Given H, with associated metric D : H × H → R, along with an image
dissimilarity measure E(I1, I2), we wish to find the image Î such that

{ϕ̂i, Î} = argmin
ϕi∈H,I

N∑

i=1

(
E2(I, Ii ◦ ϕi) + D2(e, ϕi)

)
. (1)

We induce a metric on H by a Sobolev norm via a partial differential operator
L on the velocity fields. Let ϕ be a diffeomorphism isotopic to the identity
transformation e, that is, there exists a continuous family of diffeomorphisms
from e to φ. We define the squared distance D2(e, ϕ) on the space V of smooth
velocity vector fields on the domain Ω, as

D2(e, ϕ) = min
v:φ̇(t)=v(φv ,t)

∫ 1

0
||Lv(t)||2V dt.

The distance between any two diffeomorphisms is defined by

D(ϕ1, ϕ2) = D(e, ϕ−1
1 ◦ ϕ2).

This distance satisfies all the properties of a metric [16].
Having defined a metric on H, the minimum energy template estimation

problem described by Equation 1 is formulated as

{ϕ̂i, Î}i=1...N = argmin
vi:φ̇(t)=v(φv ,t),I

N∑

i=1

(
E2(I, Ii ◦ ϕi) +

∫ 1

0
||Lvi(t)||2V dt

)
.

Throughout this paper we use the square error dissimilarity metric. Under this
metric, the template estimation problem becomes

{ϕ̂i, Î}i=1...N = argmin
vi:φ̇(t)=v(φv,t),I

N∑

i=1

(
1
σ2 ||I − Ii ◦ ϕi||2L2 +

∫ 1

0
||Lvi(t)||2V dt

)
(2)

where σ models the noise in the image match term. Smaller values of this pa-
rameter increase the penalty of image mismatch leading to exact matching when
σ → 0; this comes at the expense of smoothness in the estimated maps ϕi.

This minimization problem can be simplified by noticing that for fixed trans-
formations ϕi, the image Î that minimizes Equation 2 is given by the voxel-wise
arithmetic mean of the deformed images

Î =
1
N

N∑

i=1

Ii ◦ ϕi. (3)
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Combining Equations 2 and 3 results in following optimization, in terms of ve-
locity fields,

{v̂i}i=1...N = argmin
vi:φ̇(t)=v(φv,t)

E(vi)
.=

N∑

i=1

⎛

⎜⎝
1
σ2

∣∣∣∣∣∣

∣∣∣∣∣∣

⎛

⎝ 1
N

N∑

j=1

Ij ◦ ϕj

⎞

⎠ − Ii ◦ ϕi

∣∣∣∣∣∣

∣∣∣∣∣∣

2

L2

+
∫ 1

0
||Lvi(t)||2V dt

⎞

⎟⎠(4)

For each individual velocity field, the minimizer of Equation 4 is constant speed,
that is, ||vi(t)||V = ci , since it is a geodesic. Note that the solution to this
minimization problem is independent of the ordering of the N images.

3 Implementation

We use the full space time strategy presented in [13]. Since the minimization
problem is independent of the ordering of the N images we use an algorithm that
estimates, on a per iteration basis, each ϕi in turn. The optimization described
by Equation 4 is implemented by an iterative steepest descent algorithm given
by

vk+1
i (t) = vk

i (t) − ε∇vk
i (t)E (5)

where ∇E is the Gâteaux differential of the energy of the objective function giv-
ing the Euler-Lagrange condition. The Euler-Lagrange equation for the solution
of the variational problem in 4, in space of smooth velocity fields V , becomes

vi(t) =
1
σ2 K (|Dφv

i (t, 1)|(I ◦ φv
i (t, 0) − Ii ◦ φv

i (t, 1))∇(I ◦ φv
i (t, 0))) (6)

where φi(s, t) = φi(t)◦ (φi(s))−1 and I = 1
N

∑N
j=1 Ij ◦ϕj . The operator K is the

Green’s function of the differential operator L†L used to define the norm || · ||V .
In our implementation, L is a modified Navier-Stokes operator [10]. Note that
the stable point of Equation 6 satisfies the Euler-Lagrange equation ∇E = 0.

3.1 Constant Speed Velocity

The optimal velocity fields v̂i, given by Equation 4, each define a geodesic path
on the space of diffeomorphisms. As geodesics have constant speed, the velocity
fields have constant norm over time. Given ∇E, we enforce this geodesic con-
straint by calculating adaptive per-iteration time steps εk

i (t) such that for all
time steps t, the norms

∫
Ω ||Lvk

i (t)||22dx are equal. We formulate the inductive
hypothesis:

∫
Ω ||Lvk

i (t)||22dx = ρk
i , a constant and solve for εk+1

i (t) such that
∫

Ω

||Lvk+1
i ||22dx =

∫

Ω

||L[vk
i − εk+1

i (t)∇vk+1
t

E]||22dx = ρk+1
i

⇒ ρk+1
i = ρk

i (t) − 4λk+1
i (t)εk+1

i (t) + 4νk+1
i (t)

(
εk+1
i (t)

)2
(7)
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where

νk+1
i (t) = ρk

i − 2
σ2

∫

Ω

〈vk
i (t), bk+1

i (t)〉dx +
1
σ4

∫

Ω

〈bk+1
i (t), K(bk+1

i (t))〉dx

λk+1
i (t) = ρk

i − 1
σ2

∫

Ω

〈vk
i (t), bk+1

i (t)〉dx

bk+1
i (t) = |Dφv

i (t, 1)|(I ◦ φv
i (t, 0) − Ii ◦ φv

i (t, 1))∇(I ◦ φv
i (t, 0)).

