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Abstract. k-times anonymous authentication (k-TAA) schemes allow
members of a group to be anonymously authenticated by application
providers for a bounded number of times. k-TAA has application in e-
voting, e-cash, electronic coupons and anonymous trial browsing of con-
tent. In this paper, we extend k-TAA model to dynamic k-TAA in which
application providers can independently grant or revoke users from their
own groups and so have the required control on their clients. We give a
formal model for dynamic k-TAA, propose a dynamic k-times anonymous
authentication scheme from bilinear pairing, and prove its security. We
also construct an ordinary k-TAA from the dynamic scheme and show
communication efficiency of the schemes compared to the previously pro-
posed schemes.

1 Introduction

In many scenarios, it is required that authenticated users can anonymously access
applications while application providers can decide the number of times users
can access their applications. Teranisi et al. [15] proposed k-times anonymous
authentication as a solution to this problem. In a k-TAA system, participants
are a group manager (GM), a number of application providers (AP) and a group
of users. The GM registers users into the group and each AP independently an-
nounces the number of times a user can access his application. A registered user
can then be anonymously authenticated by APs within their allowed numbers of
times and without the need to contact the GM. Dishonest users can be traced
by anyone while no one, even the GM or APs, can identify honest users or link
two authentication executions performed by the same user. Finally no one, even
the GM, is able to successfully impersonate an honest user to an AP.

Applications of k-TAA to e-voting, e-cash, electronic coupons and trial brows-
ing of content have been shown in [15]. A particularly interesting application is
trial browsing of content, where each provider allows members of a designated
group to anonymously and freely browse content (e.g. movies or music on trial)
while he also wants to limit the number of times that users can access the service
on trial. Users who try to go over the prescribed quota will be identified and
removed. It is shown that none of the known related primitives such as identity
escrow/group signature [1, 2, 12, 13], blind signature [7], multiple-show cash [5]
and electronic coupon [11], can provide all required properties listed above.
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However, k-TAA schemes are inflexible in the sense that the GM decides
on the group membership and APs do not have any control over giving users
access permission to their services. APs are passive and their role is limited
to announcing the number of times a user can access their applications. This
requires a lot of trust to be put on the GM and all group members to share all
applications offered by all APs. In practice, APs want to select their user groups
and grant or revoke access to users independently. For example, in the case of
trial browsing, the AP may prefer to give access to users with good profile, or he
may require some small fee to be included in his group. Another case is when the
AP needs to put also an expiry date on the trial access. We introduce dynamic
k-times anonymous authentication to provide these properties. In dynamic k-
TAA, APs have more control over granting and revoking access to their services,
and less trust and computation from the GM is required. Dynamic k-TAA allows
APs to restrict access to their services based on not only the number of times
but also other factors such as expiry date and so can be used in much wider
range of realistic scenarios.

Our Contribution

We extend the formal model of k-TAA in [15] to a formal model of dynamic
k-TAA schemes and construct a dynamic k-TAA scheme from bilinear pairings.
We also construct a new k-TAA scheme, and prove security of both schemes un-
der the Strong Diffie-Hellman (SDH) and the Decisional Bilinear Diffie-Hellman
(DBDH) assumptions. Dynamic k-TAAs have two new procedures, i.e. granting
access and revoking access, that allow APs to grant and revoke users’ access, re-
spectively. Security requirements of dynamic systems are similar to the original
k-TAAs but are more complex to accommodate the dynamic property.

We propose a new assumption, (l,m, n)-DBDH, and prove that it is implied
by the DBDH assumption. And we show that our schemes have lower commu-
nication costs than the TFS04 scheme. For example, for k-times authentication
with a comparable level of security (1024 bit composite modulus for TFS04)
the communication costs of our two schemes are 60k+ 244 bytes and 60k+ 364
bytes, respectively, while the cost of the TFS04 scheme is 60k + 1657 bytes.
The interactive protocols in our schemes achieve perfect zero-knowledge without
any computational assumption whereas those in the TFS04 scheme only provide
statistical zero-knowledge under the Strong RSA assumption. (We note that in
all cases honest verifier model is used.) Adapting a revocation method proposed
in [6] to our system, the revocation costs become independent of the group size
and the number of revoked users.

