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Abstract. The Large Scale Digital Cell Analysis System (LSDCAS) de-
veloped at the University of Iowa provides capabilities for extended-time
live cell image acquisition. This paper presents a new approach to quan-
titative analysis of live cell image data. By using time as an extra dimen-
sion, level set methods are employed to determine cell trajectories from
2D + time data sets. When identifying the cell trajectories, cell cluster
separation and mitotic cell detection steps are performed. Each of the
trajectories corresponds to the motion pattern of an individual cell in the
data set. At each time frame, number of cells, cell locations, cell borders,
cell areas, and cell states are determined and recorded. The proposed
method can help solving cell analysis problems of general importance
including cell pedigree analysis and cell tracking. The developed method
was tested on cancer cell image sequences and its performance compared
with manually-defined ground truth. The similarity Kappa Index is 0.84
for segmentation area and the signed border positioning segmentation
error is 1.6 ± 2.1 µm.

1 Introduction

1.1 Living Cells

Study of living cells including cell death, cell motility, measurement of intracel-
lular pro-oxidant species, and the determination of phenotypic changes observed
using adenovirus-mediated gene expression systems and many other aspects will
help to diagnose and assess the natural course of many diseases.

The need for investigation of cell behavior and movement led to the develop-
ment of automated systems designed to quantify the reaction of cells in different
environments. An automated system, the Large Scale Digital Cell Analysis Sys-
tem (LSDCAS) was designed to analyze large numbers of cells under a variety of
experimental conditions in the Real-Time Cell Analysis Laboratory, Department
of Biomedical Engineering, University of Iowa, in the previous years. The LSD-
CAS is capable of monitoring thousands of microscope fields over time intervals
of up to one month. LSDCAS was originally designed to study stress-induced
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mitotic catastrophe [1]. Current efforts concentrate on providing imaging and
data modeling/visualization technologies that will be useful in many areas of
biological research.

1.2 Previous Work and Associated Problems

Corresponding to changing properties of a variety of cells, many distinctive meth-
ods have been proposed and employed in the analysis of cellular structure.

A part of the methods which have been widely used in cellular imaging seg-
mentation and tracking are model-free approaches, such as thresholding [2], me-
dian filtering [3], watershed segmentation [4], and others. However, these ap-
proaches provide no or only poor descriptions of the cellular shape. Even worse,
they frequently do not produce closed-object contours and require extensive
post-processing steps [5]. These approaches often fail to correctly track multiple
cells in sequences exhibiting cell-cell contacts [6].

Model-based techniques, such as active contours [7], are also frequently used.
These active contours may be parametric format, geometric, or may use region
based models. The methods produce closed and smooth object boundaries, and
may provide a first guess through the interactive initialization step. They al-
low keeping track of object identity in an obvious manner through automatic
initialization based on the segmentation of the previous image[8, 5]. With the
introduction of the Level Set Methods [9], a powerful mathematical tool to solve
the problem of cusps, corners, and automatic topological changes, the active
contour methods became well suited to cell image analysis.

It is not sufficient to rely on pure image information for cell analysis. Pattern
recognition based segmentation method of cell nuclei in tissue section analysis
was utilized in [10]. Neural network [11] and genetic algorithms [12] were applied
to cell image analysis. The pattern recognition techniques helped achieve cell
analysis objectives in specific cases. However, defining and computing the rules
as well as performing the training steps is difficult.

Little effort was devoted to quantitative living tumor cell analysis largely
due to its complicated nature: cell shape variability; contact between cells; weak
cell boundaries, etc. Many existing methods are only effective in low-density
situations and temporal context is frequently not considered.

2 Methods

2.1 Cell Trajectories Extraction

To identify trajectories of moving cells, time is taken as an extra dimension
and the level set method-based geometric active contour is directly applied onto
a 2D+time image sequence. For each frame, image boundary is taken as the
initial location of the moving front. Using the Fast Marching method, the front
is moved inward through the gradient defined on the cost image until it stops at
the location close to the cell or cell cluster boundary. Next, Narrow Band Level
Set method is applied to achieve a more accurate segmentation.
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(a) (b)

Fig. 1. Trajectory model.(a) The cell trajectory model in 2D + time space, each disk
represents a cell or cell compound at a single time and the model is showing a normal
cell division. (b) A cell trajectory, with 2 cells in the field, the total number of frames
being 300, the time span between frames was 5 minutes and the total time span was
1500 minutes.

The cell trajectory model behind this method is shown in Fig. 1. An example
of the real cell trajectory segmented from the LSDCAS data set is also shown.

