
Assessment of Palm OS Susceptibility to
Malicious Code Threats

Tom Goovaerts, Bart De Win, Bart De Decker, and Wouter Joosen

DistriNet Research Group, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{tomg, bartd, bart, wouter}@cs.kuleuven.ac.be

Abstract. The Palm OS operating system for Personal Digital As-
sistants (PDAs) and mobile phones has a weak security architecture,
which introduces all sorts of security problems. This paper specifically
targets the problem of malicious code. The main contribution of this
work is the in-depth analysis of different vulnerabilities in Palm OS and
the ways in which they can be exploited by malicious code. Furthermore,
the key reasons for this problem are discussed and some suggestions for
improvement are formulated.

Keywords: malicious code, worms, mobile operating systems, Palm OS.

1 Introduction

PDAs have become very popular devices that appear in day to day life. They have
evolved from simple electronic agendas to powerful connected mini-computers
that use wireless communication technologies such as IrDA, Bluetooth, WiFi
and GSM. These devices can hold sensitive information such as confidential
documents and passwords or they can participate in commercial transactions.
However, it has already been documented that the operating systems found on
PDAs do not pay much attention to security [1,2].

One important class of security problems is malicious code such as viruses,
Trojan horses, worms or backdoors. Except for the weak security architecture
of PDA operating systems, there are two reasons why these devices are at risk
of being targeted by malicious code. First of all, PDA applications are easily
downloaded from the Internet and exchanged between devices. This encourages
passive infection strategies, and it leads to a situation that is somewhat compa-
rable to the old PC era where viruses were propagated on floppies. Secondly, new
wireless communication technologies introduce new threats for actively propa-
gating forms of malicious code. Imagine a worm that wirelessly propagates from
PDA to PDA in rush hour traffic or in a full auditorium. When PDAs are being
used for critical tasks such as mobile payment or as advanced security tokens,
the malicious code problem is a risk that is completely unacceptable [3,4]. So
far, a few PDA viruses have effectively been reported [5,6,7].

In this paper, the security problems of Palm OS with respect to malicious
code are discussed. We have carried out an in-depth vulnerability assessment of

J. Dittmann, S. Katzenbeisser, and A. Uhl (Eds.): CMS 2005, LNCS 3677, pp. 240–249, 2005.
c© IFIP International Federation for Information Processing 2005

Assessment of Palm OS Susceptibility to Malicious Code Threats 241

Palm OS and discuss how vulnerabilities in the operating system can be exploited
by malicious code. All of these vulnerabilities have been tested in practice in
a prototypical worm. Some suggestions are proposed to tackle the problems
and the security architecture of the future version of the operating system is
evaluated shortly. The implementation and verification of the vulnerabilities has
been carried out in a master’s thesis [8].

The rest of this paper is structured as follows. Section 2 gives a short in-
troduction to Palm OS. Section 3 discusses the vulnerabilities and explains how
malicious code can exploit them. In Section 4, the proof of concept implementa-
tion is discussed that was developed as a test bed for the vulnerabilities. Section
5 reflects on the security problems of Palm OS, proposes some suggestions and
gives a short overview of the improvements in the future version of Palm OS.
Finally, Section 6 concludes the paper.

2 Palm OS

Currently, the Palm OS operating system comes in two flavors: Garnet [9] and
Cobalt [10]. Palm OS Garnet (version 5) is the version that is found on new
Palm OS powered devices today. In the future, Palm OS Garnet will become
the version for less powerful devices such as cell phones, while Palm OS Cobalt
(version 6) will target PDAs. This paper focuses on Palm OS Garnet.

Palm OS is a single tasking operating system for ARM-based processors
running on speeds from 100MHz to 400MHz. Palm OS based devices do not
have nonvolatile memory. Memory is used for execution as well as storage and
is partitioned in two logical regions: the dynamic memory is used for dynamic
allocations and maintaining the execution state of programs and the storage
memory stores data that has to be preserved. Data as well as applications are
kept in structures called records and records are grouped in databases. Because
data is stored in RAM, a device has to maintain a minimal voltage over the
memory at all times. Resetting the device will only erase the dynamic memory,
but it is possible to erase all memory by doing a hard reset.

