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Abstract. We present a new method for solving the fixed point equa-
tions that appear in the static analysis of programs by abstract inter-
pretation. We introduce and analyze a policy iteration algorithm for
monotone self-maps of complete lattices. We apply this algorithm to the
particular case of lattices arising in the interval abstraction of values
of variables. We demonstrate the improvements in terms of speed and
precision over existing techniques based on Kleene iteration, including
traditional widening/narrowing acceleration mecanisms.

1 Introduction and Related Work

One of the important goals of static analysis by abstract interpretation (see
Cousot & Cousot [9]) is the determination of invariants of programs. They are
generally described by over approximation (abstraction) of the sets of values
that program variables can take, at each control point of the program. And they
are obtained by solving a system of (abstract) semantic equations, derived from
the program to analyze and from the domain of interpretation, or abstraction,
i.e. by solving a given fixed point equation in an order-theoretic structure.

Among the classical abstractions, there are the non-relational ones, such as
the domain of intervals [9] (invariants are of the form vi ∈ [c1, c2]), of constant
propagation (vi = c), of congruences [16] (vi ∈ aZ + b). Among the relational
ones we can mention polyedra [28] (α1v1 + · · ·+αnvn ≤ c ), linear equalities [23]
(α1v1 + · · ·+αnvn = c), linear equalities modulo [17] (α1v1 + · · ·+αnvn ≡ a) or
more recently the octagon domain [26] (vi − vj ≤ c).

All these domains are (order-theoretic) lattices, for which we could think of
designing specific fixed point equation solvers instead of using the classical, and
yet not very efficient value iteration algorithms, based on Kleene’s iteration. A
classical way to improve these computations is to use widening/narrowing oper-
ators [10]. They improve the rapidity of finding an over-approximated invariant
at the expense of accuracy sometimes; i.e. they reach a post-fixed point or a
fixed point, but not always the least fixed point of the semantic equations (we
review some elements of this method in Section 2, and give examples in the case
of the interval lattice).
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In this paper, we introduce a new algorithm, based on policy iteration and
not value iteration, that correctly and efficiently solves this problem (Section 3).
It shows good performances in general with respect to various typical programs,
see Section 4.4. We should add that this work started from the difficulty to find
good widening and narrowing operators for domains used for characterizing the
precision of floating-point computations, used by some of the authors in [15].

Policy iteration was introduced by Howard [21] to solve stochastic control
problems with finite state and action space. In this context, a policy is a feed-
back strategy (which assigns to every state an action). The classical policy it-
eration generalizes Newton’s algorithm to the equation x = f(x), where f is
monotone, non-differentiable, and convex. The convergence proof is based on the
discrete version of the maximum principle for harmonic functions. This method
is experimentally efficient, although its complexity is still not well understood
theoretically. We refer the reader to the book of Puterman [29] for background.

It is natural to ask whether policy iteration can be extended to the case
of zero-sum games: at each iteration, one fixes the strategy of one player, and
solves a non-linear (optimal control problem) instead of a linear problem. This
idea goes back to Hoffman and Karp [20]. The central difficulty in the case of
games is to obtain the convergence, because the classical (linear) maximum prin-
ciple cannot be applied any more. For this reason, the algorithm of [20] requires
positivity conditions on transition probabilities, which do not allow to handle
the case of deterministic games. In applications to static analysis, however, even
the simplest fixed point problems lead to deterministic game problems. A policy
iteration algorithm for deterministic games with ergodic reward has been given
by Cochet-Terrasson, Gaubert, and Gunawardena [6, 14]: the convergence proof
relies on max-plus spectral theory, which provides nonlinear analogues of results
of potential theory.