After choosing an appropriate value for the difference ρk+1
i − ρk

i , we solve Equa-
tion 7 for εk+1

i (t) using the quadratic formula for the positive solution which
yields,

εk+1
i (t) =

1
2νk+1

i

(
λk+1

i (t) +
√(

λk+1
i (t)

)2 − νk+1
i (t)

(
ρk

i − ρk+1
i

))
.

We begin by specifying an initial value for one of the εk+1
i (t) and solve for

ρk+1
i − ρk

i . Note that the integrated velocity norm
∫

Ω
||Lvk+1

i (t)||22dx does not
have to be computed since it starts at zero and increases at iteration by ρk+1

i −ρk
i ,

which is known at each iteration.

4 Results

To evaluate the performance of this method, we consider the question: how many
images are required to represent a population? To address this question, we build
atlases of increasing population size and analyze their stability with respect to
image intensity entropy. Entropy has often been proposed as a good measure of
image quality [14,15] where sharp images have relatively low entropy. Let X be
a random variable associated with the intensities for a given image and let pX

be the probability mass function associated with X . Discrete entropy is defined
as the expected uncertainty in X ,

H(X) = EpX [− log pX(x)] = −
∑

x∈X

pX(x) log pX(x)

where the logarithm, in our case, is take with base two yielding entropy mea-
sured in bits. The uniform distribution maximizes entropy for random variables
defined without moment constraints, such as image intensities [17]. That is, a
blurry image, with a relatively flat histogram, will have greater entropy than a
sharp image. We are interested in the entropy introduced by the atlas creation
method rather than the intrinsic entropy associated with images of individual
brain anatomy.

4.1 Atlas Formation

Our image database contains fourteen brain images that have been provided by
the UNC autism image analysis group. These images have been intensity normal-
ized and rigidly aligned. Due to the high memory demands of our implementa-
tion, we apply our algorithm to 2D mid-axial slices, although the methodology is
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generalizable to 3D. These images are show in Figure 1. There is noticeable large
deformation variation between these anatomies, especially in lateral ventricles.

To quantify the stability of the estimated atlases, we generate eleven atlas
cohorts, {Cl}l=2...12, each with twenty atlases derived from l images randomly

Fig. 1. Image Database: 2D mid-axial slices from MR images of fourteen subjects

Fig. 2. Mutually Exclusive Atlases: each
column represents an individual atlas con-
structed by both arithmetically averaging
rigidly aligned images (top row) and es-
timating a Fréchet mean atlas after 100
iterations (bottom row). These two at-
lases were formed from completely sepa-
rate sets of images.

2 3 4 5 6 7 8 9 10 11 12
4

4.1
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4.8

4.9

5
Cohort Average Entropy (bits)

Atlas Size

E
n

tr
o

p
y

Atlases via Averaging
Atlases via LDMM

Fig. 3. Average Entropy: for comparison,
the average entropy of the original four-
teen images is 3.91 bits with standard de-
viation 0.08 bits. The error bars represent
one standard deviation from the mean.
Prior to computing entropy, we shift all
atlases by half a pixel to compensate for
the entropy introduced by the linear inter-
polation used to reconstruct images dur-
ing registration.
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selected from the original database of fourteen images. Two mutually exclusive
atlases from C7 are shown in Figure 2 for both simple averaging and the LDMM
method. The rigidly aligned atlases are blurry since they are arithmetic averages
of varying individual neuroanatomies. Ghosting is evident around the lateral
ventricles and near the boundary of the brain. In the final Fréchet atlases, these
regions appear much sharper.

4.2 Atlas Convergence

To evaluate the robustness and stability of our atlases we first compute the
mean and standard deviation of the entropies of the original fourteen images. To
this we compare the mean and standard deviation of the atlas cohort entropies
that have been created both by simple arithmetic averaging of the rigidly aligned
images and those produced by the LDMM method. These results are summarized
in Figure 3. From this plot we notice that as atlas size increases, the average
atlas entropy increases for atlases formed by simple intensity averaging, where
as the average entropy decreases for atlases created via LDMM. The atlases also
become more stable with respect to entropy as the standard deviation decreases
with atlas size. After cohort C10, the atlas entropy means appear to converge.
To answer our original question, given these fourteen subjects, we need about
ten images to create a stable atlas representing neuroanatomy.

5 Conclusion

A novel method for unbiased atlas formation involving large deformations met-
ric mapping has been presented. The LDMM implementation has also been
improved by new constant speed velocity reparameterization constraint. The
preliminary results show that this method produces stable atlases with respect
to the entropy image quality measure. A possible direction for future work is
to explore the stability and robustness in the presence of much larger initial
population databases.
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