Palm OS supports multiple wireless communication technologies including
IrDA, Bluetooth, WiFi and GSM allowing users to ‘beam’ data or applications
from one device to another. Palm OS implements a TCP/IP stack for network-
ing wirelessly or by modem and newer Palm OS devices support mobile phone
technology to make voice calls or send text messages.

Synchronization with the desktop is realized by Hotsync. This is an applica-
tion that consists of a device component and a desktop component that lets the
user synchronize his/her calendar and contacts between the applications on the
device and those on the desktop. Hotsync is also used to install new software
and to take backups.

A number of security features is supported in Palm OS. It is possible to lock
the device, which will disable it until the user authenticates him/herself with a
password.1 Locking can be activated manually or automatically, e.g. when the
1 Since a PDA is supposed to be a single user device, a username is not required.

242 T. Goovaerts et al.

device is turned off. Furthermore, some protection mechanisms for databases are
provided. For example, database records can be made ‘secret’, meaning that the
user must enter his/her password to be able to read or write the information in
the record. Palm OS also has a cryptographic library that contains implemen-
tations of a limited number of algorithms for encryption, secure hashing and
signing.

3 Vulnerabilities

We have assembled and verified a set of new and known vulnerabilities for Palm
OS Garnet. Approximately half of the vulnerabilities comes from the work of
Kingpin and Mudge [1]. The discussion of the vulnerabilities is structured ac-
cording to the vulnerable operating system aspects: database management, event
mechanisms, application and process management, communications, built-in se-
curity mechanisms, desktop components and the GUI. For each vulnerability,
the problem is first explained and then the possible exploitations by malicious
code are discussed.

3.1 Database Management

Full access to data [1]. Palm OS has no access control mechanism for databases.
Direct memory access into the storage heap is disallowed, but when the database
API is used, every application has full access to all databases stored on the device.
It is possible to read and write information into database records, append or
remove database records or create and remove entire databases. Even records
that have been marked as secret (see Section 2) or databases that have been
marked read-only can be deleted without restrictions.

Since Palm OS devices can contain sensitive information such as business
cards, important documents and passwords, the lack of access control towards
data poses an important threat. Malicious code can execute numerous malicious
actions such as erasing, sending or modifying important data, storing information
in existing databases or erasing log entries.

Program Infection or Destruction [1]. The fact that every application has full
write access to the code of other applications opens the platform for a wide range
of virus infection techniques.

A malicious program that is running on the device can replicate itself by
writing its own code into another application by means of the database API. Or
it could also simply destroy other applications by writing data in their code. We
have experimented with program infection by means of a simple proof-of-concept
infection program that replaces the first occurrence of the RET instruction of
every user-installed program with the machine code of an infinite loop. This
causes the execution of these applications to block the system.

Preventing the Deletion of Databases. Databases can be protected by means of
the DmDatabaseProtect operation. Internally, Palm OS keeps a per-database

Assessment of Palm OS Susceptibility to Malicious Code Threats 243

counter with the number of times the database has been protected. Calling the
protection function increases this counter by one. A database with a positive
protection counter cannot be deleted.

The protection mechanism is easily circumvented because the protection
function can also decrease the counter until the database can be deleted again.
Beyond this obvious threat, the database protection mechanism can also be
abused by malicious programs to protect themselves against removal. A mali-
cious program can protect its own database and detect2 when someone tries to
remove it. In response to the removal attempt, the program could reprotect itself.
This way, the user is unable to delete the database, even with applications such
as Filez [11] that give the user much more low-level control over databases and
their attributes than the default database management functionality of Palm OS.

3.2 Event Mechanisms

Palm OS applications are event-based and the operating system provides a num-
ber of event sources and event handling mechanisms:

1. Launch codes are sent by the operating system when certain events take
place that are of interest to all applications, for example the completion of
a Hotsync synchronization.