In the present paper (elaborating on [8]), we present a new policy iteration
algorithm, which applies to monotone self-maps of a complete lattice, defined
by the infimum of a certain family satisfying a selection principle. Thus, policy
iteration is not limited to finding fixed point that are numerical vectors or func-
tions, fixed points can be elements of an abstract lattice. This new generality
allows us to handle lattices which are useful in static analysis. For the fixed point
problem, the convergence analysis is somehow simpler than in the ergodic case
of [6, 14]: we show that the convergence is guaranteed if we compute at each step
the least fixed point corresponding to the current policy. The main idea of the
proof is that the map which assigns to a monotone map its least fixed point is in
some weak sense a morphism with respect to the inf-law, see Theorem 1. This
shows that policy iteration can be used to compute the minimal fixed points, at
least for a subclass of maps (Theorem 3 and Remark 3).

Other fixed point acceleration techniques have been proposed in the litera-
ture. There are mainly three types of fixed point acceleration techniques, as used
in static analysis. The first one relies on specific information about the struc-
ture of the program under analysis. For instance, one can define refined iteration
strategies for loop nests [2], or for interprocedural analysis [1]. These methods
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are completely orthogonal to the method we are introducing here, which does
not use such structural properties. However, they might be combined with policy
iteration, for efficient interprocedural analysis for instance. This is beyond the
scope of this paper.

Another type of algorithm is based on the particular structure of the abstract
domain. For instance, in model-checking, for reachability analysis, particular it-
eration strategies have been designed, so that to keep the size of the state space
representation small (using BDDs, or in static analyzers by abstract interpreta-
tion, using binary decision graphs, see [25]), by a combination of breadth-first
and depth-first strategies, as in [31]. For boolean equations, some authors have
designed specific representations which allow for relatively fast least fixed point
algorithms. For instance, [24] uses Beḱic-Leszczyloiwski theorem. In strictness
analysis, representation of boolean functions by “frontiers” has been widely used,
see for instance [22] and [4]. Our method here is general, as hinted in Section 3.
It can be applied to a variety of abstract domains, provided that we can find a
“selection principle”. This is exemplified here on the domain of intervals, but we
are confident this can be equally applied to octagons and polyedra.

Last but not least, there are some general purpose algorithms, such as general
widening/narrowing techniques, [10], with which we compare our policy iteration
technique. There are also incremental or “differential” computations (in order
not to compute again the functional on each partial computations) [12], [13]. In
fact, this is much like the static partitioning technique some of the authors use
in [30]. Related algorithms can be found in [11], [27] and [3].

2 Kleene’s Iteration Sequence, Widenings and
Narrowings

In order to compare the policy iteration algorithm with existing methods, we
briefly recall in this section the classical method based on Kleene’s fixed point
iteration, with widening and narrowing refinements (see [10]).

Let (L,≤) be a complete lattice. We write ⊥ for its lowest element, � for its
greatest element, ∪ and ∩ for the meet and join operations, respectively. We say
that a self-map f of a complete lattice (L,≤) is monotone if x ≤ y ⇒ f(x) ≤
f(y). The least fixed point of a monotone f can be obtained by computing the
sequence: x0 = ⊥, xn+1 = f(xn) (n ≥ 0), which is such that x0 ≤ x1 ≤ . . .
If the sequence becomes stationary, i.e., if xm = xm+1 for some m, the limit
xm is the least fixed point of f . Of course, this procedure may be inefficient,
and it needs not even terminate in the case of lattices of infinite height, such as
the simple interval lattice (that we use for abstractions in Section 4). For this
computation to become tractable, widening and narrowing operators have been
introduced, we refer the reader to [10] for a good survey. As we will only show
examples on the interval lattice, we will not recall the general theory. Widening
operators are binary operators ∇ on L which ensure that any finite Kleene
iteration x0 = ⊥, x1 = f(x0), . . . , xk+1 = f(xk), followed by an iteration of
the form xn+1 = xn∇f(xn), for n > k, yields an ultimately stationary sequence,
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void main() {
int x=0; // 1
while (x<100) { // 2
x=x+1; // 3

} // 4
}

x1 = [0, 0]
x2 = ] −∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

Fig. 1. A simple integer loop and its semantic equations

whose limit xm is a post fixed point of f , i.e. a point x such that x ≥ f(x).
The index k is a parameter of the least fixed point solver. Increasing k increases
the precision of the solver, at the expense of time. In the sequel, we choose
k = 10. Narrowing operators are binary operators ∆ on L which ensure that
any sequence xn+1 = xn∆f(xn), for n > m, initialized with the above post fixed
point xm, is eventually stationary. Its limit is required to be a fixed point of f
but not necessarily the least one.

