
Speeding Up Logistic Model Tree Induction

Marc Sumner1,2, Eibe Frank2, and Mark Hall2

1 Institute for Computer Science,
University of Freiburg,

Freiburg, Germany
sumner@informatik.uni-freiburg.de
2 Department of Computer Science,

University of Waikato,
Hamilton, New Zealand

{eibe, mhall}@cs.waikato.ac.nz

Abstract. Logistic Model Trees have been shown to be very accurate
and compact classifiers [8]. Their greatest disadvantage is the computa-
tional complexity of inducing the logistic regression models in the tree.
We address this issue by using the AIC criterion [1] instead of cross-
validation to prevent overfitting these models. In addition, a weight trim-
ming heuristic is used which produces a significant speedup. We compare
the training time and accuracy of the new induction process with the
original one on various datasets and show that the training time often
decreases while the classification accuracy diminishes only slightly.

1 Introduction

Logistic Model Trees (LMTs) are born out of the idea of combining two com-
plementary classification schemes: linear logistic regression and tree induction.
It has been shown that LMTs perform competitively with other state-of-the-art
classifiers such as boosted decision trees while being easier to interpret [8]. How-
ever, the main drawback of LMTs is the time needed to build them. This is due
mostly to the cost of building the logistic regression models at the nodes. The
LogitBoost algorithm [6] is repeatedly called for a fixed number of iterations,
determined by a five fold cross-validation. In this paper we investigate whether
cross-validation can be replaced by the AIC criterion without loss of accuracy.
We also investigate a weight trimming heuristic and show that it improves train-
ing time as well.

The rest of this paper is organized as follows. In Section 2 we give a brief
overview of the original LMT induction algorithm. Section 3 describes the mod-
ifications made to various parts of the algorithm. In Section 4, we evaluate the
modified algorithm and discuss the results, and in Section 5 we draw some con-
clusions.

2 Logistic Model Tree Induction

The original LMT induction algorithm can be found in [8]. We give a brief
overview of the process here, focusing on the aspects where we have made im-

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 675–683, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

676 M. Sumner, E. Frank, and M. Hall

LogitBoost (J classes)

1. Start with weights wij = 1/n, i = 1, . . . , n, j = 1, . . . , J, Fj(x) = 0
and pj(x) = 1/J ∀j

2. Repeat for m = 1, . . . , M :

(a) Repeat for j = 1, . . . , J :

i. Compute working responses and weights in the jth class

zij =
y∗

ij − pj(xi)

pj(xi)(1− pj(xi))

wij = pj(xi)(1− pj(xi))

ii. Fit the function fmj(x) by a weighted least-squares regression
of zij to xi with weights wij

(b) Set fmj(x)← J−1
J

(fmj(x)− 1
J

∑J
k=1 fmk(x)), Fj(x)← Fj(x) + fmj(x)

(c) Update pj(x) = e
Fj(x)

∑J
k=1 eFk(x)

3. Output the classifier argmax
j

Fj(x)

Fig. 1. LogitBoost algorithm

provements. We begin this section with an overview of the underlying founda-
tions and conclude it with a synopsis of the original LMT induction algorithm.

2.1 Logistic Regression

Linear logistic regression models the posterior class probabilities Pr(G = j|X =
x) for the J classes via functions linear in x and ensures that they sum to one
and remain in [0, 1]. The model is of the form

Pr(G = j|X = x) =
eFj(x)

∑J
k=1 eFk(x)

, (1)

where Fj(x) = βT
j · x. Numeric optimization algorithms that approach the max-

imum likelihood solution iteratively are used to find the estimates for βj .
One such iterative method is the LogitBoost algorithm [6], shown in Figure 1.

In each iteration, it fits a least-squares regressor to a weighted version of the
input data with a transformed target variable. Here, y∗

ij are the binary pseudo-
response variables which indicate group membership of an observation like this

y∗
ij =

{
1 if yi = j,

0 if yi �= j
, (2)

where yi is the observed class for instance xi.
If we constrain fmj to be linear in x, then we achieve linear logistic regression

if the algorithm is run until convergence. If we further constrain fmj to be a linear

Speeding Up Logistic Model Tree Induction 677

function of only the attribute that results in the lowest squared error, then we
arrive at an algorithm that performs automatic attribute selection. By using
cross-validation to determine the best number of LogitBoost iterations M , only
those attributes are included that improve the performance on unseen instances.
This method is called “SimpleLogistic” [8].

