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Abstract. In Emission Tomography imaging, respiratory motion causes
artifacts in lungs and cardiac reconstructed images, which lead to misin-
terpretations and imprecise diagnosis. Solutions like respiratory gating,
correlated dynamic PET techniques, list-mode data based techniques
and others have been tested with improvements over the spatial activity
distribution in lungs lesions, but with the disadvantages of requiring ad-
ditional instrumentation or discarding part of the projection data used
for reconstruction. The objective of this study is to incorporate respi-
ratory motion correction directly into the image reconstruction process,
without any additional acquisition protocol consideration. To this end,
we propose an extension to the Maximum Likelihood Expectation Max-
imization (MLEM) algorithm that includes a respiratory motion model,
which takes into account the displacements and volume deformations
produced by the respiratory motion during the data acquisition process.
We present results from synthetic simulations incorporating real respira-
tory motion as well as from phantom and patient data.

1 Introduction

Respiratory motion during the data acquisition process leads to blurred images,
making difficult an accurate diagnosis, planning and following. For instance, mis-
localizations of lesions in the fusion of positron emission tomography (PET) and
computerized tomography (CT) have been found [I]. Similarly, significant tumor
motion has been reported in others studies (e.g. [213]) as well as significant vol-
ume increase of lung lesions in images reconstructed without respiratory motion
compensation [4].

To our knowledge, motion correction in Emission Tomography (ET) has been
seldom investigated in the literature. Current methods can be classified in four
main categories: post-processing, Multiple Acquisition Frame (MAF), sinogram
data selection based on detected motion, and sinogram correction.

— Post-processing methods are based on transformations performed either in
projection-space (e.g [5]) or in image-space (e.g. [6]). However, the motion
models used in projection-space are too simplistic (e.g. global scaling), and
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the transformations applied in image-space do not consider the true effects
of motion on the acquired data.

— The MAF-based methods consist on regrouping the projections in smaller
subsets according to the detected motion (either online or offline motion
detection). Then, image reconstruction of each subset is performed indepen-
dently followed by a realignment of the images. These approaches present the
inconvenient that the signal-to-noise ratio increases for images reconstructed
from smaller subsets of projections.

— Sinogram data selection based on motion detection, also known as gating, has
been used to compensate for motion correction in ET []. Gating techniques
have shown improvements, contributing to a better quantification of lesions.
However, they require extra hardware or specific data acquisition modes and
they discard part of the acquired projection data.

— Sinogram correction methodologies act directly on the projection data by
repositioning the lines-of-response (LOR) when the motion is known [7J8].
However, these approaches are only applicable to rigid motions and require
to deal with motion-corrected LOR’s that may fall in non-valid positions,
which decreases their practical interest.

The purpose of this paper is to describe a reconstruction algorithm that al-
lows for a retrospective respiratory motion correction that operates directly over
the complete projection data, without the need of additional acquisition proto-
cols or discarding of data. To that end, we propose an extension to the MLEM
reconstruction algorithm in which a motion model is plugged. We consider not
only displacements but also local deformations.

The next sections present the methodology and results from phantom data
and synthetic simulations incorporating real respiratory motion. For patient
data, a preliminary approach of respiratory motion modelling and results of
its use with the proposed motion correction methodology are also presented.

2 Method

2.1 Maximum Likelihood Expectation Maximization

First introduced in emission tomography by Shepp and Vardi [9], the MLEM
algorithm is based on a Poisson model for the emission process. For a given
emission element b the number of emissions f;, follows a Poisson law with mean
M. Besides, the projection matrix R (or called by some authors system matrix
or transition matriz) gives the probability that a certain emission from voxel b
is detected by the detector d (called dezxel hereafter). Furthermore, the number
of detections from dexel d (i.e., pg) can be expressed in terms of the number of
emissions fy, pg = >, foRap. This latter expression is important since it states
the relationship between detections and emissions through the system matrix
values. Later, this fact will be exploited in the motion correction step.