In this step, the multi-channel cost image is used for level set segmentation,
which is f(intensity)+ g(localvariance), a combination of the different kinds of
information from the original image. f() is the function of the image intensity
and g() is the function of the local variance.

A special-designed edge enhancement step is included to prevent the moving
front evolving into the internal portion of the cells which have weak boundary
areas. Let θ(x, y) : R2 → R and the arc be defined as: dθ = ∂θ

∂xdx + ∂θ
∂y dy. Based

on Riemannian geometry standard notation, we have:

λ± =
sxx + syy ±

√
(sxx − syy)2 + 4sxy

2
(1)

where second order derivative sxx = ( ∂θ
∂x ).( ∂θ

∂x), syy = ( ∂θ
∂y ).( ∂θ

∂y ), sxy = syx =
( ∂θ

∂x ).( ∂θ
∂y ). These derivatives are approximated using forward difference method

and in 0 - 1 scale. In the image, the maximal and minimal changes at a specific
location are provided by the eigenvalues λ±. In our approach, we define the
driving force for the moving front as F = e−ρ∗(λ+−λ−).

2.2 Mitosis Detection

In the life cycle of living cells, mitosis (cell division) may provide extra in-
formation. Mitosis typically involves a series of steps consisting of prophase,
metaphase, anaphase, and telophase, and results in the formation of two new
nuclei each having the same number of chromosomes as the parent nucleus. Mi-
totic cells tend to be circular and have a larger percentage of bright pixels than
non-mitotic cells. Once mitosis is detected, the change of the number of the cells
in current field is observed. In a long temporal sequence, the frames between
mitotic states have the same number of cells (not considering cells moving in or
out of the current field of view).

The mitosis detection is done according to the following procedure:

1. Apply an optimal threshold method [13] to remove the effect from non-
mitotic cells in the cell compound identified in the cell trajectory and to get
the Region of Interest (ROI) for the mitotic candidates.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Mitosis detection. (a) The original image at frame 12. (b) The profile of the cell
trajectory at frame 12. (c) After threshold and movement under curvature via level set
methods at frame 12, the ROI properties are P = 144, A = 1540, AI = 237, C = 0.933.
(d) The original image at frame 13. (e) The profile of the cell trajectory at frame 13.
(f) After threshold and curvature-based smoothing via level set methods at frame 13,
the ROI properties are P = 176, A = 2072, AI = 236, C = 0.841. (P and A in pixels).

2. Apply Level Set Methods based on moving under curvature [9] to smooth
the ROI boundary.

3. Compute ROI properties: area, perimeter, circularity, etc.
4. In adjacent frames t and t+1, only the ROI whose area A increases, perime-

ter P increases, circularity C decreases, and average intensity AI remains
unchanged are considered a mitosis.

The mitosis detection uses a classifier trained on an independent training set.
An example of the mitosis detection procedure is shown in Fig. 2.

2.3 Cell Separation and Segmentation

The next step is extraction of the cell trajectory between the already identified mi-
totic frames. If there is nomitosis detected fromthe trajectory, thewhole trajectory
has a fixed number of cells (possibly more than 1 if cell compounds are present).
Backwardand forward adjacent frame separation and segmentation are attempted
for the trajectories which have cell compounds exhibiting cell-cell contact.

A special data structure is utilized which helps to generate an effective descrip-
tion of the trajectory. Importantly, it sets up a connection graph through the tra-
jectory. Each node stores the information for the individual region corresponding
to each time frame. The information includes: area, perimeter, average intensity,
father identifier (the connected individual region in the previous frame), father
label, son number (the connected individual region at next frame), son label.

We applied marker-based watershed method for the cell separation. The wa-
tershed method is implemented via rain falling simulation [14]. The separation is
directional because, in addition to the number of cells, the separating cell border in
adjacent frame helps to segment and separate the cell cluster in the current frame.

For a non-mitosis example, in Fig. 3 (a) and (b), which are the connection
graph and the separation result, node 13 is the first cluster to be separated using
nodes 8 and 9 as the reference markers. The processing direction at node 13 is
forward. Node 53 will be the second to be separated using nodes 57 and 58 as a
reference and the processing direction here is backward. Basically, the separation
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(a) (b) (c) (d)

Fig. 3. Cell connection graph and cell segmentation/separation. (a) No mitosis de-
tected. The arrow in the graph is representing the time change and links the connected
node at the adjacent frame. The gray circles are the very first clusters to be separated,
where cell contact happens. (b) The cell separation corresponding to (a). The first
image is corresponding to frame at the first gray circle 13. The second image is for
the frame at gray circle 53. The third image is for the frame at gray circle 65. The
fourth image is for the frame at gray circle 145.(c) With mitosis detected. The gray
diamond in this graph represent the labeled mitotic cell. The merging in this graph
with gray circle is due to the cell contact and the cell trajectory generated by the level
set methods was not able to separate them. (d) The cell separation corresponding to
(c). The first image is for the frame at gray diamond 5, which is a mitotic cell. The
second image is for the frame just after mitosis detected, at circle 6. The third image
is for the frame at gray circle 23. The fourth image is for the frame at gray circle 26.

strategy is from known to unknown, from large number of cells or cell clusters
per frame to a smaller number.

