SPECIFICATION-BASED TESTING OF
REAL-TIME EMBEDDED SYSTEMS*

Manuel Niifiez and Ismael Rodriguez
Departamento Sistemas Informdticos y Programacién, Facultad de Informdtica
Universidad Complutense de Madrid, 28040 Madrid, Spain

{mn,isrodrig} @sip.ucm.es

Abstract: In this paper we present a formal framework to test real-time embedded systems
where temporal requirements play a relevant role. First, we introduce our for-
mal model to specify this kind of systems. It is a modification of the classical
EFSM formalism where actions will be attached with a temporal constraint. This
constraint expresses the maximal and/or minimal time this action should take
during its execution in the current configuration. Then, we use this formalism
to construct models that represent the set of temporal requirements in a system.
In turn, they are automatically obtained from the temporal requirements defined
for each component in the system. Tests for checking these requirements are
defined and a formal mechanism to apply them to real systems is described.

1. INTRODUCTION

Embedded systems that are constructed nowadays have reached a high level
of complexity. They may consist of a huge amount of components that interact
with each other and may have been designed by different teams or companies.
In this context, guaranteeing the reliability of each component and/or the in-
tegration of all of them is a great challenge. In particular, the integration of
components yields an explosion of relevant configurations to be considered
and checked, and selecting the most critical ones by hand is not feasible. The
systematic testing of systems has been a topic of research and application of
formal methods for years. Formal methods provide systematic testing mecha-
nisms where systems are faced to some selected foreseen situations. Then, the
correctness of the system is assessed by comparing its behavior with the one
provided by a set of requirements or a specification. Due to the high cost of

*Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01, the Junta de Castilla-
La Mancha project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.

116 Manuel Nifiez and Ismael Rodriguez

testing in any development project, the use of systematic and formal methods
for testing has attracted the attention of several manufacturers.

In the beginning, specification languages proposed to create models of sys-
tems by considering only its functional characteristics. That is, models ex-
pressed constraints as “after an action A is produced, an action B should/must
be produced as well.” Thus, formal testing was constrained to check functional
properties (see e.g. [Lee and Yannakakis, 1996} for a good survey on testing
finite state machines). Besides, there were also some proposals to specifically
deal with embedded and/or component-based systems (see e.g. [Petrenko et al.,
1996; Lima and Cavalli, 1997]). Nevertheless, this kind of properties turned
out to be insufficient for representing other critical features of systems. To
cope with this problem, new models were developed to deal with additional
characteristics such as the time consumed by actions, the probability of tak-
ing an action, the resources consumed to perform an action, or the probability
that an action takes a given time to be performed. However, the inclusion of
temporal issues in specification languages did not have a great impact on the
development of new testing methodologies.

In this paper we present a formalism based on classical EFSMs (extended
finite state machines) whose aim is to facilitate the specification of embed-
ded systems where temporal aspects play a relevant role. In addition, we will
present the basic concepts of a testing framework for these systems. The appli-
cation of tests to check temporal issues and the obtention of diagnosis results
concerning their correctness is defined. Our language will provide us with the
possibility of separately describing the behavior of each component of a sys-
tem. An automatic transformation mechanism that allows to create a single
model from the models of some interacting components will be provided as
well. This mechanism will not consider any possible combination of config-
urations of components. On the contrary, only reachable situations will be
considered, which will diminish the usual state explosion problem.

Our formalism allows to express constraints about the time consumed by
each action. Variables will affect the behavior of components and systems
as well as the time consumed by actions. In particular, variables will have
the capability to enable/disable actions. Every action in the model will be
equipped with a temporal constraint expressing the (required) behavior for that
action. For example, temporal constraints on actions could require than an
action a takes less than 2 seconds, next action b takes more than 3 seconds
and less than 5 seconds, and, finally, action ¢ takes exactly 7 seconds. Let
us suppose that the sequence of actions a, b, c is a possible communication
sequence inside the system and that this sequence is observed from the outside
of the system as the observable action d. If an external observer tries to check
the temporal correctness of a system according to that requirement, then she
should observe that the action d never takes less than 10 seconds nor more than

