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Abstract. This paper presents anovel approach that three-dimensionally
visualizes and evaluates stenoses in human coronary arteries by using har-
monic skeletons. A harmonic skeleton is the center line of a multi-branched
tubular surface extracted based on a harmonic function, which is the so-
lution of the Laplace equation. This skeletonization method guarantees
smoothness and connectivity and provides a fast and straightforward way
to calculate local cross-sectional areas of the arteries, and thus provides
the possibility to localize and evaluate coronary artery stenosis, which is a
commonly seen pathology in coronary artery disease.

1 Introduction

Stenosis is a commonly seen pathology resulting from atherosclerosis, which is
a systemic disease of the vessel wall that occurs in the aorta, carotid, coronary,
and peripheral arteries [1]. Atherosclerotic plaques that develop in vessel walls
can intrude into the vessel lumen and result in a narrowing (stenosis) of the
lumen. When stenosis occurs in coronary arteries, it will cause insufficient supply
of blood to the heart tissue, and sometimes leads to serious results such as
heart attacks. The detection of stenoses in vivo can greatly assist the diagnoses
and treatments of coronary heart diseases. The conventional way of identifying
stenoses is by using coronary angiography imaging, but this method is invasive,
and it only provides 2D projections of the vessel lumen, which may yield biased or
inaccurate evaluation of the stenosis. Thanks to the development of multislice-
CT (MS-CT), we are now able to acquire 3D volumetric data of the entire
coronary artery tree, and obtain the complete information of its geometry so
that we can perform more accurate measurements based on these data.

Numerous methods have been proposed to extract skeletons of tubular struc-
tures in the human body such as blood vessels, airways and colons. Most methods
in literature fall into the following two classes [4]: boundary peeling (also called
thinning, erosion, etc.) [5], and distance coding (distance transform) [2, 3]. Al-
though both classes of methods have yielded promising results, these methods
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usually have problems of preserving connectivity and being smooth. Also, direct
extension of these methods to 3D is usually difficult and may not guarantee a
unique solution for a single structure.

In this paper, we explore a skeletonization method based on the solution
of the Laplace equation with boundary conditions of the first kind (Dirichlet
problem) on the surface of a tubular structure. Since the solution of the Laplace
equation is a harmonic function, the skeleton extracted using this method is
called the harmonic skeleton [8]. The harmonic skeleton is easy to compute, is
guaranteed to be smooth, and can automatically give a viewing vector when
used as a guidance for fly-throughs for virtual endoscopy. Moreover the space
of harmonic functions is linear (as opposed to that of the distance transform on
which the ordinary skeleton is founded). The distance transform is commonly
used in endoscopy; see [9] and the references therein.

Further, we develop an effective way to determine the boundary conditions
for solving the appropriate Laplace equation, so that the points that form the
final skeleton are evenly distributed, without being too dense or too sparse,
thus guaranteeing the connectivity of the skeleton. Most importantly for our
applications, the cross-sectional area at a certain location on the artery can be
conveniently measured using the least squares plane that fits all the points on
the iso-value contour of the solution of the Laplace equation. This means that we
can acquire the cross-sectional areas throughout the artery in order to identify
stenoses.

We tested our method on CT data sets of both normal and diseased coronary
arteries and developed different ways to visualize and analyze stenoses of the
arteries. The method is described in detail in Section 2, and we show the results
in Section 3.

2 Methodology

2.1 Harmonic Skeleton

The harmonic skeleton can be obtained by solving the Laplace equation on
the surface of the artery. Let Σ denote the surface, which is topologically a
branched tube. Each branch has a boundary σi (i = 0, . . . , N − 1), which is
a closed contour, as shown in Figure 1. Here N denotes the total number of
boundaries including the root σ0, which can be selected arbitrarily or selected
based on physiological considerations. We have chosen the root σ0 to be at the
proximal section of the left main (LM) coronary artery. Note that we are working
on a triangulated representation of Σ, which makes it convenient for performing
numerical computations. The surface can be obtained by segmenting the MS-
CT images. In this case, we have used a segmentation approach that combines
Bayesian classification and active contours [6, 7] to get the required surface for
the skeletonization algorithm.

Next we can calculate the harmonic function u by solving the Laplace equa-
tion on Σ\σi(i = 0, . . . , N − 1):

∆u = 0 (1)
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Fig. 1. The segmented and open-
ended surface of left coronary ar-
teries with boundary contours at
each end; the surface is color-
painted with solved harmonic
function u, where dark color
means lower u, and light color
means higher u

with proper boundary conditions. To find these boundary conditions, we assign
the values at the boundaries in the following manner:

1. Set the boundary value of u at the root σ0 to be zero, and set StepNumber
= 0;

2. Label all the points on σ0 as “visited”;
3. Label all the neighbors of the “visited” points as “visited”;
4. StepNumber ++;
5. Repeat steps 3. and 4. until “visited” points reached another boundary σi;
6. Set the value at the current boundary σi to be the current value of Step-

Number.

