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2 Unité INSERM 562 “Neuroimagerie Cognitive”,
Service Hospitalier Frédéric Joliot, CEA/DRM/DSV,
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Abstract. FMRI group studies are usually based on stereotactic spa-
tial normalization and present voxel by voxel average activity across
subjects. This technique does not in general adequately model the inter
subject spatial variability. In this work, we propose to identify func-
tional landmarks that are reliable across subjects with subject specific
Talairach coordinates that are similar -but not exactly identical- between
subjects. We call these Brain Functional Landmarks (BFLs), and define
them based on cross-validation techniques using 38 subjects. We explore
a dataset acquired while subjects were involved in several cognitive and
sensori-motor processes, and show that this representation allows to clas-
sify subjects into sub-groups on the basis of their BFL activity.

1 Introduction

Across subjects variability of both the anatomical and functional organization
of the brain is often observed in brain imaging [13] but rarely studied in depth.
The causes of the observed fMRI variability are numerous and often difficult
to discriminate. Some of it may be due to anatomical variability [7], and some
to variation in the organization of the functional topography of our cognitive
processes; part of it depends on the (current) physiological state of the subject
at the time of scanning, and part is due to acquisition noise. The first two causes
may well reflect both genetic or epigenetic factors. This leads to strong variability
both in the i) position and in the ii) activity level (contrast to noise ratio: CNR)
of the hemodynamic signal measured in fMRI.

This inter-subject variability strongly impacts the sensitivity of group studies
[6,8], and currently the solution most widely adopted resorts to i) stereotactic
normalization followed by spatial smoothing (often 12-14 mm Gaussian FWHM),
and ii) assuming that voxel intensity follows a Gaussian distribution [1]. Both
the current spatial and intensity models are probably suboptimal.

Global measures of the overall variability between subjects have been pro-
posed and allow to address group homogeneity [11,4], but more local analyzes are
needed to decompose the sources of variability. This combines with the need for
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sparser representation of brain activity that would open the way to techniques
that are too computationally demanding in a dense (voxel based) representation
of the functional activity. To some extent, thresholding activation maps turns
a dense representation into a sparse one, but this operation is not robust to
inter-session variations [8,10] and does not model the spatial variability.

The reduction of the volume-based information to a representation that re-
tains the essential organization of the functional activity across subjects is crucial
for many applications in the field of brain mapping, and the present paper is a
step towards this goal. This reduction enforces the following constraints:

– Some cognitive processes (possibly not all) give rise to stable topographic
organization across subjects [9].

– A common topographic organization may, however, result in different spatial
positions when functional images are normalized to a standard template.
Mild spatial variability across subjects should thus be modelled.

– Quantitatively, one can expect a relatively high inter-subject variability in
the contrast magnitude or CNR. The relative activation magnitude (e.g. local
maxima of the contrast maps) may thus better characterize the activation
topography than across subject random effect tests.

The aim of the present work is to detect adapted landmarks, which we hence-
forth call Brain Functional Landmarks (BFLs). We propose to base our detection
on the reproducibility of the occurrence of activations across subjects for some
given contrasts. This analysis yields a topographic representation of the func-
tional brain, and quantitative measurements of the spatial and contrast/CNR
variability across subjects. We further use those results to classify subjects into
subgroups with similar BFL activities.

The sequel of this paper is organized as follows. In section 2, we describe
the dataset and the procedure that are used for the detection of BFLs. In sec-
tion 3, we describe our results on the BFL detection and the use of BFLs to
study the functional population variability. We discuss the technical aspects and
implications of this work in section 4.

2 Materials and Methods

Datasets and pre-processing. We used an event-related experimental Localizer
paradigm that comprises ten conditions. Subjects underwent a series of stim-
uli or were engaged in tasks such as passive viewing of horizontal or vertical
checkerboards, left click after audio or video instruction, right click after audio
or video instruction, computation (subtraction) after video or audio instruction,
sentence listening and reading. Events were occurring randomly in time (mean
inter stimulus interval: 3s), with ten occurrences per event type (except motor
button clicks for which there were only five trials).

Thirty-eight right-handed subjects participated in the study. The subjects
gave informed consent and the protocol was approved by the local ethics com-
mittee. Functional images were acquired on a 3T Bruker scanner using an EPI
sequence (TR = 2400ms, TE = 60ms, matrix size=64×64, FOV = 24cm×24cm).
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Each volume consisted of 34 4mm-thick axial slices without gap. A session com-
prised 130 scans. Anatomical T1 images were acquired on the same scanner,
with a spatial resolution of 1 × 1 × 1.2 mm3.

fMRI data pre-processing consisted in 1) temporal Fourier interpolation to
correct for between-slice timing, 2) motion estimation. For all subjects, motion
estimates were smaller than 1mm and 1 degree, so that no correction was per-
formed on the datasets; 3) anatomo-functional image coregistration and spatial
normalization of the functional images. This pre-processing was performed using
the SPM2 software (see www.fil.ucl.ac.uk, [1]). Statistical analysis of the dataset
was also carried out with the SPM2 software, using standard high-pass filtering
and AR(1) whitening. For further analysis, we used the effect magnitude (GLM
parameters) and significance (P-values) for each subject and contrast of interest.