The organization of the paper is as follows. We give the background in sec-
tion 2 and present the model of dynamic k-TAA schemes in section 3. Section
4 gives descriptions of our dynamic and ordinary k-TAA schemes with their se-
curity proofs, and provides efficiency analysis of the schemes and comparison of
communication costs with the TFS04 scheme.
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2 Preliminaries

Notation. A function f : N → R
+ is called negligible, if for every positive

number α, there exists a positive integer κ0 such that for every integer κ >
κ0, it holds that f(κ) < κ−α. Let PT denote polynomial-time, PPT denote
probabilistic PT and DPT denote deterministic PT. For a PT algorithm A(·),
“x← A(·)” denotes an output from the algorithm. For a set X, “x← X” denotes
an element uniformly chosen from X, and #X denotes the number of elements
in X. Let “Pr[Procedures|Predicate]” denote the probability that Predicate is
true after executing the Procedures, HX denote a hash function from the set
of all finite binary strings {0, 1}∗ onto the set X, and PK{x : R(x)} denote a
proof of knowledge of x that satisfies the relation R(x).

2.1 Bilinear Groups

Let G1,G2 be additive cyclic groups generated by P1 and P2, respectively, whose
orders are a prime p, and GT be a cyclic multiplicative group with the same order
p. Suppose there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1. Let
e : G1 ×G2 → GT be a bilinear pairing with the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b ∈ Zp

2. Non-degeneracy: e(P1, P2) �= 1
3. Computability: There is an efficient algorithm to compute e(P,Q) for all
P ∈ G1, Q ∈ G2

For simplicity, hereafter, we set G1 = G2 and P1 = P2 but the proposed
schemes can be easily modified for the general case when G1 �= G2.

We define a Bilinear Pairing Instance Generator as a PPT algorithm G that
takes as input a security parameter 1κ and returns a uniformly random tuple
t = (p,G1,GT , e, P ) of bilinear pairing parameters, including a prime number
p of size κ, a cyclic additive group G1 of order p, a multiplicative group GT of
order p, a bilinear map e : G1 ×G1 → GT and a generator P of G1.

2.2 Complexity Assumptions

q-Strong Diffie-Hellman (q-SDH) Assumption. For every PPT algorithm

A, the following function Adv
q-SDH
A (κ) is negligible.

Adv
q-SDH
A (κ) = Pr[(A(t, P, sP, . . . , sqP ) = (c,

1
s+ c

P )) ∧ (c ∈ Zp)]

where t = (p,G1,GT , e, P )← G(1κ) and s← Z∗
p.

The q-SDH assumption is proposed by Boneh and Boyen [3] and is originated
from an earlier (and weaker) assumption introduced by Mitsunari et. al. [10]. The
assumption informally means that there is no PPT algorithm that can compute
a pair (c, 1

s+cP ), where c ∈ Zp, from a tuple (P, sP, . . . , sqP ), where s← Z∗
p.
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Decisional Bilinear Diffie-Hellman (DBDH) Assumption. For every PPT
algorithm A, the following function AdvDBDH

A (κ) is negligible.

AdvDBDH
A (κ) = |Pr[A(t, aP, bP, cP, e(P, P )abc) = 1]

−Pr[A(t, aP, bP, cP, Γ ) = 1]|
where t = (p,G1,GT , e, P )← G(1κ), Γ ← G∗

T and a, b, c← Z∗
p.

Informally, the DBDH assumption states that there is no PPT algorithm that
can distinguish between a tuple (aP, bP, cP, e(P, P )abc) and a tuple (aP, bP, cP,
Γ ), where Γ ← G∗

T and a, b, c← Z∗
p.

3 A Model for Dynamic k-TAA schemes

We propose a formal model for dynamic k-TAA and underline the differences
between this model and the TFS04 model for ordinary k-TAA in [15].