In other words, we set the boundary value of σi to be the number of triangle
strips between σi and the root boundary σ0. In coronary arteries, there are
several branches, some of which are long and some of which are short. Note
that if we used standard Dirichlet boundary conditions in which u(σ0) = 0 and
u(σi) = 1 for all i’s, as for example, is done in [13], the resulting points that
form the skeleton will be denser for the short branches, and sparser for the longer
ones. Hence we employ the boundary conditions stated above to get more evenly
distributed skeleton points.

Having obtained the boundary conditions for the Dirichlet problem, we can
solve the Laplace equation ∆u = 0 on the surface using finite element techniques
[6, 12]. From the standard theory [10], u exists and is unique, with the maximum
and minimum values on the boundaries. In Figure 1, the surface of the artery is
painted with the solved u, where brighter color indicates higher u, and darker
color indicates lower u.

Using the harmonic function u, we can now build the harmonic skeleton. We
first find the level sets of u on the surface, i.e., sets {x|u(x) = ν} for values of ν
ranging from 0 to max(u). Each level set corresponds to a group of points on the
surface that have the value of a certain ν. These points are not necessarily located
on the vertices of our original triangulation of the surface, so we obtain these
level points by linearly interpolating the coordinates of the vertices according to
the values of u.
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We also check the change in the topology of the level contours as we proceed,
and further partition these contours into sub-contours if not all the points are
connected to form a single contour. This means there is a bifurcation and one
contour splits into two at the current level of u. We assume one contour cannot
split into more than two contours, which is usually true for coronary arteries.
The centroid of each contour or sub-contour is then calculated: 1

M ΣM
i=1xi, where

xi = (xi, yi, zi)′ is a point on the contour, and M is the total number of points
on the current contour. Each centroid contributes a point to the final harmonic
skeleton. By increasing ν from 0 to the maximum value of u, we can find a series
of centroids that can finally be connected to build a structured tree, which is
the harmonic skeleton.

For the sake of accuracy, an additional step can be performed to refine the
harmonic skeleton by replacing the previous boundary conditions with new val-
ues obtained as the distance along the skeleton from the root boundary to the
other boundaries. We then solve the Dirichlet problem with the new boundary
conditions and further obtain a refined harmonic skeleton.

2.2 Cross-Sectional Area Measurement

The harmonic skeleton obtained using the above method can be used as a guide
in calculating cross-sectional areas at specific locations along the vessels, and
the cross-sectional areas can in turn be used to precisely evaluate stenoses in the
coronaries. Cross-sectional areas are better than diameters because atheroscle-
rotic plaques are usually eccentric and asymmetric, and the cross-sections of the
narrowed vessel lumen may not be perfectly circular. The stenosis may be un-
derestimated if one uses only diameters for stenosis evaluation. Cross-sectional
areas, on the other hand, provide more information about the stenosis, and are
directly related to the flow rate of blood through the cross-section.

One straightforward way of obtaining the cross-sections of the artery is by
looking for a plane that is perpendicular to the skeleton to cut the tube at a cer-
tain location. But this strongly depends on the local properties of the skeleton,
and a plane that is perpendicular to the skeleton locally may not be perpen-
dicular to the vessel itself. What we do here is to start with the contours or
sub-contours obtained in Section 2.1, and measure the cross-sectional area at
the same time as we calculate the centroid.

The first thing to do is to find the cross-sectional plane. We have many
more points (about 50 points, somewhat more for wider contours and somewhat
less for narrower contours) on a level contour than what is necessary (3 points)
for determining a plane. Hence we need to use least squares to solve this over-
determined problem. Suppose we have a set of points X = (x1,x2, ...xN )′, where
xi = (xi, yi, zi)′, i = 1, . . . , M is a point on the level contour, and we build a
matrix A = X − x0, where x0(x0, y0, z0)′ is the centroid of all the points on
the contour. Calculating the Singular Value Decomposition (SVD)[14] of matrix
A, we get A = USV T , where U and V are orthogonal matrices and S is a
diagonal matrix with non-negative diagonal entries in decreasing order. The
singular vector in V that corresponds to the smallest singular value in S is the



494 Y. Yang et al.

cosine of the direction of the normal to the best-fit plane. The centroid and the
normal vector can now be used to uniquely determine the least squares plane.

We now use this plane to cut the surface of the vessel and get a series of
points on the surface that also belong to the least squares plane. Again, these
points may not coincide with the vertices of the triangulated surface, so we find
the points on the triangle edges, and connect them to form a polygon. We then
calculate the area of the polygon, and the result is the required cross-sectional
area at the current location on the vessel.