2.2 Logistic Model Trees

For the details of the LMT induction algorithm, the reader should consult [8].
Here is a brief summary of the algorithm:

– First, LogitBoost is run on all the data to build a logistic regression model
for the root node. The number of iterations to use is determined by a five
fold cross-validation. In each fold, LogitBoost is run on the training set up
to a maximum number of iterations (200). The number of iterations that
produces the lowest sum of errors on the test set over all five folds is used
in LogitBoost on all the data to produce the model for the root node and is
also used to build logistic regression models at all nodes in the tree.

– The data is split using the C4.5 splitting criterion [10]. Logistic regression
models are then built at the child nodes on the corresponding subsets of the
data using LogitBoost. However, the algorithm starts with the committee
Fj(x), weights wij and probability estimates pij inherited from the parent.

– As long as at least 15 instances are present at a node and a useful split is
found (as defined in the C4.5 splitting scheme), then splitting and model
building is continued in the same fashion.

– The CART cross-validation-based pruning algorithm is applied to the
tree [3].

3 Our Modifications

In the following we discuss the additions and modifications we made to the
algorithms that make up LMT induction.

Weight Trimming. The idea of weight trimming in association with Logit-
Boost is mentioned in [6]. It is a very simple, yet effective method for reducing
computation of boosted models. In our case, only training instances carrying
100 · (1 − β)% of the total weight mass are used for building the simple linear
regression model, where β ∈ [0, 1]. Typically β ∈ [0.01, 0.1]. We used β = 0.1. In
later iterations more of the training instances become correctly classified with a
higher confidence; hence, more of them receive a lower weight and the number
of instances carrying 100 · (1 − β)% of the weight becomes smaller.

The computation needed to build the simple linear regression model thus
decreases as the iterations proceed. Of course, the computational complexity
is still O(n · a); however, n is reduced by a potentially large constant factor
and in practice, a reduction in computation time is achieved without sacrificing
predictive accuracy (see Section 4).

678 M. Sumner, E. Frank, and M. Hall

Automatic Iteration Termination. In the original induction algorithm for
LMTs the number of LogitBoost iterations for all nodes is determined by a five
fold cross-validation at the root and used for all nodes. This, of course, is a
time consuming process when the number of attributes and/or instances in the
training data is large. The aim is to terminate the LogitBoost iterations when
the model performs well on the training data, yet does not overfit it.

A common alternative to cross-validation for model selection is the use of
an in-sample estimate of the generalization error, such as Akaike’s Information
Criterion (AIC) [1]. We investigated its usefulness in selecting the optimum
number of LogitBoost iterations and found it to be a viable alternative to cross-
validation in terms of classification accuracy and far superior in training time.

AIC provides an estimate of the generalization error when a negative log-
likelihood loss function is used. Let this function be denoted as loglik and let N
be the number of training instances. Then AIC is defined as

AIC = − 2
N

loglik + 2
d

N
, (3)

where d is the number of inputs or basis functions. If the basis functions are
chosen adaptively, then d must be adjusted upwards [7]. In this case, d denotes
the effective number of parameters, or degrees of freedom, of the model. It is
not clear what value to use for d in SimpleLogistic. In [4] the effective number
of parameters is computed for boosting methods using the “boosting operator”
which is a linear combination of the hat matrices of the basis functions. Our
implementation of this method led to a large computational overhead which
actually made it slower than cross-validation.

Intuitively, the logistic regression model built via SimpleLogistic should be
penalized (i.e. d should increase) each time a new attribute is introduced to the
model. We could just use the number of attributes used in a committee function
Fj for any class j. However, when an iteration introduces no new attributes,
the model is not penalized, although it has become more complex. At the other
end of the spectrum, we could penalize each iteration equally which leads to
another estimate, d = i, where i is the iteration number. As i increases, the first
term in Equation 3 decreases (because LogitBoost performs quasi-Newton steps
approaching the maximum log-likelihood [6]) and the second term (the penalty
term) always increases. Empirically, this was found to be a good estimate (see
Section 4).

The optimal number of iterations is the i which minimizes AIC. So, in order
to determine the optimal number i∗, LogitBoost must be run up to a maximum
number of iterations (in LMT induction, this is 200), and then run again for i∗

iterations. Just as with the cross-validation process in the original LMT induc-
tion algorithm, we performed the AIC procedure at the root node of the logistic
model tree and used i∗ throughout the tree. Also, if no minimum was found
for 50 iterations, then no more iterations were performed and the iteration that
produces the minimum AIC was used as i∗. This is analogous to the heuristic
employed for the cross-validation method in [8]. However, we found that we can
modify this process to achieve a speed-up without loss of accuracy.