Consider first the program at the left of Figure 1. The corresponding semantic
equations in the lattice of intervals are given at the right of the figure. The inter-
vals x1, . . . , x4 correspond to the control points 1, . . . , 4 indicated as comments
in the C code. We look for a fixed point of the function f given by the right
hand side of these semantic equations. The standard Kleene iteration sequence
is eventually constant after 100 iterations, reaching the least fixed point. This
fixed point can be obtained in a faster way by using the classical (see [10] again)
widening and narrowing operators:

[a, b]∇[c, d] = [e, f ] with e =
{
a if a ≤ c
−∞ otherwise and f =

{
b if d ≤ b
∞ otherwise,

[a, b]∆[c, d] = [e, f ] with e =
{
c if a = −∞
a otherwise and f =

{
d if b = ∞
b otherwise.

The iteration sequence using widenings and narrowings takes 12 iterations be-
cause we chose k = 10, and it reaches the least fixed point of f :

x1
2 = [0, 0]
x1

3 = [1, 1]
x1

4 = ⊥
. . .

x9
2 = [0, 8]
x9

3 = [1, 9]
x9

4 = ⊥

(widening)
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[

(narrowing)
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]

3 Policy Iteration Algorithm in Complete Lattices

3.1 Lower Selection

To compute a fixed point of a self-map f of a lattice L, we shall assume that f
is effectively given as an infimum of a finite set G of “simpler” maps. Here, and
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in the sequel, the infimum refers to the pointwise ordering of maps. We wish to
obtain a fixed point of f from the fixed points of the maps of G. To this end, the
following general notion will be useful.

Definition 1 (Lower selection). We say that a set G of maps from a set X
to a lattice L admits a lower selection if for all x ∈ X, there exists a map g ∈ G
such that g(x) ≤ h(x), for all h ∈ G.

Setting f = inf G, we see that G has a lower selection if and only if for all
x ∈ X , we have f(x) = g(x) for some g ∈ G. We next illustrate this definition.

Example 1. Take L = R, and consider the self-map of L, f(x) =
⋂

1≤i≤m(ai +
x)∪bi , where ai, bi ∈ R. Up to a trivial modification, this is a special case of min-
max function [18, 6, 19]. The set G consisting of the m maps x �→ (ai + x) ∪ bi
admits a lower selection. We represent on Figure 2 the case where m = 5,
b1 = −5, a1 = 2.5, b2 = −3, a2 = 0.5, b3 = 1, a3 = −3, b4 = 1.5, a4 = −4, b5 =
2.5, a5 = −4.5. The graph of the map f is represented in bold.

3.2 Universal Policy Iteration Algorithm

In many applications, and specially in static analysis of programs, the smallest
fixed point is of interest. We shall denote by f− the smallest fixed point of a
monotone self-map f of a complete lattice L, whose existence is guaranteed by
Tarski’s fixed point theorem. We first state a simple theoretical result which
brings to light one of the ingredients of policy iteration.

Theorem 1. Let G denote a family of monotone self-maps of a complete lattice
L with a lower selection, and let f = inf G. Then f− = infg∈G g− .

Theorem 1 is related to a result of [7] concerning monotone self-maps of R
n

that are nonexpansive in the sup-norm (see also the last chapter of [5]).
We now state a very general policy iteration algorithm. The input of the

algorithm consists of a finite set G of monotone self-maps of a lattice L with a
lower selection. When the algorithm terminates, its output is a fixed point of
f = inf G.

Algorithm (PI: Policy iteration in lattices).

1. Initialization. Set k = 1 and select any map g1 ∈ G.
2. Value determination. Compute a fixed point xk of gk.
3. Compute f(xk).
4. If f(xk) = xk, return xk.
5. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk). Increment k

and goto Step 2.