Specification-Based Testing of Real-Time Embedded Systems 117

14 seconds. Let us note that the accomplishment of that requirement does not
imply that each individual action in the sequence a, b, c accomplishes its own
specific requirement. That is, if the temporal constraint for d is fulfilled, an
external observer can only claim that the temporal correctness of actions a, b, ¢
is possible. Let us note that if a black box testing approach is considered (see
e.g. [Myers, 1979]) then it is irrelevant whether the temporal constraints on a,
b, and c are fulfilled as long as the temporal behavior of the only observable
action (d) is correct. Let us suppose now that there is no upper bound for the
time consumed by b. Then, the only temporal constraint for d would require
that it does not take less than 10 seconds. Our testing methodology will allow
tests to analyze the temporal aspects of systems.

The concepts that we introduce in this paper can be useful for testing other
models of timed systems. For example, the definitions can be easily adapted
to timed automata [Alur and Dill, 1994]. Other definitions of timed I/O au-
tomata (e.g. [Higashino et al., 1999; Springintveld et al., 2001]) are restricted
to deterministic behavior, while we are more expressive since we allow non-
determinism in specifications and (partially) in implementations. Regarding
testing for timed systems, some proposals have already appeared in the litera-
ture (e.g. [Clarke and Lee, 1997; Higashino et al., 1999; Springintveld et al.,
2001]). Our proposal is inspired in [Niifiez and Rodriguez, 2003] and differs
from the previous ones in several points, mainly because the treatment of time
is different. We do not have a notion of clock(s) together with time constraints;
we associate time to the execution of actions (the time that it takes for a system
to perform and action).

The rest of the paper is organized as follows. In Section 2 we define our lan-
guage in terms of processes and systems. In Section 3 we show how test cases
are defined and describe how to apply them to implementations. Finally, in
Section 4 we present our conclusions and some directions for further research.

2. FORMAL SPECIFICATION MODEL: TIMED EFSM

In this section we introduce our timed model for specifying systems where
temporal constraints play a relevant role. The main difference with respect to
usual EFSMs consists in the addition of time. Constraints on the time consumed
by actions will be given by means of intervals. If the action a is attached with
the temporal requirement (£,,¢2) then the execution of a should take at least
t1 units of time and at most ¢y units. Intervals like (0, t3), (1, 00), or (0, 00)
denote the absence of any temporal lower/upper bound and the absence of any
bound, respectively. Variables will be introduced as a way to add some ex-
pressivity to classical finite state machines and as communication mechanism
between components of the system. For instance, a variable z can be used as
a counter that is incremented every time the action b is performed. Then, if b
is enabled only if « is less than or equal to 5, then b will be executed at most

118 Manuel Niifiez and Ismael Rodriguez

5 times. In our model, variables affect temporal requirements as well. For ex-
ample, we can specify that the time consumed by b is given by a value that is
double than that of variable z. Then, the first execution of must take 2 units
of time, the next one 4 units, and so on. Next we introduce the definition of
Timed EFSM. We suppose that the number of different variables is equal to m.

DEFINITION 1 A Timed Extended Finite State Machine, in short TEFSM, is a
tuple M = (S,1,0,Tr, s;n,) where S is a finite set of states, I is the set of
input actions, O is the set of output actions, T'r is the set of transitions, s;;, is
the initial state, and § € R™ is a tuple of variables.

Each transition § € T'r is a tuple § = (s, s',4,0,Q, Z,C) where 3,5’ € S
are the initial and final states of the transition, ¢ € I and o € O are the input and
output actions, respectively, associated with the transition,) : R™ — Bool
is a predicate on the set of variables, Z : R™ — R™ is a transformation over
the current variables, and C : R™ — (R4 U {oo}) X (R4 U {c0}) returns,
for a given value of the variables, a time interval. Intervals of the form (¢,)
where the lower and upper bounds coincide will be written just as t.

A configuration in M is a pair (s, T) where s € S is the current state and T
is the current tuple of variable values.