3.1 Entities and Procedures

Entities in the model are the GM, APs and users; the procedures are setup,
joining, bound announcement, granting access, revoking access, authentication and
public tracing. In the setup procedure (SETUP), the GM obtains a group public
key/group secret key pair, and each AP V obtains a pair of public and secret
keys (apkV , askV). AP V also has an access group AGV which is the set user
identities who can access his application, and also some other public information
PIV . AGV is initially empty.

The joining procedure (UJOIN−GM , UJOIN−U ) allows a user i to join the
group by obtaining a member public key/member secret key pair (mpki,mski)
and the GM adds the user’s identification and public key to an identification list
LIST. In the bound announcement procedure (BD-ANN), an AP announces the
number of times a group member can access his application by publishing his
identity ID, and the upper bound k. An AP V uses the granting access procedure
(GRAN-AP) to give selected group members permission to access the his appli-
cation. He includes the new member in his access group AGV and updates his
public information PIV . Similarly, in the revoking access procedure (REVO-AP),
AP V can stop a group member from accessing his application by excluding
the member from his access group and updating his public information. The
authentication procedure (UAUTH−AP ,UAUTH−U ), between a user i and AP V
succeeds if and only if user i has been granted access and his access has not
been revoked, and the number of accesses has not reached the allowed number.
AP V records the transcripts of authentication executions in the authentication
log LOG. Tracing procedure TRACE can be executed by anyone using the public
information and the authentication log. Possible outputs of the procedure are
user i’s identity, GM, or NO-ONE which mean “user i tries to access more than
the prescribed limit”, “the GM published information is not correct”, and “the
public tracing procedure cannot find any malicious entity”, respectively.
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The main difference between dynamic k-TAA and the TFS04 model with
regard to procedures is that an AP has a pair of public and secret keys and
maintains his own access group using two new procedures, granting access and
revoking access; and authentication procedure succeeds only if the user has been
granted access, the access has not been revoked, and he has not accessed the
application over the allowed number of times.

3.2 Oracles

The adversary has access to a number of oracles and can query them according
to the description below, to learn about the system and increase his success
chance in the attacks.

List oracle model. We will use a list oracle OLIST first defined in [15]. The
oracle is used to ensure correct correspondence between the identity of a group
member and his public key. In list oracle model there is a OLIST oracle which
manages the LIST that contains identities and the corresponding public key list.
The response of the oracle to a query to view a group member’s public key is the
member’s public key. The oracle allows an entity to choose and write a user’s
pair of identity and public key to the LIST only if the entity is the user or a
colluder with the user. The oracle allows an entity to delete data from LIST only
if the entity is the GM or a colluder with the GM.

Other oracles. Other oracles in our model are the join GM oracleOJOIN−GM ,
the join user oracle OJOIN−U , the authentication AP oracle OAUTH−AP , the
authentication user oracle OAUTH−U , the query oracle OQUERY , the granting
user oracleOGRAN−AP , the revoking user oracleOREV O−AP and the corrupting
AP oracle OCORR−AP . The OJOIN−GM oracle, given a user specified by the
adversary, performs joining procedure as executed by the honest GM on the user.
The OJOIN−U oracle, given an honest user specified by the adversary, performs
joining procedure between the GM and the user. The OAUTH−AP oracle, given
an honest AP and a user from the adversary, makes the AP to perform an
authentication procedure with the user. The OAUTH−U oracle, given an honest
user and an AP, makes the user to perform an authentication procedure with
the AP. Oracles OLIST , OJOIN−U , OJOIN−GM and OAUTH−AP are the same
as in TFS04 model and their formal definition can be found in [15].