We next show that the algorithm does terminate when at each step, the
smallest fixed-point of gk, xk = g−k is selected. We call height of a subset X ⊂ L
the maximal cardinality of a chain of elements of X .
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Theorem 2. Assume that L is a complete lattice and that all the maps of G are
monotone. If at each step k, the smallest fixed-point xk = g−k of gk is selected,
then the number of iterations of Algorithm PI is bounded by the height of {g− |
g ∈ G}, and a fortiori, by the cardinality of G.

Remark 1. Any xk ∈ L computed by Algorithm PI is a post fixed point: f(xk) ≤
xk. In static analysis of programs, such a xk yields a valid, although suboptimal,
information.

Example 2. We first give a simple illustration of the algorithm, by computing
the smallest fixed point of the map f of Example 1. Let us take the first policy
g5(x) = b5 ∪ (a5 + x) = 2.5 ∪ (−4.5 + x), which has two fixed points, +∞
and 2.5. We choose the smallest one, x1 = 2.5. We have f(x1) = g2(x1) where
g2(x) = b3 ∪ (a3 + x) = 1 ∪ (−3 + x). We take for x2 the smallest fixed point
of g2, x2 = 1. Then, the algorithm stops since f(x2) = x2. This execution is
illustrated in Figure 2. By comparison, the Kleene iteration (right) initialized at
the point −∞ takes 11 iterations to reach the fixed point.

A crucial difficulty in the application of the algorithm to static analysis is
that even when the smallest fixed points xk = g−k are always chosen, the policy
iteration algorithm need not return the smallest fixed point of f . For instance, in
Example 2, if one takes the initial policy x �→ a1 ∪ (b1 + x) or x �→ a2 ∪ (b2 + x),
we get x1 = ∞, and the algorithm stops with a fixed point of f , ∞, which is
non minimal. This shows the importance of the initial policy and of the update
rule for policies.

Although Algorithm PI may terminate with a nonminimal fixed point, it is
often possible to check that the output of the algorithm is actually the smallest
fixed point and otherwise improve the results, thanks to the following kind of

g2

g5

x2 x1 x

y

x2 x3 x11

Fig. 2. Policy iteration (left) versus Kleene iteration (right)
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results. We consider the special situation where f is a monotone self-map of R
n
,

with a restriction R
n → R

n that is nonexpansive for the sup-norm, meaning that
‖f(x) − f(y)‖∞ ≤ ‖x − y‖∞, for all x, y ∈ R

n. We shall say that such maps f
have Property N. (For instance, the maps in Example 1 all have Property N.)
The following theorem identifies situations where the uniqueness of the terminal
policy guarantees that the fixed point returned by Algorithm PI is the smallest
one.

Theorem 3. Assume that G is a finite set of monotone self-maps of R
n

that all
have Property N, that G has a lower selection, and let f = inf G. If Algorithm
PI terminates with a finite fixed point xk = g−k such that there is only one g ∈ G
such that f(xk) = g(xk), then, xk is the smallest finite fixed point of f .

Remark 2. The nonexpansiveness assumption cannot be dispensed with in The-
orem 3. Consider the self-map of R, f(x) = 0 ∩ (1 + 2x), and take the set G
consisting of the maps x �→ 0 and x �→ 1 + 2x. Algorithm PI initialized with the
map g1 = 0 stops immediately with the fixed point x1 = 0, and g1 is the only
map g in G such that g(0) = f(0), but x1 is a nonminimal finite fixed point of
f , since f(−1) = −1.

Remark 3. When the policy g such that f(xk) = g(xk) is not unique, we can
check whether xk is the smallest finite fixed point of f in the following way. We
scan the set of maps g ∈ G such that g(xk) = f(xk), until we find a fixpoint
associated to g smaller than xk, or all these maps g have been scanned. In the
former case, an improved post fixed point of f has been found and this process
can be iterated. In the latter case, a small variation of the proof of Theorem 3
shows that xk is the smallest finite fixed point of f (if all the maps in G have
Property N).