We are interested to find the mean value A from the set of projections p. This
can be done by searching the maximum likelihood of getting a set of measures p
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given an image A (i.e., A = argmaxy[P(p|\)]). It can be shown (see [9] for more
details) that A can be found by means of an iterative algorithm

<K>
>\b

(1)

ASE+1> _ paRap
b > Ray = 30, A5 Ray

where py stands for the number of detections of dexel d, Ay is the mean number
of emissions from voxel b, Ry is the probability that a particle emitted from
voxel b is detected by the dexel d and K stands for the iteration number.

2.2 Incorporating Motion Correction into the MLEM Algorithm

We incorporate motion correction into the MLEM algorithm through the pro-
jection matrix R. We estimate the new contribution R, of a voxel under motion
b to every dexel d.

Let us consider a continuous motion modeled by the spatial transformations
i« R3 — R3, where o;(m) denotes the position of point m at time t. This
motion is observed from time t =0to t =T.

We first discretize this motion into a discrete set of spatial transformations
i, & = 0...N, the transformation ¢; being valid from ¢ = t; to t = ¢;41. Rgb
expresses then the weighted sum of the contributions RY, of deformed voxels
Pi (b) to d:

RG, = wiRl, (2)

The weights w; = (t;41 — t;)/T allow to take into account the kinetic of the
motion: w;T represents the duration where ¢, can be effectively approximated

by ;.
2.3 Computation of System Matrix Terms

The voxels that contribute to a dexel d are assumed to intersect a 3-D line that
stemed from d. Let us denote by [z the length of the intersection of this line
with the emission element b. We thus define the contribution of b to d by

Lay b
2 lary 2 lany
In the static case, we model the emissions elements as spheres inscribed in the
voxel space, which facilitates the calculation of Eq. ([B)): see Fig. [h. The sum-
mation in each denominator of Eq. (3) acts as a normalization term.

If no deformations can be assumed for emission elements b during their mo-
tion, we could still have used the intersection of a line with a sphere for the
computation of the contribution R},. However, this will not be realistic. Indeed,
it has been shown that the displacements in the thorax (due to the respiratory

motion) present a non-linear and a non-homogeneous behavior [3]. Thus, we
have to consider also the deformations of b. When under motion, the emission

static: Rqp = dynamic: RY, =

3)
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Fig. 1. The contribution of an emission element b to a dexel d represented by a dotted

line is defined by the intersection (continuous line) of (a) a sphere with a line (static
case) or (b) an ellipsoid (a deformed sphere) with a line (dynamic case)

element b will deform into ¢;(b),i = 0...N. As a first order approximation, a
deformed sphere is an ellipsoid. The contribution of b at state i to d, i.e. p;(b), is
then similarly defined as the length intersection of the line d with this ellipsoid
(see Fig. [Ib).

The study of the matrix Vi, allows to estimate the ellipsoid. Let us consider
the singular value decomposition (SVD) of matrix Ve, that is V; = UXVT]
where U and V are square and orthogonal matrices and X = diag(A1, A2, A3),
with Aj, (j = 1,2, 3) the singular values of V;. It turns out that the columns of
U are the eigenvectors of Vi; V; T, and also give the preferred local deformation
directions, while the \; are related to the magnitude of the deformations in the
direction of the eigenvectors.

The modellization of the emissions elements as spheres that translate and
deform locally into ellipsoids according to a known transformation, represents a
novel contribution in this work. Furthermore, computations of the system matrix
elements are faster than using classical methods of dexel-voxel intersection.

Since a dexel is defined by the path travelled by a single (e.g. SPECT) or
by a pair of photons (e.g. PET), the method is independent of the type of ET
modality, and thus can be used without further modifications.

2.4 Estimation of the Respiratory Motion

In practice, unless extra devices are used to measure the breathing pattern, the
respiratory motion (transformation ¢) is generally unknown.