Detection of BFLs. We define a Brain Functional Landmark (BFL) as a locus
around which an activation can reliably be found across subjects.

An overall description of the BFL detection procedure is given in Fig. 1.
We proceed as follows: Given N datasets (subjects), we smooth the parameter
map of (N − 1) subjects and derive the corresponding random effect (RFX)
map. We retain the maxima M i, i = 1..I of the maps that are above a rather
liberal statistical threshold (p1 < 10−3, uncorrected). Then we find the nearest
local maximum of the corresponding unsmoothed, thus bias free, statistical map
in each subject. The positions τ i

n, n = 1..N − 1, i = 1..I of these local maxima
define an area Ri. The region Ri is defined as a ball of center ci = 1

N−1

∑
n τ i

n and

radius ri =
√

5
3(N−1)

∑
n ‖ci − τ i

n‖2. This is equivalent to assuming a compactly

supported, locally uniform spatial distribution of (τ i) across the population.
Then we perform the following test on the remaining dataset: if there is an
activated voxel in the region Ri with corrected probability p2 < 0.05, the locus
ci is retained as a potential BFL . We used the Bonferroni correction for multiple
comparisons for the number of voxels in Ri.

This procedure is performed N times, one of the subjects being left out,
and provides a collection of BFL candidates ci(n) (region i, subject n left out).
This collection of BFL candidates is naturally redundant: if a candidate ci(l) is
detected when subject l is left out, it -or a very close point cj(k)- may also be de-
tected when subject k is left out. Thus we perform an average link agglomerative
clustering of the candidates, with a stopping criterion δ = 5mm. The clusters of
candidates are finally validated when they contain at least ν = N/2 candidates.
This procedure reduces the risk of false positives to α < V (δ)p1p

ν
2 , where V (δ)

is the volume (in voxels) of a ball of radius δ, making it negligible in practice.
Milder thresholds on ν, e.g. ν = N/4, may be used when one is interested in
finding landmarks on specific sub-groups of subjects. Therefore, ν, the number
of candidates within a cluster, is a measure of the reproducibility of the BFL
candidate. The BFLs are chosen on the basis of reproducibility and not contrast
to noise ratio. Note that the algorithm adapts to the number of subjects N .

Despite smoothing, the initial RFX test in the detection procedure may
contain several local maxima close to one another (possibly because of
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Fig. 1. Flowchart of our method for the extraction of Brain Functional Landmarks
(BFLs). Of note, default choices for all the parameters can be easily set. This algorithm
adapts to the number of subjects N ; for each BFL and each subject, it yields a signal
value and a position that can be further processed.

mis-registrations) which may yield confounding patterns. We avoid this by re-
stricting our definition of local maxima to maxima within a rather large neigh-
bourhood, (5 × 5 × 5) voxels or greater, of the RFX map.

The information conveyed by BFLs. The definition of landmarks across a popu-
lation provides a subject-specific representation of both the activation position
foci and the magnitude of the effect. This allows an exploration of the activation
pattern, and of the relative importance of the different regions across groups of
subjects. While the contrast magnitude and statistical significance essentially
classify subjects into groups activating weakly or strongly (data not shown),
classification of the relative ranking (order statistics) of the different foci yields
a more useful information. We use an agglomerative algorithm to check whether
several subgroups can be defined in the population, and represent the average
relative activation magnitude for each group.

3 Results

The BFLs found in the Localizer experiment. We applied BFL detection on the
38 subjects and the following contrasts: right click-left click; left-right click; audio
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(a) (b) (c)

Fig. 2. Representation of the functional BFLs found on the group of subjects, on
the left and right grey-white matter interface of an individual brain. (a) View from the
occipital side, (b) left hemisphere, (c) right hemisphere. The color codes for the contrast
associated with each BFL: Yellow BFLs for the audio-video contrast, green for the
opposite contrast, dark blue for the right-left click contrast, red for the opposite, pink
for the computation-sentence understanding contrast and light blue for the reading-
passive viewing contrast. Note that subject specific loci could be reported on their own
anatomy.

instructions-video instructions; video instructions-audio instructions;
computation-sentence reading/listening; sentences reading-low level visual stim-
ulation. The threshold ν is set to ν = N/2. The BFL detection lasts about one
minute per contrast with a C/Matlab code. The result is displayed in Fig. 2 on
one subject grey-white matter interface, with respectively 2, 1, 9, 2, 6 and 3
BFLs for the above contrasts. This readily yields a topography of the functional
brain.