Algorithm PI requires to compute at every step a fixed point xk of the map
gk, and if possible, the minimal one, g−k . An obvious way to do so is to apply
Kleene iteration to the map gk. Although this may seem surprising at the first
sight, this implementation may preserve the performance of the algorithm. In
fact, it is optimal in Example 2, since Kleene iteration converges in only one step
for every map gk. In many cases, however, some precise information on the map
gk is available, and policy iteration will benefit from fast algorithms to compute
xk. For instance, the classical policy iteration algorithm of Howard, concerns
the special case where the maps gk are affine. In that case, the fixed point xk is
obtained by solving a linear system. A non classical situation, where the maps gk

are dynamic programming operators of deterministic optimal control problems,
i.e., max-plus linear maps, is solved in [6, 14].

4 Application to the Lattice of Intervals in Static
Analysis

In the sequel, we shall consider the set I(R) of closed intervals of R. This set,
ordered by inclusion, is a complete lattice. It will be convenient to represent
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an interval I ∈ I(R) as I = [−a, b] := {x ∈ R | −a ≤ x ≤ b} with a, b ∈
R ∪ {±∞}. We changed the sign in order to get a monotone map ψ : I �→ (a =
− inf I, b = sup I), from I(R) → R

2 , converting the inclusion on intervals to the
componentwise order on R

2 . Observe that ψ is a right inverse of ı : (a, b) �→
[−a, b]. By extending ψ and ı to products of spaces, entrywise, we see that any
monotone self-map f of I(Rn) induces a monotone self-map of (R2)n, ψ ◦ f ◦ ı,
that we call the lift of f . The minimal fixed point of f is the image by ı of the
minimal fixed point of its lift, although our algorithms apply preferably to the
map f rather than to its lift.

4.1 The Interval Abstraction

We consider a toy imperative language with the following instructions:

1. loops: while (condition) instruction;
2. conditionals: if (condition) instruction [else instruction];
3. assignment: operand = expression; We assume here that the arithmetic

expressions are built on a given set of variables (belonging to the set V ar),
and use operators +, -, * and /, together with numerical constants (only
integers here for more simplicity).

There is a classical [10] Galois connection relating the powerset of values of
variables to the product of intervals (one for each variable). This is what gives
the correction of the classical [10] abstract semantics [[.]] , with respect to the
standard collecting semantics of this language. [[.]] is given by a set of equations
over the variables x1, . . . , xn of the program that we will show on some examples.
Each variable xi is interpreted as an interval [−x−i ;x+

i ].

4.2 Selection Property for a Family of Finitely Generated
Functions on Intervals

We now define a class of monotone self-maps of I(R), which is precisely the class
of functions arising from the semantic equations of the previous section. This
class may be thought of as an extension of the min-max functions introduced
in [18]. For an interval I = [−a, b], we set ↑ I def= [−a,∞[ and ↓ I def=] −∞, b].

Definition 2. A finitely generated function of intervals, (I(R))n → (I(R))p,
is a map f whose coordinates fj : x = (x1, . . . , xn) �→ fj(x) are terms of the
following grammar G:

CSTE ::= [−a, b] V AR ::= xi

EXPR ::= CSTE | V AR | EXPR+ EXPR |
EXPR ∗ EXPR | EXPR/EXPR | EXPR− EXPR

TEST ::= ↑ EXPR ∩EXPR | ↓ EXPR ∩ EXPR | CSTE ∩ EXPR
G ::= EXPR | TEST | G ∪G

where i can take arbitrary values in {1, . . . , n}, and a, b can take arbitrary values
in R.
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We write F for the set of such functions. The variables x1, . . . , xn correspond
to the different variables in V ar. We set x−i = − inf xi, x+

i = supxi, so that
xi = [−x−i , x+

i ]. Non-terminals CSTE, V AR, EXPR and TEST do correspond
to the semantics of constants, variables, arithmetic expressions, and (simple)
tests. For instance, the fixed point equation at the right of Figure 1 is of the
form x = f(x) where f is a finitely generated function of intervals.