Speeding Up Logistic Model Tree Induction 679

We tested the AIC-based model selection method on 13 UCI datasets [2] (see
Section 4) and observed that, for every dataset, AIC only had one global mini-
mum over all iterations. Hence we can attempt to speed up the aforementioned
model selection method. We stop searching as soon as AIC no longer decreases.
Determining the optimal number of iterations in this fashion will be called the
First AIC Minimum (FAM) method in the remainder of this paper.

FAM allows us to efficiently compute (an approximation to) the optimal
number of iterations at each node in the tree. This is advantageous in two ways:

– Instead of iterating up to a maximum number of iterations five times (in
the cross-validation case) or once (in the AIC case) and then building the
model using the optimal number of iterations i∗, LogitBoost can be stopped
immediately when i∗ is found.

– As we move down the tree, the sets of training instances become smaller
(they are subsets of the instances observed at the parent node). AIC is
inversely related to the number of instances N , so as N becomes smaller,
not only will simpler models be selected, but training time decreases as fewer
iterations are needed. It is also much more intuitive that a different number
of iterations is appropriate for different datasets occuring in a tree.

In addition, we no longer need to set a maximum number of iterations to be
performed. As mentioned in [8] the limit of 200 was appropriate for the observed
datasets; however it is not clear whether this is enough for all datasets.

4 Experiments

This section evaluates the modified LMT induction algorithm and its base learner
SimpleLogistic by comparing them against the original implementation. For the
evaluation we measure training times and classification accuracy. All experiments
are ten runs of a ten-fold stratified cross-validation. The mean and standard
deviation over the 100 results are shown in all tables presented here. In all
experimental results, a corrected resampled t-test was used [9] instead of the
standard t-test to test the difference in training times and accuracy, at a 5%
significance level. This corrects for the dependencies in the estimates of the
different data points, and is thus less prone to false-positives.

We used 13 datasets with a nominal class variable available from the UCI
repository [2]. We used only datasets that have approximately 1000 training
instances or more (vowel was the exception with 990 instances). Both numeric
and nominal attributes appear in all of the UCI datasets.

All experiments were run using version 3.4.4 of the Weka machine learning
workbench [11]. Almost all experiments were run on a pool of identical machines
with an Intel Pentium 4 processor with 2.8GHz and 512MB ram1, Linux kernel
2.4.28 and Java 1.5.0-b64.
1 All LMT algorithms required more memory for the adult dataset and were thus run

on an Intel Pentium 4 processor with 3.0GHz and 1GB ram.

680 M. Sumner, E. Frank, and M. Hall

Table 1. Training time and accuracy for SimpleLogistic and SimpleLogistic using
weight trimming

Training Time Accuracy
Dataset SimpleLog. SimpleLog. SimpleLog. SimpleLog.

(WT) (WT)
vowel 77.94±23.59 39.67±12.72 • 81.98±4.10 82.07±3.82
german-credit 7.97±1.94 6.79±1.55 75.37±3.53 75.35±3.48
segment 50.55±14.82 20.02±5.61 • 95.10±1.46 86.71±25.67
splice 253.96±38.83 79.02±9.55 • 95.86±1.17 95.87±1.09
kr-vs-kp 57.28±15.09 25.98±8.35 • 97.06±0.98 97.07±0.92
hypothyroid 104.76±27.17 47.88±10.72 • 96.61±0.71 96.55±0.72
sick 25.40±6.10 12.09±3.39 • 96.68±0.71 96.63±0.70
spambase 119.28±18.73 43.19±4.38 • 92.75±1.12 92.40±1.24
waveform 65.53±9.31 25.42±3.77 • 86.96±1.58 86.90±1.55
optdigits 659.33±123.68 111.32±21.35 • 97.12±0.67 97.17±0.67
pendigits 489.51±148.34 257.86±84.23 • 95.44±0.62 95.51±0.61
nursery 266.51±25.56 119.19±11.36 • 92.61±0.68 92.60±0.77
adult 2953.77±849.82 1866.15±344.05 • 85.61±0.38 85.56±0.38

• statistically significant improvement

4.1 SimpleLogistic

We first evaluated the SimpleLogistic learner for logistic regression, measuring
the effects of weight trimming and investigating the use of FAM for determining
the optimum number of LogitBoost iterations.

Weight Trimming in SimpleLogistic. From Table 1 it can be seen that
weight trimming consistently reduces the training time of SimpleLogistic on
all datasets (with the exception of german-credit) while not affecting classifica-
tion accuracy. The greatest effect of weight trimming was seen on the optdigits
dataset. Here, a speedup of almost 6 was recorded. Overall, weight trimming is
a safe heuristic (i.e. it does not affect accuracy) that can result in significant
speedups.