The OQUERY oracle gives the adversary the challenged authentication tran-
script in the D-Anonymity definition and more details can be found in this defi-
nition. The OQUERY oracle first checks if input identities i1 and i2 are current
members of the input AP with identity ID; if not, it outputs CHEAT. It then
proceeds, as defined in [15], by randomly choosing one of the two identities
and executing the authentication procedure between the chosen identity and the
input AP. The OAUTH−U oracle performs as defined in [15], but it takes one
more input (ID, k) to indicate the AP. The formal definitions of OQUERY and
OAUTH−U are presented in the full version [14].
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We introduce three new oracles, OGRAN−AP , OREV O−AP and OCORR−AP .
The OGRAN−AP oracle takes as input an honest AP and a user and executes
the granting access procedure GRAN-AP by the AP to grant access to the user.
The OREV O−AP oracle takes as input an honest AP and a member of the AP’s
access group and executes the revoking access procedure REVO-AP by the AP to
revoke access from the user. The OCORR−AP oracle corrupts an AP specified by
the adversary and maintains the set SCORR−AP of corrupted APs. The formal
definitions and explanation of these oracles are presented in the full version [14].

3.3 Security Requirements

Security requirements of dynamic k-TAA are D-Correctness, D-Anonymity, D-
Detectability, D-Exculpability for users and D-Exculpability for the GM. These are
similar to requirements Correctness, Anonymity, Detectability, Exculpability for
users and Exculpability for the GM defined in the TFS04 model.

In the following we give an informal definition of these requirements. D-
Correctness requires that an honest member who is in the access group of an
honest AP and has not performed the authentication procedure for more than the
allowed number of times, be successfully authenticated by the AP. D-Anonymity
means that it is computationally hard for the adversary to distinguish between
authentication executions of two honest group members i1 and i2 who are in
the access group of an AP, and have not performed authentication with the AP
for more than the limited number of times, even if the GM, all APs, and all
users except i1 and i2 are corrupted. D-Detectability means that if a subgroup of
corrupted members have performed the authentication procedure with the same
honest AP for more than the allowed number of times, then the public tracing
procedure using the AP’s authentication log outputs NO-ONE with negligible
probability. D-Exculpability for users means that the tracing procedure does not
output the identity of an honest user even if other users, the GM and all APs
are corrupted. D-Exculpability for the GM means that the tracing procedure does
not output the honest GM even if all users and all APs are corrupted. The
difference between D-Detectability and Detectability is more significant and so
the formal definition of D-Detectability is given below. The formal definitions of
other requirements can be found in the full version [14].

D-Detectability. The adversary A is allowed to corrupt all members and the
experiment has two stages. In the first stage, the adversary can query the three
new oracles (OGRAN−AP , OREV O−AP and OCORR−AP ), OLIST , OJOIN−GM

and OAUTH−AP . After that, all authentication logs of all APs are emptied. Then
the adversary continues the experiments, but without access to the revoking
oracle OREV O−AP . The adversary wins if he can be successfully authenticated
by an honest AP with identity ID and access bound k for more than k×#AGID,
where #AGID is the number of members in the AP’s access group. The set
SAUTH−AP contains all APs’ information used by the OAUTH−AP , and LOGID

is the authentication log produced by OAUTH−AP using information of the AP
(ID, k). The formula of the experiment is as follows.
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Experiment Expd−decis
A,H (κ)

((gpk, gsk), {(apk, ask)})← SETUP (1κ).
St← AORACLES(1κ) where ORACLES = {OLIST ({GM}c, ·),
OJOIN−GM (gpk, gsk, ·), OAUTH−AP (gpk, ·, ·), OGRAN−AP (gpk, ·, ·),
OREV O−AP (gpk, ·, ·), OCORR−AP (·)}.

Empty all LOGs.
AORACLES\{OREV O−AP (gpk,·,·)}(St).
If (∃(ID, k) ∈ SAUTH−AP \ SCORR−AP s.t. #LOGID > k ×#AGID)

Return TRACEOLIST (∅,·)(gpk, apkID, LOGID).
Return ⊥.

A dynamic k-TAA scheme provides D-Detectability if the following function
Advd−decis

A (κ) is negligible.