Study of the relative activation magnitude in the population of subjects. Using the
same experimental data, we chose to explore the computation-sentence reading
contrast of interest. Lowering ν to N/4, we obtained 11 BFLs in the population
for this contrast, located in the parietal and frontal cortices. For each subject,
the BFLs are ranked according to their CNR, and a maximum link agglomerative
clustering is applied to this rank data ; 3 clusters were found to be representative
(data not shown). Fig 3(a) represents a 3D multidimensional scaling (MDS) plot
of the rank data, and the three clusters formed by the algorithm. The size of the
three subgroups are 14, 18 and 6 subjects respectively. The average network of
activations in each subgroup is presented in Fig. 3(b-d).

Although these results are still preliminary and require more validations,
recent work on computation [5] indicate that different activation strengths in
the parietal cortex imply a stronger (Fig. 3d) or weaker (Fig. 3b) involvement
of visual-spatial attention in the subtraction task; the strong dissymmetry of
the parietal activation (group Fig. 3c) may indicate a stronger involvement of
language areas in the task. Altogether, these three groups might thus represent
different subjects strategies when computing (or reading).
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(a) (b)

(c) (d)

Fig. 3. Classification of the subjects according to the magnitude of their activity
in different foci for the computation- sentence reading contrast. (a) 3-D MDS plot of
the population. The maximum link clustering algorithm indicates a 3 classes structure.
(b)(c)(d): Representation of the activation networks on the 11 foci defined by the BFLs.
The color codes for the relative magnitude of activation, from weak (brown) to strong
(yellow-white). These foci are superimposed on a standard grey-white matter interface.

4 Discussion and Conclusion

Dense versus sparse approaches in neuroimaging. So far, functional MR images
have mainly been considered as unstructured fields of data from which informa-
tion is extracted through statistical thresholding. Such a point of view is limited
in the case of multi-subject studies, in which voxel-based inference treats different
sources of variability as confounds and tries to reduce their impact by smoothing
(see [1]). We propose here an alternative solution to extract and quantify what
is common and what is variable across subjects. Obviously, this cannot be per-
formed on dense data fields, and one has to turn to sparse representations. This
is fortunate, since neuroimaging inference is generally concerned with extracting
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specific networks of regions, and not with each and every voxel in the whole
brain volume.

Consequently, so long as brain anatomy should be better described by sulco-
gyral or cytoarchitectonic structures, our results show that the brain can be
endowed with some landmarks which can be used for a better and adaptable
definition of regions of interests. To our knowledge, this is the first landmark-
based approach in functional neuroimaging.

Detection of the BFLs. We have designed a BFL detection procedure that is ro-
bust to slight displacements of a focus of activation across subjects. Our method
consists in a leave-one-out procedure, where learning is performed on second-
level (inter-subject) statistics and test on first-level (intra-subject) statistics.
This double thresholding has two advantages: it enables a relatively mild thresh-
old at each step, and adapts to small populations. Since it is specifically based
on the maxima of the map, unlike dense approaches, this procedure is not too
sensitive to a particular choice of a P-value.

Although different approaches are possible, e.g. inter-subject clustering of
the activated areas [12,9], the present method has the advantage of being com-
putationally efficient, robust to displacement and easily interpretable. Moreover,
it is controlled by reproducibility criteria that are more reliable than cluster se-
lection techniques. While the method still requires further validations, it showed
promising results on our data.

Use of BFL activity to characterize population subgroups. A tremendous advan-
tage of sparse representations is that they allow an easy comparison of subjects
activity: while distance between functional images provide very useful insight on
the homogeneity of populations [11,4], the use of BFLs simplifies the picture by
concentrating on informative regions that are not arbitrarily selected. In particu-
lar, our example in Fig. 3, shows interpretable subgroup structures for a contrast
of interest. This study would greatly benefit from a more systematic comparison
of the activation magnitude and significance across subjects and experimental
conditions, that would clarify region-based inference [3]. We emphasize that such
comparisons are precisely allowed by BFLs, whereas direct image comparisons
may be confounded by the spatial variability of activated regions.

Conclusion and future work. The information carried out by fMRI activation
images is seen in this work to have a topographic representation at least partially
reproducible across subjects. This, together with functional localization studies
[2,9] has led us to the concept of Brain Functional Landmark (BFL). We have
shown that the detection of these landmarks, based on a reproducibility criterion,
is relatively easy, and allows for sparse and thus manipulable representation of
the brain functional information. Moreover, we have shown that such a sparse
representation can be used to study, across individuals, the spatial topography
of a cognitive network defined by computation minus sentence reading.

It can be noticed that robust detection of BFLs is a step forward in the
representation of the population in a common referential (normalization).
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Straightforward extensions of this work are i) the study of the warp implied
by the spatial variability of BFLs across subjects ii) the comparison and the
merge of BFLs with anatomical landmarks [7] and iii) the use of this informa-
tion for spatial normalization and signal calibration.
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données’, ’neurosciences intégratives et computationnelles’ and ’connectivité’.
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