We say that o = (3,4, (i1/01,...,ir/0r), Q, Z,C) is a timed trace of M if
there exist transitions 4y, . ..,d, € Trsuchthat §; = (s, s1,41,01, @1, Z1,C1),
vow O = (821,58, 4r,0r, Qr, Zy, Cy), the predicate @ is defined such that it
holds Q(Z) = (Q1(Z) A Q2(Z1(Z)) N ... A Qr(Z-1(...(Z1(3))...))),
the transformation Z is defined as Z(%) = Z,(Z,-1(...(Z1(%))...)),and C
is defined as C(Z) = C1(Z) + C2(Z1(%)) + - - - + Cr(Zr—1(. . . (Z1(T)) . . .)).
Finally, the addition over intervals is defined as follows: (a3, a3) + (b1,b2) =
(a1+b1,a2+b2). O

Intuitively, for a configuration (s, Z), a transition § = (s, s,1,0,Q, Z,C)
indicates that if the machine is in state s, receives the input ¢, and the predicate
@ holds for z, then after a time belonging to the interval (¢3,t3) = C(Z)
(assuming ¢ > t; and £; # oo) the machine emits the output o and the values
of the variables are transformed according to Z. Let us note that (the value
of) variables may disable the execution of actions not only by the effect of
the function @) but also by the function C. Traces are defined as a sequence
of transitions. In this case, the predicate, the transformation function, and the
time associated with the trace are computed from the corresponding to each
transition belonging to the sequence. Finally, we suppose that addition in real
numbers is extended in the following way: oo + r = oo.

2.1 Compoesition of components to specify systems

A system is made of several components. Some of the actions performed
by these components will be hidden indicating that they are not visible, that

Specification-Based Testing of Real-Time Embedded Systems 119

is, they can be neither controlled nor observed. In order to facilitate the un-
derstanding, we do not define a compressed version of systems where internal
communications are omitted yet. So, we generate the whole graph (including
both internal and external actions) and then we delefe internal communications
(getting what we call a simplified system). Alternatively, we will also present a
method to directly create the corresponding simplified system.

DEFINITION 2 Let M,,...,M, be TEFSMs where for all 1 < 7 < n we
have M; = (S,',Ii, 0;,Tr;, sini:gi)- LetI C Ui ILand O C Ui O;, such that
INO = 0. The system created by the composition of M;, ..., M, with respect
to the actions sets I and O, denoted by Sys(My, ..., Mp, I, 0), is defined as
the TEFSM M = (S,I,0,Tr, sin,) where:

o The initial state s;,, is defined as s;, = (Sin;, .- - Sin,)-
a The initial tuple of (tuples of) variable values is § = (%, .., Jn).

m S =8 x -+ x 8, Actally, it is enough to consider those states
reachable from s;, by sequences of transitions belonging to T'r.

w Lets=(s1,...,8j...,8n) and s’ = (s1,...,8},...,n) be two states.
Then, (sj, 55,%,0, @, Zj, C;) € Tr; implies (s,8',4,0,Q,2,C) € Tr,
where Q(Z1,...,%n) = Qj(Z;), C(Z1,...,Zn) = Cj(Z;) and we have
Z(.’il,...,.’i'n) = (51,...,Zj(i}j),...,a—:n).

Let§ = (s,s,(i1/01,...,%/0r),Q, Z,C) be a trace for the TEFSM previ-
ously defined. We say that 4 is a chained trace if o, € O, i; € I, and for all
2<l<rwehavei; ¢ ITUQO andi; = 0;_;. O

Let us note that actions not belonging to I U O are considered as internal.
A chained trace consists of an external input action, a consecutive sequence
of paired output/input actions, and finally an external output action. Chained
traces are the basis to define our simplified systems. In order to abstract internal
computations, systems are transformed into simplified systems. The idea is that
transitions of a simplified systems are those chained traces belonging to the
original system.

DEFINITION 3 Let Comp = (S,1,0,Tr, s,) be a system. We say that
M' = (8',1,0,Tr', sin,) is the simplified system associated with Comp,
denoted by Simp(Comp), if S’ and T’ fulfill the following recursive defini-
tion:

s s, €5 and

a Ifse S andd = (s,¢,(i1/01,...,0r/0), R, Z,C) is a chained trace
of Comp then s’ € 8’ and (s, §',41,0., @, Z,C) € Tr'.