2. There is a publish-subscribe mechanism called Notifications that allows ap-
plications to register themselves with a notification service for a certain event
and receive notification when the event takes place. An example of a notifi-
cation is the launching of a particular application.

3. Through the Alarm Manager, applications can set a number of alarms. At a
given time the application will get a warning for the alarm and can execute
code in response to it.

All these event mechanisms allow malicious code to trigger their malicious ac-
tions with a high precision [1]. When a malicious program is installed on the
device, it will start receiving launch codes. Once it has received its first launch
code, it can register itself for notifications and set alarms, and become active on
numerous occasions.

Hiding of Noticeable Actions. It is possible that malicious activity cannot be
completely hidden for the user. Therefore a malicious program could carefully
wait for a moment at which the user is not using or watching his PDA for a
while. To choose such a moment, the following notifications could be used: the
sysNotifyIdleTimeEvent notification is sent whenever the device is inactive for
a short period, the sysNotifySleepNotifyEvent notification is sent whenever
the device is put into standby mode.

User Interface Tracking. By registering for the sysNotifyEventDequeuedEvent
notification, the application gets a notification whenever a user interface event

2 By means of a Notification, see Section 3.2.

244 T. Goovaerts et al.

(such as the tapping of a button) is handled. This way, malicious programs can
track tapped buttons and the information he/she enters. The security conse-
quences are twofold: first, it allows for a fine grained selection of triggers. For
example, a self-propagating program can track when the user presses the ‘beam’
button to send information to another device and react by sending itself in-
stead, hoping that the receiving user will accept the transfer. Second, malicious
programs can intercept confidential information entered by the user.

3.3 Application and Process Management

Hiding from the Application List. The database of each application has a bit
that, when set, will hide the application from the list of launchable applications.
When doing so, the application will still be listed in the dialogs for copying,
moving and deleting applications.3 Malicious applications could set their hidden
bit for trivial hiding purposes.

Hiding Entirely From the User Interface. Every database has a type and an
identification number, called a creator id. Databases that contain application
code have the type appl. When the type of an executing applications’ database
is changed into a non-executable type (for example the data type or a custom
type), it will no longer be seen as an executable but it will still receive launch
codes and notifications as long as the device is not reset. Doing so will hide the
program from the launch screen. Moreover, when the creator id of the executing
application is also changed to another applications’ creator id, the application
will be regarded as a database of the other application and will also be hidden
from the copy, move and delete dialogs. The executing code can only be deleted
by removing the application whose creator id was taken. When the creator id
of a built-in application is taken, the executing code cannot be deleted at all
because the delete dialog only allows the removal of user-installed applications.

Thus, a malicious program can hide itself completely from the user interface
and render itself unremovable while it can remain executing in the background.
Third party database managers such as Filez will still allow the removal of the
database.

Application Replacement. Besides a type and a creator id, every application on
Palm OS has a name and a version number. Two vulnerabilities in the handling
of these attributes exist that can be exploited to replace existing applications:

1. Installing an application that has the same creator id but a higher version
number than a built-in application will replace the built-in application by
the new one[1].

2. When an application is installed with the same name as an application in-
stalled by the user, the old application will be physically removed from the
device and is completely overwritten by the new application.

3 A user can visually notice installed applications either in the launch screen or in the
copy, move and delete dialogs.

Assessment of Palm OS Susceptibility to Malicious Code Threats 245

Consequently, malicious code can replace all applications that are installed on
the device. The replacement of an application poses an obvious threat of making
existing applications unusable, but these vulnerabilities can also be exploited
to exhibit Trojan horse behavior. The functionality and appearance of existing
applications can be mimicked for secretly executing malicious actions.

Occupying the Processor. Since Palm OS is a single tasking operating system
without any process management capabilities, a malicious program can perform
a denial of service attack by simply executing and not releasing the processor.
An infinite loop is enough to block the entire system and force the user to reset.