Advd−decis
A (κ) = Pr[Expd−decis

A,H (κ) = NO-ONE]

Similar to arguments for group signatures [2], these requirements for dynamic
k-TAA also imply unforgeability, coalition resistance and traceability that can be
informally defined as follows. Unforgeability means that any adversary, who is
not in the access group of an AP, can not be authenticated by the AP without
colluding with some group members, or both of the GM and the AP. Coalition
resistance means that a colluding subset of group members can not produce
a new member public key/secret key pair which has not been generated in the
joining procedure. Traceability means that if a user has accessed an AP for more
than the bound number of times, then that user can be traced from the public
information and the AP’s authentication log.

4 A Dynamic k-TAA Scheme

4.1 Overview

Our proposed scheme is constructed in cyclic groups with bilinear mapping. For
simplicity, we present the scheme when the groups G1 and G2 are the same but
the scheme can be easily modified for the general case when G1 �= G2. Note that
the users do not need to perform any pairing operation in the authentication
procedure.

Suppose a bilinear pairing tuple (p,G1,GT , e, P ) is given, the GM’s group
secret key is γ ← Z∗

p and group public key is (P, Ppub = γP, P0 ← G1, H ←
G1, ∆ = e(P, P )). In the joining procedure, a user obtains a membership public
key/secret key pair ((a, S), x) from the GM such that S = 1

γ+a (xP +P0), where
P and P0 are in the GM’s public key, γ is the GM’s secret key and x is randomly
generated by both the user and the GM but is only known to the user. The user
can be anonymously authenticated as a group member by proving the knowledge
of (a, S, x) such that e(S, aP + Ppub) = e(xP + P0, P ).

An AP publishes k tag bases to be used for up to k times user access to the
AP’s service. A tag base is a pair (Θi, Θ̌i) of GT ’s elements. In an authentication
execution, a group member interacts with the AP and constructs a tag (Γ, Γ̌ ) =
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(Θx
i , (∆

lΘ̌i)x) to be sent to the AP, where∆ = e(P, P ), and the AP has randomly
selected l. The group member also proves the knowledge of (i, x) satisfying the
above equation. If the member uses the same tag base to compute another tag
(Γ ′, Γ̌ ′) = (Θx

i , (∆
l′ Θ̌i)x), anyone can find these from the AP’s authentication

log (since Γ = Γ ′) and use it to compute (Γ̌ /Γ̌ ′)1/(l−l′) = ∆x, which is published
in the joining procedure. However, if the member does not use the same tag base
twice, based on the DBDH assumption his anonymity is protected. Similar to
[6], we will use dynamic accumulators to provide the dynamic property. However
we will use a new accumulator scheme based on the SDH assumption. Each AP
has a public key/secret key pair ((Q,Qpub), s), where Qpub = sQ. To grant
access to a member with a public key (a, S), the AP accumulates the value a
of the public key into an accumulated value V ← (s + a)V , and the member
obtains the old accumulated value as the witness W . The member shows that
the AP has granted access to him by proving the knowledge of (a,W ) such that
e(W,aQ+Qpub) = e(V,Q). To revoke access from a member, the AP computes
a new accumulated value V ← 1/(s+ a)V .

4.2 Description

Setup
For GM: On input a security parameter 1κ, the Bilinear Pairing Instance Gener-
ator generates a tuple (p,G1,GT , e, P ) as in Section 2.2. GM selects P0, H ← G1,
γ ← Z∗

p, and sets Ppub = γP and ∆ = e(P, P ). The group public and secret keys
are gpk = (P, Ppub, P0, H,∆) and gsk = γ, respectively. The identification list
LIST of group members is initially empty.
For APs: AP V selects Q ← G1, s ← Z∗

p, Λ, Υ ← GT , and sets Qpub = sQ.
The public and secret keys for the AP are apk = (Q,Qpub, Λ, Υ ) and ask = s,
respectively. AP maintains an authentication log LOG, an accumulated value,
which is published and updated after granting or revoking a member, and a
public archive ARC (as the other public information PI in the formal model),
which is a list of 3-tuples. The first component of the tuple is an element in the
public key of a member, who was granted or revoked from accessing the AP. The
second component is a single bit indicating whether the member was granted
(1) or revoked (0). The third component is the accumulated value after granting
or revoking the member. Initially, the accumulated value is set to V0 ← G1 and
LOG and ARC are empty.