Similarly for a mitosis example, in Fig. 3 (c) and (d) in which a mitotic cell
is detected at node 5, the whole trajectory is divided into 2 parts. The first part
starts at node 1 (not shown in the image) and ends at node 5. The second part
of the trajectory starts at node 6. For each new trajectory, the same method was
applied as was used for the trajectory where there was no mitosis detected.

3 Experimental Methods

Image Data

The performance of our cell sequence analysis was tested in field images acquired
using the LSDCAS. All the cells were U87-MG cells.
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Validation

The manually identified independent standard was defined using a user-friendly
border tracing program. Automated segmentation was obtained for all the cells in
each of the data sets. The independent standard was used to determine the signed
(bias) and unsigned mean border positioning errors as well as the maximum
border positioning errors.

Positioning error: For each pixel along the automatically-identified (AI) bor-
der of individual cell, a nearest counterpart is found on the manually-identified
(MI) border of the same cell and the distance between these two pixels is com-
puted. If the counterpart is inside of the AI contour, we define the distance
as positive. Otherwise the distance is negative. For each cell, the average value
of the absolute distances was taken as the unsigned positioning error and the
average value of the signed distances is taken as the signed positioning error.

Area error: Let A denote the AI segmentation area, M the MI segmentation
area representing the ground truth. Ratios of overlapping areas were assessed
by applying the similarity Kappa Index (KI)[15] and the overlap, which are
defined as:

KI = 2 × A∩M
A+M ; overlap = A∩M

A∪M

4 Results

The reported method successfully identified the individual cells in 50 2D + time
microscopy data sets collected from the LSDCAS system. A total of 3368 frames
containing 6654 cells was analyzed. There are totally 26 mitoses among all the
data sets and our method successfully made the detection and recorded the
mitosis time and location of all of them.

The analysis errors obtained with no manual interaction or editing are shown
in the following table.

Table 1. Segmentation and separation errors

validation indices in pixel in µm
Mean absolute positioning errors 4.2 ± 2.8 2.6 ± 1.7
Mean signed positioning errors 2.6 ± 3.4 1.6 ± 2.1

The area error KI was 0.84 ± 0.09 and the overlap index was 0.74 ± 0.12.

5 Discussion and Conclusion

Quantitative analysis of living cells is a very complex task. It has strict require-
ments on hardware for data acquisition as well as on software for advanced quan-
titative analysis. All the processing modules, including preprocessing, segmenta-
tion, detection of cell splits, etc. are of great importance to the overall result. In
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this paper, we introduced a new fully automated method for cell segmentation,
separation and spatial cell state detection. Our approach helps solving one of
the most crucial problems facilitating quantitative analysis of living cells.

The connection graph, as a by-product, gives a complete description of the
cell-dividing temporal data set. Each cell trajectory can be directly used to
describe behavior of a specific cell. For the cell trajectory with mitotic events,
a pedigree tree can be generated by combining all nodes on each branch of the
connection graph.

Under some circumstances involving abnormal cancer cells, atypical cell divi-
sions may happen when the cell reaches the mitotic state. Compared to normal
cell division when the cell begins as a single round entity and then splits into two
completely separate objects, the abnormal cell division states include a multi-
polar state (when one cell moves into 3 or more distinct circular shapes), fuse
state (which is defined as a cell which attempts to divide but is interrupted
internally and re-forms as a single cell), and cell death (cell ceases to continue
intracellular activities). These abnormal situations bring additional difficulty to
the trajectory analysis since the a priori information used in our approach can-
not be reliably extracted using the presented mitosis-detection method. A more
powerful classifier combining cell trajectory analysis with cell status assessment
is under development, which is based on Hidden Markov Models (HMMs) us-
ing time varying information from bright object sequences found in the cell
compounds. The robustness of the HMM-based classifier shall provide reliable
information helping to guide the segmentation of cancer cells in the image
sequences.

Overall, the reported method is a substantial improvement in comparison
with most existing cell analysis approaches. The temporal information is fully
utilized, yielding more robust segmentation results compared to the previous
frame-by-frame approaches [4].
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