A first approach to estimate this motion consisted in registering a known
respiratory motion model on the data to be reconstructed. To build this model,
two MRI images of a volunteer were acquired at breath holding in expiration
and inspiration and then non-rigidly registered. This provides us with a volumic
displacement vector field (DVF) u. Transformations ®;(m) are then given by
@, (m) =m+i/Nu(m).

To adapt the transformation @; to a patient, we first create an average image
of the expiration and inspiration states (to simulate a non-corrected reconstruc-
tion) that is affinely registered against the non-corrected reconstructed patient’s
image. This provides us with an affine transformation T. We compose then the
transformations to obtain ¢; =T o @; o 71
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Though this method is by no means a robust method, it provides a first
insight of the results that can be achieved by using such an approximative
model with the proposed motion correction technique. Further improvements are
needed to assure a good estimation of the patient’s respiratory motion model.

3 Results
3.1 Simulated Data

We simulated respiratory motion in a SPECT study of lungs. For this, we used
the thorax phantom NCAT (NURBS-based cardiac torso) [10], to which a small
lesion of 15 mm diameter was added. The model was then deformed with N ¢,
transformations, estimated from a known real respiratory motion transforma-
tion @. Sinograms were then computed for each time state using the SImSET
(Simulation System for Emission Tomography) library and combined into one
single sinogram by a weighted sum.

(a) Non-corrected (b) Corrected (c) Intensity profile
Fig. 2. Image reconstruction without motion correction (a) and with motion correction
(b). The corrected profile (dashed line) show a close relationship with the reference
profile (continuous line) in comparison with the non-corrected one (dotted line) (c).

Fig. 2l shows the reconstructed image with and without motion correction.
As described in the literature, the lesion appears larger in the non-corrected
reconstruction. A visual comparison of the intensity profiles (Fig. Blc)) shows
a good agreement between the motion-corrected reconstruction and the ground
truth.

Two figures of merit were used to measure quantitatively the performance
of the method, namely the coefficient of variability CV = o(lesion)/u(lesion)
where p(lesion) and o(lesion) denote the average and the standard devia-
tion of the intensity values over the lesion, and the contrast recovery CR =
p(lesion)/p(background) [I1]. For the reference volume CR and CV values are
5.80 and 0.14 respectively. The non-corrected volume presents CR and CV values
of 3.20 and 0.13 respectively. After motion correction the CR value increased to
4.40 while the CV value remained in 0.13. From these results, it can be concluded
that in the lesion area, noise properties are not affected by the motion correction.
Higher C'R values are found for the corrected cases in comparison with the non-
corrected one (27+4% of increment), which demonstrates the deblurring effect
of the motion correction.



374 M. Reyes et al.

3.2 Phantom Data

A phantom made of three spheres filled with 99mTc, having a concentration
of 85uCi/ml each and of 1.8, 3.2 and 1.3 cm diameters (Inserts numbers 1, 2
and 3 respectively) was acquired with a Millenium-VG SPECT camera. Five
data acquisitions were performed, and for each acquisition, the phantom was
translated 1 cm in the axial direction. By combining the sinograms, we simulate
the acquisition of a moving phantom. Finally, one single acquisition of duration
five times longer was performed in the reference position, to serve as ground
truth.

Reconstructed volumes had dimensions 1283 voxels with voxel size of 4.42
mm. Fig. B] shows the corrected and non-corrected reconstructed volumes and
the intensity profiles for insert number two.

LR

™ 7
Axial siice

(a) Non-corrected (b) Corrected (c) Intensity profiles

Fig. 3. Axial translations of spherical sources during an ET study. Without motion
correction (a), after motion correction (b) and the intensity profiles of reference, non-
corrected and corrected volumes for insert number two (c).