Joining
A user Ui can join the group as follows.

1. User Ui selects x′, r ← Z∗
p, and sends a commitment C′ = x′P + rH of x′ to

the GM.
2. The GM sends y, y′ ← Z∗

p to Ui.
3. User Ui computes x = y + x′y′ and (C, β) = (xP,∆x), then adds new data

(i, β) to the identification list LIST. Next, Ui sends (C, β) to the GM with a
standard proof Proof1 = PK{(x, r′) : C = xP ∧ yP + y′C′ − C = r′H} to
show that C is correctly computed from C′, y, y′ and Ui knows x satisfying
C = xP .
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4. The GM verifies that (i, β) is an element of the LIST, β = e(C,P ) and the
proof is valid. Then, the GM generates a← Z

∗
p different from all correspond-

ing previously generated values, computes S = 1
γ+a (C+P0), and sends (S, a)

to user Ui.
5. User Ui confirms that equation e(S, aP + Ppub) = e(C + P0, P ) is satisfied.

The new member Ui’s secret key is msk = x, and his public key is mpk =
(a, S, C, β).

Bound announcement
An AP publishes his identity ID and a number k as the bound. Let (Θj , Θ̌j) =
HGT ×GT (ID, k, j) for j = 1, ..., k. We call (Θj , Θ̌j) the jth tag base of the AP.
Granting access
An AP grants access to a user Ui with public key mpk = (a, ·, ·, ·), as follows.
Suppose there are j tuples in the AP’s ARC and the AP’s current accumulated
value is Vj . The AP computes a new accumulated value Vj+1 = (s+ a)Vj , adds
(a, 1, Vj+1) to his ARC. The user Ui can form his access key mak = (j + 1,W ),
where W = Vj . The user keeps a counter ι, which is initially set to 0.
Revoking access
An AP revokes access from a user Ui with public key mpk = (a, ·, ·, ·), as follows.
Suppose there are j tuples in the AP’s ARC and the AP’s current accumulated
value is Vj . The AP computes a new accumulated value Vj+1 = 1/(s+a)Vj, and
adds (a, 0, Vj+1) to ARC.
Authentication
An AP (ID, k), whose public key and current accumulated value are apk =
(Q,Qpub, Λ, Υ ) and V respectively, authenticates a member M with public and
secret keys mpk = (a, S, C, β) and msk = x, respectively, as follows.

1. Member M increases counter ι. If value ι > k, then M sends ⊥ to the AP
and stops. Otherwise, M runs the algorithm Update (see Section 4.3 for this
algorithm) to update his access key mak = (j,W ).

2. The AP sends a random integer l ← Z∗
p to M.

3. Member M computes tag (Γ, Γ̌ ) = (Θx
ι , (∆

lΘ̌ι)x) using the ιth tag base
(Θι, Θ̌ι), and sends (Γ, Γ̌ ) to the AP with Proof2 = PK{(ι, a, S, x,W ) : Γ =
Θx

ι ∧ Γ̌ = (∆lΘ̌ι)x ∧ e(S, aP + Ppub) = e(xP + P0, P ) ∧ e(W,aQ+Qpub) =
e(V,Q)}.

4. If the proof is valid and if Γ is different from all corresponding tags in the
AP’s LOG, the AP adds tuple (Γ, Γ̌ , l) and the proof to the LOG, and outputs
accept. If the proof is valid and Γ is already written in the LOG, the AP adds
tuple (Γ, Γ̌ , l) and the proof to the LOG, outputs (detect,LOG) and stops. If
the proof is invalid, the AP outputs reject and stops.

Public tracing
The identity of a malicious user can be traced from an AP’s LOG as follows.

1. Look for two entries (Γ, Γ̌ , l, P roof) and (Γ ′, Γ̌ ′, l′, P roof ′) in the LOG, such
that Γ = Γ ′ and l �= l′, and that Proof and Proof ′ are valid. If no such
entry can be found, output NO-ONE.
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2. Compute β = (Γ̌ /Γ̌ ′)1/(l−l′) = ((∆lΓ̌ )x/(∆l′ Γ̌ ′)x)1/(l−l′) = ∆x, and look for
a pair (i, β) from the LOG. Output member identity i, or if no such (i, β)
can be found conclude that the GM has deleted some data from the LOG,
and output GM.