In order to write maps of F as infima of simpler maps, when I = [−a, b]
and J = [−c, d], we also define l(I, J) = I (l is for “left”), r(I, J) = J (r for
“right”), m(I, J) = [−a, d] and mop(I, J) = [−c, b] (m is for “merge”). These
four operators will define the four possible policies on intervals, as shown in
Proposition 1 below.

Let G∪ be the grammar, similar to G except that we cannot produce terms
with ∩.

G∪ ::= EXPR | ↑ EXPR | ↓ EXPR | G∪ ∪G∪ |
l(G∪, G∪) | r(G∪, G∪) | m(G∪, G∪) | mop(G∪, G∪)

We write F∪ for the set of functions defined by this grammar. Terms l(G,G),
r(G,G), m(G,G) and mop(G,G) represent respectively the left, right, m and
mop policies.

The intersection of two intervals, and hence, of two terms of the grammar,
interpreted in the obvious manner as intervals, is given by the following formula:

G1 ∩G2 = l(G1, G2) ∩ r(G1, G2) ∩m(G1, G2) ∩mop(G1, G2) (1)

To a finitely generated function of intervals f ∈ F , we associate a family Π(f)
of functions of F∪ obtained in the following manner: we replace each occurrence
of a term G1 ∩G2 by l(G1, G2), r(G1, G2), m(G1, G2) or mop(G1, G2). We call
such a choice a policy. Using Equation (1), we get:

Proposition 1. If f is a finitely generated function of intervals, the set of poli-
cies Π(f) admits a lower selection. In particular, f = inf Π(f).

4.3 Implementation Principles of the Policy Iteration Algorithm

A simple static analyzer has been implemented in C++. It consists of a parser
for a simple imperative language (a very simplified C), a generator of abstract
semantic equations using the interval abstraction, and the corresponding solver,
using the policy iteration algorithm described in Section 3.

A policy is a table that associates to each intersection node in the semantic
abstraction, a value modeling which policy is chosen among l, r, m or mop, in
Equation (1). There is a number of heuristics that one might choose concerning
the initial policy, which should be a guess of the value of G1∩G2 in Equation (1).
The choice of the initial policy may be crucial, since some choices of the initial
policy may lead eventually to a fixed point which is not minimal. (In such cases,
Remark 3 should be used: it yields a heuristics to improve the fixed point, which
can be justified rigorously by Theorem 3, when the lift of f has Property N.) The
current prototype makes a sensible choice: when a term G1 ∩G2 is encountered,
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if a finite constant bound appears in G1 or G2, this bound is selected. Moreover,
if a +∞ upper bound or −∞ lower bound appears in G1 or G2, then, this bound
is not selected, unless no other choice is available (in other words, choices that
give no information are avoided). When the applications of these rules is not
enough to determine the initial policy, we choose the bound arising from the
left hand side term. Thus, when G1 = [−a,∞[, the initial policy for G1 ∩ G2 is
m(G1, G2), which keeps the lower bound of G1 and the upper bound of G2.

The way the equations are constructed, when the terms G1 ∩G2 correspond
to a test on a variable (and thus no constant choice is available for at least one
bound), this initial choice means choosing the constraint on the current variable
brought on by this test, rather than the equation expressing the dependence of
current state of the variable to the other states. These choices often favor as first
guess an easily computable system of equations.

We then compute the fixed point of the reduced equations, using if possible
specific algorithms. In particular, when the lift of f is a min-max function,
shortest path type algorithms may be used, in the spirit of [6, 14]. Linear or
convex programming might also be used in some cases. For the time being, we
only use a classical Kleene like value iteration algorithm, discussed in Section 4.4.

We then proceed to the improvement of the policy, as explained in Section
3. In short, we change the policy at each node for which a fixed point of the
complete system of equations is not reached, and compute the fixed point of the
new equations, until we find a fixed point of the complete system of equations.
Even when this fixpoint is reached, using Remark 3 can allow to get a smaller
fixpoint in some cases, when the current fixpoint is obtained for several policies.