3.4 Communications

Backdoor for Beamed Data [1]. The Exchange Manager is a library that allows
data to be sent to another device using a high level transport-independent API.
Data sent by the exchange manager typically travels over wireless protocols
such as IrDA, Bluetooth or GSM protocols. An application can be registered to
handle the reception of data of a certain type, for example contacts, meetings or
applications. When data of the application type is received, by default a dialog
will be shown asking the user for confirmation.

Every application can register itself to receive all beamed applications and
can override the confirmation dialog, always accepting the received code. This
way, a malicious application can open a backdoor that allows other self-replicat-
ing malicious programs to transfer themselves silently onto the system.

Detection of Devices in the Proximity. Low-level communication libraries such
as the IrDA or Bluetooth library pose less of an infection threat than the Ex-
change Manager mainly because no servers are running for these protocols. They
can however be used by malicious code to detect other devices that are in the
proximity. For example, the IrDA library can be used to poll for other devices
periodically and trigger a propagation with the Exchange Manager when a po-
tential victim has been detected.

Detection of Communication Facilities. Self-propagating malicious code uses
communication channels and network connections to copy itself onto other de-
vices. PDAs typically only have short-lived connections, for example when data
is sent over IrDA or Bluetooth. Sometimes the communication hardware is not
always present. A number of notifications exist that are useful propagation
triggers: the sysExternalConnectorAttachEvent is sent whenever an exter-
nal device such as a WiFi adapter or a Hotsync cradle is attached and the
sysNotifyLibIFMediaEvent is sent whenever a network interface is activated.

3.5 Built-in Security Mechanisms

Brute Force Password Guessing. Since entering a long password on a PDA can
be an annoyance to the user, passwords are often chosen to be very short. The

246 T. Goovaerts et al.

authentication mechanism of Palm OS is implemented by simply comparing
the MD5 hash of the user-provided password and the original password stored
in a (freely accessible) system database. Since passwords on a PDA are often
significantly shorter than normal passwords, the MD5 hash of the password is
vulnerable for a brute force attack.

Experiments on a device with a 144MHz processor have shown that all al-
phanumerical passwords of length 3 can be found within 15 seconds.

Password Removal. As mentioned earlier, a record can be protected by setting
its secret bit. This requires the user to enter his/her password upon viewing or
changing the information in the record. When a user has forgotten the password,
he/she can remove the password. This deletes all records that have their secret
bit on. However, there is an API call (PwdRemove) that removes the password
without any further consequences.

This API call effectively undermines almost all security mechanisms of Palm
OS. By removing the password, a malicious program can open the device and
the information carried by it to persons that can physically approach the device.

3.6 Desktop Components

Surviving a Hard Reset. Every kind of malicious code has to reside in RAM, so
when the user does a hard reset it would be erased. By setting the ‘backup bit’
of a database, it will be copied to the desktop upon synchronization. Malicious
code can transfer its own database to the PC in order to survive a hard reset.
After a hard reset, the next synchronization will restore all backed up databases.

Infection via Hotsync [1]. The Hotsync component on the desktop is the gateway
to the PDA for all applications. By placing a copy of an application in a certain
directory on the desktop and calling a function on a Hotsync library, the Hotsync
installation program will install the file on the device.

Cross-platform malicious code that carries a Palm OS payload can exploit
this weakness for infecting the device.

3.7 GUI

Hiding Dialogs. Two API calls exist for turning off the screen and for stopping
its redrawing. Malicious code can abuse these calls for hiding noticeable actions
from the user.

A possible technique is to first detect when the user wants to put the device
into standby mode and then turning off the screen, but leaving the device on.
The user cannot make a visual distinction between its device in this state or in
standby mode. When the screen is turned off, a malicious program can operate
without being detected by the user.

When malicious code wants to perform certain actions such as beaming itself
to another device, some dialogs appear on the screen. A technique to hide these
dialogs is to freeze the screen just before the dialog appears and release it when
the dialog is gone, given that this latter moment can be determined.