120 Manuel Niriez and Ismael Rodriguez

We say that iy /oy,...,ir /0, is a non-timed evolution, or simply evolution,
of M’ if there exists a trace (s;pn, s, (11/01,...,1r/0r), @, Z,C) of M’ such
that Q(#) holds. Given a simplified system Scomp, NTEvol(Scomp) denotes
the set of non-timed evolutions of Scomp.

We say that ((i1/01,...,ir/0r), (t1,12)) is a timed evolution of M' if there
exists a trace (s, 8, (i1/01,..-,ir/0r), Q, Z, C) of M' such that Q(g) holds
and (t,t3) = C(j). Given a simplified system Scomp, TEvol(Scomp) de-
notes the set of timed evolutions of Scomp. O

As we said before, a chained trace is converted into a single transition. Then,
an evolution is a trace from the initial state of the simplified system. Let us note
that all the actions appearing in evolutions are visible (as internal actions are
removed by considering transitions formed from chained traces).

22 Alternative definition of simplified systems

In this section we present a direct way to define simplified systems without
computing the corresponding auxiliary systems. Intuitively, we compute the
states of the composition only when they are needed to define the rest of the
composite system. In fact, if we are interested only in a part of the whole
systems, we could use this method to generate on the fly only that portion of
the system. For example, one may be interested in the system reachable from
a given state s such that all the possible sequences of transitions have labels
belonging to some certain sets of inputs and outputs.

DEFINITION 4 Let M, ..., M, be TEFSMs with M; = (S;, I;, 0;,T;, Sin,, Ui)-
; 7,6:3,0
We write (S1,...,8j,-..,8n)
such that § = (s;, s},1,0,Q, Z,C) € Tj.

Let I C |J; I and O C |J; O; be set of actions such that I N O = (). The
simplified system created by the composition of the systems My, ..., M, with
respect to the set of actions I and O, denoted by SimpSys(M, ..., My, I, 0),

is given by the tuple (S, 1,0, T, s;n,7), where:

(sl,...,s;-,...,sn) if there exists j

m The initial state s;,, is defined as si, = (Sin;, .-+ Sin,)
s The initial tuple of (tuples of) variable values is § = (§1,...,Jn)-

m §C S5 x---x 8, is defined as the set of states belonging to T and
reachable from s;;,.

» A transition (v, w, %, 0, @, Z, C) between the states v = (vy,...,v,) and
w = (wy,...,w,) belongs to T if there exist iy ...,%,0;,...,0, such
that:

-o0o=o0,. €0,

Specification-Based Testing of Real-Time Embedded Systems 121

-1=1 €1,
- forall2 <! <rwehavei ¢ TUO and i; = 0;_1,
- there exist &;,...,60,, Ji,...,Jr and sy,...,8,-1, Where for all

1<i<r—-1,s8=(su,.--,Sm), such that

J1,014i1,01 Jj2,02,i2,02 Jrs0rsir,0r
> S1 P e Sp] Y/ W

where foralll <! <r, 4 = (sljpsl+1juila0l,él,Zla ég),
- Q) = (1(Z) A Q2(21(Z)) A ... A Qn(Zn-1(..(Z2(Z))...)))-
= Z(Z) = Zn(Zn-1(.. - (Z1(2)) ..))
- C(z) = C1(Z) + C2(Z1(Z)) + ... + Cn(Zn-1(- - . (Z1(2)) . .))-
In the previous three items, for all 1 £ < r we have:
(Qu(E5)
Zi(Z1,. .., Zpn) = (?1,...,Zl(ij,),...,xn)
C[(ftl,...,:i'n) = Cl(:ijl)

o
)
—
8
3
S
i

]

The next result states that simplified systems defined by applying either the
Definitions 2 and 3, or the previous definition coincide. The proof of the result
follows by taking into account that the way transitions are defined in both Def-
initions 3 and 4 generate the corresponding states of the system as well as the
transitions between them in the same way. Specifically, in both cases the states
of the simplified system consist of the tuple of initial states of all TEFSMs as
well as any tuple of states that can be reached by chained traces or sequences
of chained traces from the initial state.