4.4 Examples and Comparison with Kleene’s Algorithm

In this section, we discuss a few typical examples, that are experimented using
our prototype implementation. We compare the policy iteration algorithm with
Kleene’s iteration sequence with widenings and narrowings (the very classical
one of [10]), called Algorithm K here. For both algorithms, we compare the
accuracy of the results and the cost of the solution.

We did not experiment specific algorithms for solving equations in G∪ (mean-
ing, without intersections), as we consider this to be outside the scope of this
paper, so we chose to use an iterative solver (algorithm K′) for each policy. Algo-
rithm K′ is exactly the same solver as algorithm K, but used on a smaller class
of functions, for one policy. Note that the overall speedup of policy iteration
algorithms could be improved by using specific solvers instead. So Algorithm PI
will run Algorithm K′ at every value determination step (Step 2). Of course,
using Algorithm K′ instead of a specific solver is an heuristics, since the con-
vergence result, Theorem 2, requires that at every value determination step, the
smallest fixed point is computed. We decided to widen intervals, both in Algo-
rithms K and K′, only after ten standard Kleene iterations. This choice is conven-
tional, and in most examples below, one could argue that an analyzer would have
found the right result with only two Kleene iterations. In this case, the speedup
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obtained by the policy iteration algorithm would be far less; but it should be
argued that in most static analyzers, there would be a certain unrolling before
trying to widen the result. In the sequel we compare the number of fixpoint
iterations and of “elementary operations” performed by algorithms K and PI.
We count as elementary operations, the arithmetic operations (+, - etc.), min and
max (used for unions and intersections), and tests (≤, ≥, =, used for checking
whether we reach local fixed points during iterations of algorithms K and K′).

A simple typical (integer) loop is shown on Figure 1, together with the equa-
tions generated by the analyzer. The original policy is mop in equation 2 in
Figure 1 (by equation i, we mean the equation which determines the state of
variables at control point i, here x2), and m in the equation determining x4,
This is actually the right policy on the spot, and we find in one iteration (and
34 elementary operations), the correct result (the least fixed point). This is to
be compared with the 12 iterations of Algorithm K (and 200 elementary oper-
ations), in Section 2. In the sequel, we put upper indices to indicate at which
iteration the abstract value of a variable is shown. Lower indices are reserved as
before to the control point number.

The analysis of the program below leads to an actual policy improvement:

void main(){
int i,j;
i=1; // 1
j=10; // 2

while (j >= i) { // 3
i = i+2; // 4
j = -1+j; // 5

} // 6 }

Semantic equations at control points 3 and 6 are

(i3, j3) = (] −∞,max(j2, j5)] ∩ (i2 ∪ i5), [min(i2, i5),+∞[∩(j2 ∪ j5))
(i6, j6) = ([min(j2, j5) + 1,+∞[∩(i2 ∪ i5), ] −∞,max(i2, i5) − 1] ∩ (j2 ∪ j5))

The algorithm starts with policy mop for variable i in equation 3, m for
variable j in equation 3, m for variable i equation 6 and mop in equation 6,
variable j. The first iteration using Algorithm K′ with this policy, finds the value
(i16, j

1
6) = ([1, 12], [0, 11]). But the value for variable j given by equation 6, given

using the previous result, is [0, 10] instead of [0, 11], meaning that the policy on
equation 6 for j should be improved. The minimum (0) for j at equation 6 is
reached as the minimum of the right argument of ∩. The maximum (10) for j
at equation 6 is reached as the maximum of the right argument of ∩. Hence the
new policy one has to choose for variable j in equation 6 is r. In one iteration
of Algorithm K′ for this policy, one finds the least fixed point of the system of
semantic equations, which is at line 6, (i26, j

2
6) = ([1, 12], [0, 10]). Unfortunately,

this fixed point is reached by several policies, and Remark 3 is used, leading to
another policy iteration. This in fact does not improve the result since the current
fixed point is the smallest one. Algorithm PI uses 2 policy iterations, 5 values
iterations and 272 elementary operations. Algorithm K takes ten iterations (and
476 elementary operations) to reach the same result.