4.3 Details

Proof2
The member M computes the proof as follows:

1. Select v ← Z∗
p, and compute the perfect commitment Ω = ΛxΥ v of x.

2. Publish Ω and proofs of knowledge of the following:
– Proof2a = PK{(ι, x, v) : Γ = Θx

ι ∧ Γ̌ = (∆lΘ̌ι)x ∧Ω = ΛxΥ v}.
– Proof2b = PK{(a, S, x,W, v) : e(S, aP + Ppub) = e(xP + P0, P ) ∧
e(W,aQ+Qpub) = e(V,Q) ∧Ω = ΛxΥ v}.

The Proof2a can be constructed the same as proof 1 in [15] using the standard
techniques. We describe Proof2b as follows.

1. Generate r1, ..., r5, k0, ..., k7 ← Z∗
p and compute U1 = r1(aP + Ppub); U2 =

r2r4U1 + r3H ; U3 = r2r4S; X = r1r2r4(xP + P0); R1 = r4(aQ + Qpub);
R2 = r1r2R1+r5H ; R3 = r−1

4 W ; T1 = k1P+k2Ppub+k0H ; T2 = k3P+k2P0;
T4 = k5U1 + k0H ; T3 = k1Q + k2Qpub + k4H ; T5 = k6R1 + k4H ; Π =
Λk3Υ k7Ω−k2

2. Compute c = HZp(P ||Ppub||P0||H ||∆||Q||Qpub||Λ||Υ ||Ω||ID||k||l||V ||X ||U1||
U2||U3||R1||R2||R3||T1||...||T5||Π)

3. Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2r4a; s2 = k2 + cr1r2r4;
s3 = k3 + cr1r2r4x; s4 = k4 + cr5; s5 = k5 + cr2r4; s6 = k6 + cr1r2; s7 =
k7 + cr1r2r4v

4. Output (X,U1, U2, U3, R1, R2, R3, c, s0, ..., s7)

Verification of Proof2b. Checking the following equations (which can be done con-
currently): e(U3, U1)

?= e(X,P ); e(R3, R1)
?= e(V,Q); and c ?= HZp(P ||Ppub||P0||

H ||∆||Q||Qpub||Λ||Υ ||Ω||ID||k||l||V ||X ||U1||U2||U3||R1||R2||R3||s1P + s2Ppub +
s0H−cU2||s3P+s2P0−cX ||s1Q+s2Qpub+s4H−cR2||s5U1+s0H−cU2||s6R1+
s4H − cR2||Λs3Υ s7Ω−s2)

Update
Suppose the AP’s ARC currently has n tuples, the member M with the public
key (a, ·, ·, ·) and the access key (j,Wj) computes a new access key as follows.

for (k = j + 1; k + +; k ≤ n) do
retrieve from ARC the kth tuple (u, b, Vk);
if b = 1, then Wk = Vk−1 + (u− a)Wk−1

else Wk = (1/(u− a))(Wk−1 − Vk) end if;
end for;
return (n,Wn);
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Public Inspection
Any party can run this algorithm to assure the correctness of an AP’s public
archive ARC. With such an algorithm, we can assume that ARC is always updated
correctly. Any party, after a change on ARC, can retrieve the new tuple (u, b, Vk).
If (b = 1) then he checks if e(Vk−1, aQ+Qpub)

?= e(Vk, Q); otherwise, he checks

if e(Vk, aQ+Qpub)
?= e(Vk−1, Q);

4.4 Correctness and Security

Correctness and security of our scheme is stated in Theorem 1, whose proof can
be found in the full version [14].