Assessment of Palm OS Susceptibility to Malicious Code Threats 247

4 Proof of Concept Implementation

To verify and experiment with these threats in practice, we have created a generic
proof of concept implementation of one specific kind of malicious code: a worm.
We have chosen a worm because it is a good vehicle for testing the full spectrum
of discovered vulnerabilities and techniques. Malicious code typically combines
a number of exploits. Therefore, the main purpose is not only to allow easy
experimentation with isolated vulnerabilities but also with combinations thereof.
The implementation is written in C and can flexibly combine exploits at compile-
time. It consists of the skeleton of a worm and is structured along three phases:
the activation phase hides and protects the worm and activates the other two
phases, the propagation phase actively propagates the worm to other systems
and the execution phase contains the payload. Table 1 shows the phase(s) to
which each of the discussed exploits belongs.

Table 1. Vulnerabilities and the phase(s) to which they belong: Activation,
Propagation or Execution

A P E A P E
Full access to data • Backdoor for beamed data •
Program infection or destruction • • Detection of devices in the proximity •
Preventing the deletion of databases • Detection of communication facilities •
Hiding of noticeable actions • Brute force password retrieval •
User interface tracking • • Password removal •
Hiding from the application list • Surviving a hard reset •
Hiding entirely from user interface • Infection via hotsync •
Application replacement • Hiding dialogs •
Occupying the processor •

We have found that it is very easy to use combinations of these exploits to
create a proof of concept worm that is quasi invisible and virtually impossible
to delete. We have used our implementation to create a self-propagating security
utility with a benign payload. This utility uses a number of exploits discussed
above to hide and protect itself. In the mean time, its benign payload tries to
determine the user’s password, warning him/her when it is not strong enough.
As can be seen in Table 1, currently the vulnerabilities for the activation and
execution phases are the main threats to Palm OS. The simplicity and relatively
small size (less than 2000 lines of code) of our proof of concept implementation
confirms that Palm OS is an easy target for malicious code.

5 Discussion

We have seen that Palm OS is vulnerable for numerous malicious code threats.
The reason for this lies within Palm OS’s security model: it is a secure operating
system under the assumption that all applications can be fully trusted.

248 T. Goovaerts et al.

This assumption is reflected in two ways. First of all, the responsibility for
enforcing various security rules is pushed up towards the application layer. A
trusted benign application will behave well and will implement the enforcement
logic, but an application with malicious intentions is completely free to ignore
this enforcement request. Examples of security rules to be enforced by the ap-
plications are the read-only bit for a database and the secret bit for a record.
Secondly, as illustrated extensively in Section 3, simple use of Palm OS’s API
can seriously harm the system and can be a large threat. Trusted applications
will not misuse the API, but malicious applications are only limited by the cre-
ativity of their writers in the malicious actions they can perform. The fact that
in the Palm OS world, new applications are frequently installed only worsens
the untrusted code problem.

To tackle these problems, a number of changes to Palm OS could be imple-
mented. First of all, memory protection should be introduced. Without it, no
other security mechanism could be implemented securely. Furthermore, all exist-
ing security enforcement (e.g. for read-only databases and secret records) should
be pulled down to the operating system. A number of new security mechanisms
could also be added to Palm OS. The introduction of a code authentication
mechanism would eliminate a great deal of the discussed malicious code threats.
Unauthenticated code could be disallowed or be executed with limited permis-
sions. In addition, an access control mechanism could be implemented that can
limit access at least to databases but preferably also to API calls.

As can be seen in Table 1, most of the discovered vulnerabilities either belong
to the activation phase or to the execution phase. Propagation phase techniques
that actively propagate code to other devices are currently much less of a threat
to Palm OS than they are to classical desktop operating systems. This can be
explained by the fact that, except for the built-in exchange manager, Palm OS
devices do not run server programs. Furthermore, Palm OS devices normally only
have short-lived connections. Finally, Palm OS devices are less prone to buffer
overflow attacks than most desktop operating systems because the address of
the central application stack can not be determined easily. Actively propagating
forms of malcode are most likely to propagate on the desktop platform and
install their payload through Hotsync.