LEMMA 5 Let Mi,..., M, be TEFSMs where each M; is given by M; =
(Si, iy Oi, Tri, Sin,, §i), and let I C |J;I; and O C |J; O; be such that
IN O = 0. Then, we have that

Simp(Sys(Py,...,Pp,I,0)) = SimpSys(Py,...,P,,1,0)
a

3. DEFINITION AND APPLICATION OF TEST CASES

A test represents a sequence of inputs applied to the implementation. Once
an output is received, we check whether it is the expected one or not. In the
latter case, a fail signal is produced. In the former case, either a pass signal
is emitted (indicating successful termination) or the testing process continues
by applying another input. If we are testing an implementation with input and

122 Manuel Nifiez and Ismael Rodriguez

T T T3 Ty
L
o) a3 I a) a1
by / Null by / Null by Null by / Null
. L L L L] * L] L] L]
fail ag fail fail a, fail fail pass fail fail ag fail
by / Nw b/ Null by / Null
L] L L L] []
fail a; fail fail pass fail fail ag fail
b/ b\ null b/ Nﬂ"
L L L L]
pass foil fail pass fail fail

Figure 1. Examples of Test Cases.

output sets I and O, respectively, tests are deterministic acyclic I/O labelled
transition systems (i.e. trees) with a strict alternation between an input action
and the set of output actions. After an output action we may find either a leaf
or another input action. Leaves can be labelled either by pass or by fail. In the
first case we add a time stamp, an interval that will be contrasted with the time
that the implementation took to arrive to that point. We also add a time stamp
in input states to record the time that the performance of the preceding output
action took.

DEFINITION 6 AtestcaseisatupleT = (S,1I,0,Tr, s, Sr,S0,SF,Sp,C)
where § is the set of states, I and O are disjoint sets of input and output ac-
tions, respectively, Tr C § x I U O x § is the transition relation, s € S
is the initial state, and the sets Sy, Sp, Sr, Sp C S are a partition of S. The
transition relation and the sets of states fulfill the following conditions:

» S is the set of input states. We have that s € Sr. For any input state
s € S there exists a unique outgoing transition (s, a, s’) € T'r. For this
transition we have thata € I and s’ € Sp.

m So is the set of output states. For any output state s € Sp we have that
for any o € O there exists a unique state s’ such that (s,0,s’) € Tr. In
this case, s’ ¢ So. Moreover, there do not exist i € I, s’ € S such that
(s,%,8") € Tr.

m Sr and Sp are the sets of fail and pass states, respectively. We say that
these states are terminal. Besides, for any state s € Sp U Sp we have
that there do not exista € I U O and s’ € S such that (s, a,s’) € Tr.

Finally, C : SpUS; — (R4 U{00}) x (R4 U{oo}) is a function associating
time interval stamps with passing and input states.

Specification-Based Testing of Real-Time Embedded Systems 123

Leto = 41/01,...,ir/0or. We write T == s if s € Sp U Sp and there exist
states $12, S21, 822, - - - Sr1, 8r2 € S such that {(so, i1, $12), (8r2,0r,8)} C T,
forall 2 < j < r we have (s;1,%,852) € Tr,and forall1 < j <r—1we
have (sj2, 05, 8(j41)1) € TT.

We say that a test case 7' is an instance of the test case T" if they only differ
in the associated function C assigning time intervals.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state sg. O

In Figure 1 we present some examples of test cases (time stamps are omit-
ted). Next we define the application of a tests suite (i.e. a set of tests) to an
implementation. We say that the tests suite 7 is passed if for any test the ter-
minal states reached by the composition of implementation and test belong to
the set of passing states. Besides, we give timing conditions according to the
temporal constraints included in tests.

DEFINITION 7 Let I be a simplified system and T be a valid test. We write
I|T =%, sTif T == sT and (o, t) € TEvol(l).