FAM in SimpleLogistic. This section deals with the evaluation of SimpleL-
ogistic implemented with FAM, introduced in Section 3. SimpleLogistic with
FAM is compared with the original cross-validation-based approach.

Table 2 shows the training time and classification accuracy for both algo-
rithms on the 13 UCI datasets. FAM consistently produced a significant speedup
on all datasets. This ranged from 3.3 on the splice dataset to 14.8 on the segment
dataset. Looking at the classification accuracy, we can see that FAM performs
significantly worse on two datasets (kr-vs-kp and hypothyroid), but the degra-
dation is within reasonable bounds.

4.2 Logistic Model Trees

We can now observe the impact of our modifications on the LMT induction al-
gorithm. Table 3 compares the original LMT version with the modified LMT
induction algorithm (using FAM and weight trimming). As expected, our mod-
ifications result in the algorithm being much faster on all of the datasets. The

Speeding Up Logistic Model Tree Induction 681

Table 2. Training time and accuracy for SimpleLogistic using cross-validation and
FAM

Training Time Accuracy
Dataset SimpleLog. SimpleLog. SimpleLog. SimpleLog.

(CV) (FAM) (CV) (FAM)
vowel 77.94±23.59 6.87±0.31 • 81.98±4.10 80.85±3.69
german-credit 7.97±1.94 0.59±0.05 • 75.37±3.53 75.34±3.70
segment 50.55±14.82 3.42±0.45 • 95.10±1.46 94.67±1.66
splice 253.96±38.83 77.48±3.69 • 95.86±1.17 95.87±1.06
kr-vs-kp 57.28±15.09 6.69±0.37 • 97.06±0.98 96.38±1.14 ◦
hypothyroid 104.76±27.17 8.89±1.16 • 96.61±0.71 95.89±0.65 ◦
sick 25.40±6.10 1.57±0.14 • 96.68±0.71 96.50±0.76
spambase 119.28±18.73 15.74±1.28 • 92.75±1.12 92.69±1.19
waveform 65.53±9.31 7.75±0.39 • 86.96±1.58 86.84±1.59
optdigits 659.33±123.68 135.61±26.47 • 97.12±0.67 97.12±0.66
pendigits 489.51±148.34 59.43±1.58 • 95.44±0.62 95.45±0.62
nursery 266.51±25.56 49.36±1.42 • 92.61±0.68 92.58±0.68
adult 2953.77±849.82 381.92±10.13 • 85.61±0.38 85.59±0.38

•, ◦ statistically significant improvement or degradation

Table 3. Training time and accuracy for LMT and LMT using FAM and weight
trimming

Training Time Accuracy
Dataset LMT LMT LMT LMT

(FAM+WT) (FAM+WT)
vowel 408.11±80.95 15.86±0.84 • 94.06±2.40 93.56±2.94
german-credit 32.74±10.87 3.25±0.16 • 75.50±3.65 71.83±3.40 ◦
segment 143.75±52.64 10.58±1.77 • 97.06±1.31 97.06±1.25
splice 785.51±202.14 71.55±1.42 • 95.89±1.14 95.19±1.19 ◦
kr-vs-kp 250.79±64.58 12.17±0.36 • 99.64±0.33 99.57±0.37
hypothyroid 405.73±94.04 7.39±0.64 • 99.54±0.36 99.61±0.30
sick 139.31±50.79 6.83±0.73 • 98.95±0.58 98.93±0.62
spambase 746.71±123.57 54.93±1.65 • 93.56±1.14 93.58±1.13
waveform 175.53±63.26 43.67±0.80 • 86.86±1.60 86.49±1.52
optdigits 3162.37±781.49 133.15±7.08 • 97.38±0.57 97.36±0.64
pendigits 3535.06±765.34 185.15±4.96 • 98.58±0.33 98.73±0.33
nursery 634.96±85.82 72.44±7.08 • 98.95±0.34 98.64±0.32 ◦
adult 26935.85±9112.20 1429.93±54.76 • 85.58±0.42 85.43±0.37

•, ◦ statistically significant improvement or degradation

greatest speedup recorded was 55 on the hypothyroid dataset. Most common was
a speedup between 10 and 25. Only on the german-credit, waveform, and nursery
datasets was the speedup around 10 or less (10.1, 4.0, and 8.8, respectively).

On german-credit, splice and nursery the modified version’s classification per-
formance was significantly worse than that of the original version, although only
on german-credit was the performance worse by more than one percent. Other-
wise, the modified version performed competitively with the original version.