Palm OS Cobalt [10] introduces a number of interesting security-related
changes. Most importantly, code can be signed to guarantee its integrity. Fur-
thermore, memory protection is implemented, so no more direct memory writes
can be made. Another novelty is the introduction of secure databases. These
contain encrypted information and are only accessible through a configurable
authorization manager that controls which operations may be executed on the
database. Finally, programs that do not respond can be terminated by the user.
Beside these positive evolutions, not all issues are solved. For example, the en-
forcement of database attributes (e.g. the read-only bit) is still not done by the
operating system and secure databases are sent over the wire in plaintext when
performing a synchronization. Unfortunately, code authentication is also not
mandatory. Cobalt is a step in the good direction, but is certainly not perfect.

Assessment of Palm OS Susceptibility to Malicious Code Threats 249

6 Conclusion

We have studied the vulnerabilities of Palm OS and have given potential mali-
cious code threats that result from them. These threats and vulnerabilities were
tested and verified in a proof of concept implementation. It was found that the
platform is extremely vulnerable to malicious code. The reason is that Palm OS
fully trusts all code. Although Palm OS devices are more and more equipped
with wireless technologies, currently the main threat comes from passively propa-
gating forms of malicious code. Suggested improvements are memory protection,
system-level security enforcement, access control and code authentication.

Further study has to show the impact of Cobalt on the security of the plat-
form in general and to the problem of malicious code in particular. Furthermore,
a comparison will be made of this problem and the solutions on other operating
systems for both PDAs and desktops.

References

1. Kingpin, Mudge: Security analysis of the palm operating system and its weaknesses
against malicious code threats. In: Proceedings of the 10th USENIX Security
Symposium, USENIX (2001) 135–152

2. Murmann, T., Rossnagel, H.: How secure are current mobile operating systems?
In: Proceedings of the Eighth IFIP TC-6 TC-11 Conference on Communications
and Multimedia Security, IFIP (2004) 47–58

3. Ghosh, A.K., Swaminatha, T.M.: Software security and privacy risks in mobile
e-commerce. Communications of the ACM 44 (2001) 51–57

4. Pfitzmann, A., Pfitzmann, B., Schunter, M., Waidner, M.: Trustworthy user de-
vices. In: Multilateral Security in Communications, Addison-Wesley (1999) 137–
156

5. Symantec Security Response: The WinCE.Duts.A virus for Windows CE.
http://securityresponse.symantec.com/avcenter/venc/data/wince.duts.a.html
(2004)

6. Symantec Security Response: The SymbOS.Cabir worm for Symbian. http://
securityresponse.symantec.com/avcenter/venc/data/epoc.cabir.html (2004)

7. Symantec Security Response: The Palm.Phage.Dropper virus for Palm OS.
http://securityresponse.symantec.com/avcenter/venc/data/palm.phage.
dropper.html (2000)

8. Vanhoof, J., Goovaerts, T.: Studie van de wormproblematiek op het Palm OS
platform (Dutch). Master’s thesis, Katholieke Universiteit Leuven (2004)

9. PalmSource: Palm OS Garnet. http://www.palmsource.com/palmos/garnet.html
(2004)

10. PalmSource: Palm OS Cobalt 6.1. http://www.palmsource.com/palmos/cobalt.html
(2004)

11. Software, N.: Filez 6.7. http://www.nosleeep.net (2005)

http://securityresponse.symantec.com/avcenter/venc/data/ wince.duts.a.html
http://securityresponse.symantec.com/avcenter/venc/data/epoc.cabir.html
http://securityresponse.symantec.com/avcenter/venc/data/epoc.cabir.html
http://securityresponse.symantec.com/avcenter/venc/data/palm.phage.dropper.html
http://securityresponse.symantec.com/avcenter/venc/data/palm.phage.dropper.html
http://www.palmsource.com/palmos/garnet.html
http://www.palmsource.com/palmos/cobalt.html
http://www.nosleeep.net

	Introduction
	Palm OS
	Vulnerabilities
	Database Management
	Event Mechanisms
	Application and Process Management
	Communications
	Built-in Security Mechanisms
	Desktop Components
	GUI

	Proof of Concept Implementation
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