Some benchmarks. In the following table, we describe preliminary results that
we obtained using Algorithms K and PI on simple C programs, consisting essen-
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tially of loop nests. We indicate for each program (available on http://www.di.-
ens.fr/˜goubault/Politiques) the number of variables, the number of loops, the
maximal depth of loop nests, the number of policy iterations slash the total
number of potential policies, value iterations and elementary operations for each
algorithm (when this applies). The last column indicates the speedup ratio of Al-
gorithm PI with respect to K, measured as the number of elementary operations
K needs over the number that PI needs.

Program vars loops depth pols./tot. iters.K/PI ops.K/PI speedup
test1 1 1 1 1/16 12/1 200/34 5.88
test2 2 1 1 2/256 10/5 476/272 1.75
test3 3 1 1 1/256 5/2 44/83 0.51
test4 5 5 1 0/1048576 43/29 2406/1190 2.02
test5 2 2 2 0/256 164/7 5740/198 28.99
test6 2 2 2 1/1048576 57/19 2784/918 3.03
test7 3 3 2 1/4096 62/13 3242/678 4.78
test8 3 3 3 0/4096 60/45 3916/2542 1.54
test9 3 3 3 2/4096 185/41 11348/1584 7.16
test10 4 4 3 3/65536 170/160 11274/10752 1.05

The relative performances can be quite difficult to predict (for instance, for
test3, Algorithm K is about twice as fast as PI, which is the only case in
the benchmark), but in general, in nested loops Algorithm PI can outperform
Algorithm K by a huge factor. Furthermore, for nested loops, Algorithm PI can
even be both faster and more precise than Algorithm K, as in the case of test7:

int main() {
int i,j,k;
i = 0; //1
k = 9; //2
j = -100; //3
while (i <= 100) //4 {
i = i + 1; //5

while (j < 20) //6
j = i+j; //7 //8

k = 4; //9
while (k <=3) //10
k = k+1; //11 //12

} //13 }

Algorithm PI reaches the following fixed point, at control point 13, in 13
value iterations, i = [101, 101], j = [−100, 120] and k = [4, 9] whereas Algorithm
K only finds i = [101, 101], j = [−100,+∞] and k = [4, 9] in 62 iterations. The
fact that Algorithm K does not reach the least fixed point can be explained as
follows. At control point 4, Algorithm K finds successively:

i4 = [0, 0]
j4 = [−100,−100]
k4 = [9, 9]

then:

i4 = [0, 1]
j4 = [−100, 20]
k4 = [4, 9]

up to:

i4 = [0, 9]
j4 = [−100, 28]
k4 = [4, 9]

then widening:

i4 = [0,+∞]
j4 = [−100,+∞]
k4 = [4, 9]

From now on, there is no way, using further decreasing iterations, to find that
j is finite (and less than 20) inside the outer while loop, since this depends on a
relation between i and j that cannot be simulated using this iteration strategy.
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5 Future Work

We have shown in this paper that policy iteration algorithms can lead to fast
and accurate solvers for abstract semantic equations, such as the ones coming
from classical problems in static analysis. We still have some heuristics in the
choice of initial policies we would like to test (using for example a dynamic initial
choice, dependent on the values of variables after the first fixpoint iterations),
and the algorithmic consequences of Theorem 3 should be investigated.

One of our aims is to generalize the policy iteration algorithm to more com-
plex lattices of properties, such as the one of octagons (see [26]). We would like
also to apply this technique to symbolic lattices (using techniques to transfer
numeric lattices, see for instance [32]). Finally, we should insist on the fact that
a policy iteration solver should ideally rely on better solvers than value iteration
ones, for each of its iterations (i.e. for a choice of a policy). The idea is that,
choosing a policy simplifies the set of equations to solve, and the class of such
sets of equations can be solved by better specific solvers. In particular, we would
like to experiment the policy iteration algorithms again on grammar G∪, so that
we would be left with solving, at each step of the algorithm, purely numerical
constraints, at least in the case of the interval abstraction. For numerical con-
straints, we could then use very fast numerical solvers dedicated to large classes
of functions, such as linear equations.
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