As a closing note to our experiments, we would like to compare the modified
version of logistic model trees to boosted C4.5 decision trees. For the comparison
we chose AdaBoost [5] using 100 iterations and the LMT version using FAM
and weight trimming. The results can be seen in Table 4. 100 iterations are too
many for a few of the datasets, but moving from 10 to 100 iterations results in
an improvement in accuracy in many cases [8].

The training time of the two algorithms is fairly equal, with a slight advantage
for the modified LMT algorithm. It was faster on 9 of the 13 datasets, with a

682 M. Sumner, E. Frank, and M. Hall

Table 4. Training time and accuracy for AdaBoost using C4.5 with 100 iterations and
LMT using FAM and weight trimming

Training Time Accuracy
Dataset AdaBoost LMT AdaBoost LMT

(FAM+WT) (FAM+WT)
vowel 29.32±0.38 15.86±0.84 • 96.74±1.89 93.56±2.94 ◦
german-credit 7.42±0.17 3.25±0.16 • 74.40±3.23 71.83±3.40
segment 45.53±0.67 10.58±1.77 • 98.58±0.76 97.06±1.25 ◦
splice 11.89±5.46 71.55±1.42 ◦ 94.94±1.24 95.19±1.19
kr-vs-kp 21.14±6.44 12.17±0.36 • 99.60±0.31 99.57±0.37
hypothyroid 19.07±11.46 7.39±0.64 • 99.70±0.31 99.61±0.30
sick 49.40±2.32 6.83±0.73 • 99.06±0.45 98.93±0.62
spambase 70.22±63.21 54.93±1.65 95.34±0.87 93.58±1.13 ◦
waveform 463.38±4.18 43.67±0.80 • 85.01±1.77 86.49±1.52 •
optdigits 402.52±3.06 133.15±7.08 • 98.55±0.50 97.36±0.64 ◦
pendigits 274.59±2.72 185.15±4.96 • 99.41±0.26 98.73±0.33 ◦
nursery 24.90±0.48 72.44±7.08 ◦ 99.79±0.14 98.64±0.32 ◦
adult 796.01±64.89 1429.93±54.76 ◦ 82.18±0.46 85.43±0.37 •

•, ◦ statistically significant improvement or degradation

speedup of usually between 1 and 2. The exceptions are the sick dataset (7.2)
and the waveform dataset (10.6). AdaBoost was faster on three datasets, the
greatest improvement being on the splice dataset (6.0). In terms of classification
accuracy, the new LMT version exhibits results similar to those reported in [8] for
the original LMT algorithm. On six datasets AdaBoost performed significantly
better, while on two datasets LMT was the better classifier.

5 Conclusions

We have proposed two modifications to the SimpleLogistic algorithm employed
by LMT that are designed to improve training time. The use of AIC instead
of cross-validation to determine an appropriate number of LogitBoost iterations
resulted in a dramatic speedup. It resulted in a small but significant decrease
in accuracy in only two cases when performing stand-alone logistic regression.
The simple heuristic of weight trimming consistently improved the training time
while not affecting accuracy at all.

The use of AIC and weight trimming in LMT have resulted in training times
up to 55 times faster than the original LMT algorithm while, in most cases, not
significantly affecting classification accuracy. These results were measured on
datasets of relatively low size and dimensionality. We would expect the speedup
to be even greater on larger and high-dimensional datasets.

References

1. H. Akaike. Information theory and an extension of the maximum likelihood prin-
ciple. In Second Int Symposium on Information Theory, pages 267–281, 1973.

2. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
[www.ics.uci.edu/∼mlearn/MLRepository.html].

3. L. Breiman, H. Friedman, J. A. Olshen, and C. J. Stone. Classification and Re-
gression Trees. Wadsworth, 1984.

Speeding Up Logistic Model Tree Induction 683

4. Peter Bühlmann and Bin Yu. Boosting, model selection, lasso and nonnegative
garrote. Technical Report 2005-127, Seminar for Statistics, ETH Zürich, 2005.

5. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proc In. Conf on Machine Learning, pages 148–156. Morgan Kaufmann, 1996.

6. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting. The Annals of Statistics, 38(2):337–374, 2000.

7. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

8. Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine Learn-
ing, 59(1/2):161–205, 2005.

9. C. Nadeau and Yoshua Bengio. Inference for the generalization error. In Advances
in Neural Information Processing Systems 12, pages 307–313. MIT Press, 1999.

10. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
11. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implemenations. Morgan Kaufmann, San Francisco, 2000.

	Introduction
	Logistic Model Tree Induction
	Logistic Regression
	Logistic Model Trees

	Our Modifications
	Experiments
	SimpleLogistic
	Logistic Model Trees

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