For each insert, volume, CR, C'V, Volume Error (VE), Volume Precision
(VP), Centroid Error (CE) and Centroid Precision (CP) measurements were
calculated to assess the quality of the motion correction in phantom data. VE
and VP are defined as the relative error between the reference and non-corrected
volumes and between the reference and corrected volumes, respectively. CE and
CP are defined as the distance between reference and non-corrected centroids
and between reference and corrected centroids, respectively. C'R ratios are pre-
sented as CR,. (corrected contrast recovery ) over C R, (non-corrected contrast
recovery). Similarly for CV, we have CV,/CV,,. (see Table[). From Table[I and
Fig.[Blit can be seen that the motion correction method yields corrected volume
size, spheres positions and improved contrast and noise properties.

Table 1. Results of motion correction for phantom data

Insert| VE | VP |CE (c¢cm)|CP (cm)|{CRc/CRnc|CVe/CVie
1 |350%|5,8% 2.0 0.16 2.2 0.58
2 125%| 1% 1.96 0.21 1.62 0.89
3 |166%| 8% 1.85 0.21 2.57 0.48
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3.3 Patient Data

Five patients, one lesion each, were used to test the methodology of motion
correction in patient data. For each of them, image reconstruction with and
without motion correction was performed. Gaussian regularization with filter
full-width at half maximum (FWHM) of 8.5 mm every three iterations were set
as main parameters. The reconstructed images had dimensions 1283 with voxel

size of 4x4x4 mm3.

Table 2. Results of motion correction for patient dataset. The labels stand for: Non-
corrected (NC), corrected (C), lateral (LR), anterior-posterior (AP) and cranial-caudal
(CO).

Patient|| Volume| Displacement (mm) CR CcVv

(C/NC)[ TR AP CC [[NC C |[NC C
0.95 2.00 3.20 3.20 ||4.78 5.42{/0.22 0.23
0.64 2.60 3.60 5.10 ||5.04 6.06{(0.24 0.20
0.98 0.30 2.62 4.23 ||7.47 7.49((0.26 0.22
0.86 0.45 1.20 1.74 |3.66 3.90/|0.18 0.16
0.77 2.50 0.60 2.33 ||4.92 5.70{(0.09 0.09

G x| W N~

From results presented in Table ] it can be first noticed a volume reduction
ranging from 2% to 36% after motion correction. Quantitative measures indicate
improvements in contrast recovery after motion correction, which demonstrates
the ability of the proposed method to compensate the blurring effects in the
lesion area and its spatial activity distribution. Improvements in noise level are
less significative. However, we did not find increases in noise level due to motion
correction.

4 Conclusion

During an emission tomography study, induced motion due to patient breathing
can lead to artifacts in the reconstructed image. This can produce less accu-
rate diagnosis and more important, incorrect radiotherapy planning [3J4]. We
have presented a methodology to correct for respiratory motion in the image
reconstruction step. The method accounts for a respiratory motion model that
takes place in the computation of each term of the system matrix, and takes
into account displacements and deformations experienced by the voxels during
respiratory motion.

The method was implemented in a parallel framework and tested with simu-
lated, phantom and patient data. For simulated and phantom data, the results
show the ability of the proposed method to compensate for motion, render-
ing images with improved spatial intensity distributions and corrected lesions’s
shapes. For patient data, we have addressed the problem when no information
about the patient’s breathing cycle is available. As a first approach, we have used
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a respiratory motion model created by adapting a known model to the patient’s
anatomy. Although this method lacks of robustness, we are convinced that this
first approach yields images with lesser respiratory motion effects than those
reconstructed without motion correction. Improvements of the figures of merit
were found after motion correction, and volume reduction and lesions displace-
ments are likely to occur according to findings of previous studies [3].

Some further improvements and work in progress consider the inclusion of
breathing and anatomy subject variability into the respiratory motion model
estimation (i.e. transition from an individual respiratory motion model to a
statistical one) and validation of the proposed motion correction method against
a ground truth (e.g. gating).
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