3 Results

3.1 Clinical Data

We tested our method on a healthy volunteer without any clinical symptoms and
a patient with plaques in left anterior descending (LAD) coronary artery. The
healthy volunteer was imaged using a GE LightSpeed16 CT scanner with a slice
spacing of 0.625mm and an in-plane resolution of 0.60mm, while the patient with
LAD plaques was imaged using a Siemens Sensation64 CT scanner with a slice
spacing of 0.75mm and a in-plane resolution of 0.39mm. Contrast agents were
used in both cases. The coronary arteries were extracted by image segmentation
using the techniques of [6, 7], and the triangulated surfaces were generated using
the Visualization Toolkit (VTK) [15]. We then performed our skeletonization
and cross-sectional area measurement methods on the triangulated surfaces.

3.2 Generation of Harmonic Skeletons

The harmonic skeletons of both cases were generated using the method described
in Section 2.1. Figure 2 (Left) and (Middle) show the surfaces in half-transparent
mode with the skeletons inside the surfaces, and Figure 2 (Right) shows the
skeleton of the diseased (Middle) coronary arteries. The skeletons provide the

Fig. 2. Left: Coronaries and the skeleton of a healthy volunteer. Middle: Coronaries
and the skeleton of a patient with plaques in LAD. Right: The skeleton of the middle
coronaries.
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basic information of the arteries, such as bifurcation sites, bifurcation angles and
curvatures along the vessels, but they themselves alone are not able to provide
much information about the stenosis.

At the bifurcation sites, some post-processing was performed to keep the skele-
ton smooth and natural. Increasing the value ofu and tracking the topology change
of the level contours, one contour will split into two at a certain u level, and there
will be a jump between the centroid of the single parent contour and the centroids
of the two daughter contours. If we connect the centroids directly, the resulting
skeleton may not be smooth where it bifurcates. To solve this problem, we start
from the daughter branches, and trace back until they reach the bifurcation site,
and then extend the branches further until they meet the parent branch. After the
post-processing, the skeleton is visually more natural at the bifurcation sites.

3.3 Stenosis Evaluation

We calculated cross-sectional areas along the vessel with a resolution of δu = 0.5,
which means we measure the cross-sectional area once we increase the harmonic
function u by 0.5. For each coronary artery, there are roughly 400 levels of cross-
sectional areas, and at each level, there are one or several cross-sectional areas
measured according to the number of branches at this level.

We can visualize the quantitative measurements in two different ways.The first
way is to specify a u value, and show the cross-sectional areas at this u level, as
illustrated in Figure 3 (Left). This is equivalent to showing the areas by specifying
a location on the vessel. The second way is to create a color map of the cross-
sectional area values, and paint the surface with the color of these values. This
provides an intuitive way to localize the stenosis, by showing different colors where
the cross-sectional area has an apparent change along the vessels, as indicated in
Figure 3 (Right). In this figure, lighter color indicates normal sized vessel lumen,
and darker color means the lumen is narrowed, thus implying stenosis.

Fig. 3. Cross-sectional area visualization. Left: The cross-sectional area of each branch
of the coronaries for a certain u. Right: Color-painted LAD indicates a stenosis site in
the vessel.



496 Y. Yang et al.

30 40 50 60 70 80 90 100
6

8

10

12

14

C
ro

ss
−

se
ct

io
na

l a
re

a 
(m

m
2 )

u value along LAD
30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

S
te

no
si

s 
pe

rc
en

ta
ge

 (
%

)

Fig. 4. Cross-sectional area
along the LAD shown in Fig. 3
(Right). The left y-axis shows
the cross-sectional area in mm2,
and the right y-axis shows the
stenosis percentage.

Figure 4 is a plot of u versus cross-sectional area along the LAD of Figure 3
(Right). The left y-axis shows the cross-sectional areas in mm2, and the right
y-axis shows the stenosis percentage, which is an important measure for the
evaluation of stenosis. We can see from this plot that this LAD has two stenosis
sites, one mild (a little less than 40% blockage) and another more severe (60%
blockage). This is in consistent with what is shown in Figure 3 (Right).

4 Discussion and Conclusions

In this note, we have proposed an approach to extract harmonic skeletons of
tubular structures and applied it to both healthy and diseased coronary arteries.
The skeleton generated can be used as a guide for cross-sectional area measure-
ments in order to localize and evaluate stenosis of the arteries. The harmonic
skeleton is smooth and unique, and can also serve as a guide in other applications
such as virtual endoscopy.

Our algorithm is reasonably fast, taking 2-3 minutes in Matlab to generate
the harmonic skeleton from a surface consisting of about 30,000 triangles and
12,000 vertices, on a 1G Hz personal computer running Linux. If the skeleton
extraction and cross-sectional area measurement are performed at the same time,
it takes 6-7 minutes for the same sized data. This makes it possible to use this
algorithm in a real clinical setting.

We should also point out that this skeletonization and cross-sectional area
measuring approach is performed on a segmented surface of a tubular structure,
so the measurement results highly rely on the correctness of the image segmen-
tation. On the other hand, the cross-sectional area can also serve a measure for
the validation of segmentation to compare the values of a ground truth model
(such as a phantom or a vessel cast) and the segmentation result.
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