We say that I passes the set of tests 7, denoted by pass(I, 7), if for all test
T=(S10,Trs,S;,S0,Sr,Sp,C) € T and o € NTEvol(I) there do not
exist sT and ¢ such that I || T == sT and sT € Sp.

We say that I passes temporally the set of tests T if pass(Z,7) and for all
(0,t) € TEvol(I) such that T == sT" for some T’ € T, we have that for
all T = (S,1,0,Tr,s,81,80,8F,Sp,C) € T suchthat I | T == sT with
sT € Sp N Sy it holds that t € C(sT). 0

That is, for passing a test suite we require that (a) no functional behavior
that is forbidden by any test is produced by the system and (b) any temporal
behavior produced by the system is accepted by all the tests belonging to the
test suite.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a model that is suitable for defining the tem-
poral requirements to specify embedded systems. Besides, we have defined
how to test an embedded system to find out whether these requirements are
fulfilled. The formalism proposed is an extension of the classical EFSMs where
actions are provided with the possibility of expressing temporal constraints.
These constraints allow to impose maximal and/or minimal bounds for the time
consumed by an action as well as strict temporal requirements. The temporal
behavior of a system is automatically inferred from the temporal behavior of
each component of the system. In particular, temporal constraints on external
actions are computed from the temporal constraints on the internal actions par-
ticipating in the execution of that external action. Tests are sequences of input

124 Manuel Niriez and Ismael Rodriguez

actions that stimulate the system and record the outputs produced in response.
After each output is received, the test checks whether the time consumed by
the trace produced so far fits into the constraint defined by the test.

We are developing temporal implementation relations for embedded sys-
tems that define the conditions required for an implementation to conform to
a specification. In this line, we will take as starting point our previous work
in [Nufiez and Rodriguez, 2002]. Besides, we are constructing a test derivation
algorithm to produce sound and complete test suites according to these rela-
tions, that is, the implementation conforms to the specification if and only if
the implementation passes all the tests belonging to the test suite derived from
the specification. In this case, we will try to use our recent work on testing
probabilistic systems [Lépez et al., 2005] where such a derivation algorithm,
although for a probabilistic model, is presented.

REFERENCES

Alur, R. and Dill, D. (1994). A theory of timed automata. Theoretical Computer Science, 126:183-
23s.

Clarke, D. and Lee, I. (1997). Automatic generation of tests for timing constraints from require-
ments. In 3rd Workshop on Object-Oriented Real-Time Dependable Systems.

Higashino, T., Nakata, A., Taniguchi, K., and Cavalli, A. (1999). Generating test cases for a
timed I/O automaton model. In /2th Workshop on Testing of Communicating Systems, pages
197-214. Kluwer Academic Publishers.

Lee, D. and Yannakakis, M. (1996). Principles and methods of testing finite state machines: A
survey. Proceedings of the IEEE, 84(8):1090-1123.

Lima, L. and Cavalli, A. (1997). A pragmatic approach to generating tests sequences for em-
bedded systems. In 10th Workshop on Testing of Communicating Systems, pages 288-307.
Chapman & Hall.

Lépez, N., Niifiez, M., and Rodriguez, I. (2005). Testing of symbolic-probabilistic systems. In
4th Int. Workshop on Formal Approaches to Testing of Software (FATES 2004), LNCS 3395,
pages 49-63. Springer.

Myers, G. (1979). The Art of Software Testing. John Wiley and Sons.

Niifiez, M. and Rodrfguez, I. (2002). Encoding PAMR into (timed) EFSMs. In FORTE 2002, LNCS
2529, pages 1-16. Springer.

Niifiez, M. and Rodriguez, L. (2003). Towards testing stochastic timed systems. In FORTE 2003,
LNCS 2767, pages 335-350. Springer.

Petrenko, A., Yevtushenko, N., and Bochmann, G. v. (1996). Fault models for testing in context.
In Formal Description Techniques for Distributed Systems and Communication Protocols
(IX), and Protocol Specification, Testing, and Verification (XVI), pages 163—178. Chapman
& Hall.

Springintveld, J., Vaandrager, F., and D’ Argenio, P. (2001). Testing timed automata. Theoretical
Computer Science, 254(1-2):225-257.