Theorem 1. In the random oracle model and the list oracle model, our dy-
namic k-TAA scheme provides (i) Correctness; (ii) D-Anonymity under the De-
cisional Bilinear Diffie-Hellman assumption; (iii) D-Detectability under the q-
Strong Diffie-Hellman assumption, where q is the upper bound of the group size;
(iv) D-Exculpability for users under the Discrete Logarithm assumption on G1;
(v) D-Exculpability for the GM under the q-Strong Diffie-Hellman assumption,
where q is the upper bound of the group size.

Theorem 1’s proof is based on the following lemmas, definition and theorem.
Lemma 1’s proof can be found in the full version [14].

Lemma 1. The interactive protocol corresponding to the Proof2 by the Fiat-
Shamir heuristic [8] is an honest verifier perfect zero-knowledge proof.

Lemma 2. Suppose a PPT adversary can corrupt all APs and all users and can
query the oracle OJOIN−GM . Let S = {((ai, Si, ·, ·), xi)}qi=1 be the set of public
key/secret key pairs of all member which are obtained by the adversary using
OJOIN−GM . If the adversary can output a new valid member public key/secret
key pair ((a∗, S∗, ·, ·), x∗) /∈ S, then the q-SDH assumption does not hold.

Proof. Suppose there is a PPT adversary A such that from set S = {((ai, Si, ·, ·)
, xi)}qi=1 of public key/secret key pairs of all members, obtained by OJOIN−GM ,
A can generate the public key/secret key pair ((a∗, S∗, ·, ·), x∗) /∈ S of a new
valid member. We show a construction of a PPT adversary B that can break
the q-SDH assumption. Suppose a tuple challenge = (Q, zQ, . . . , zqQ) is given,
where z ← Z∗

p, we show that B can compute (c, 1/(z + c)Q), where c ∈ Zp with
non-negligible probability. We consider two cases.
Case 1: This is a trivial case, where A outputs S∗ ∈ {S1, ..., Sq} with non-
negligible probability. In this case, B chooses γ ← Z∗

p and H ← G1, gives A
the group public key (P = Q,Ppub = γP, P0 = zQ,H,∆ = e(P, P )), simulates
a GM and a set of possible users, and simulates a set of possible APs with
their public/secret key pairs. Then B can simulate the oracle OJOIN−GM that
A needs to access. Suppose a set of keys S = {((ai, Si, ·, ·), xi)}qi=1 is generated
and A outputs a new ((a∗, S∗, ·, ·), x∗) with non-negligible probability such that
S∗ ∈ {S1, ..., Sq}. Suppose S∗ = Sj , where j ∈ {1, ..., q}, then 1

a∗+γ (x∗P +P0) =
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1
aj+γ (xjP + P0), so (aj − a∗)P0 = (a∗xj − ajx

∗ + xjγ − x∗γ)P . Therefore, z is
computable by B from this, and so is (c, 1/(z + c)Q), for any c ∈ Zp.
Case 2: This is when the first case does not hold. That means A outputs S∗ /∈
{S1, ..., Sq} with non-negligible probability. Then B plays the following game:

1. Generate α, ai, xi ← Z∗
p, i = 1, ..., q, where ais are different from one another,

and choose m← {1, ..., q}.
2. Suppose γ = z−am (B does not know γ). Then B can compute the following
P, Ppub, P0 from the tuple challenge.

P =
q∏

i=1,i�=m

(z + ai − am)Q

Ppub = γP = (z − am)
q∏

i=1,i�=m

(z + ai − am)Q

P0 = α

q∏

i=1

(z + ai − am)Q− xm

q∏

i=1,i�=m

(z + ai − am)Q

3. Generate H ← G1 and give A the group public key (P, Ppub, P0, H,∆ =
e(P, P )). Simulate a GM, a set of possible users and a set of possible APs
with their public/secret key pairs.

4. B can simulate the oracle OJOIN−GM that A needs to access as follows.
Suppose A wants an execution of the joining procedure between the GM
(controlled by B) and a user (controlled by A). As being able to extract
information from A, after receiving the commitment C′ from A, B can find
x′, r and generate y, y′, a in the joining procedure so that the prepared ai, xi

above are computed in the protocol to be the corresponding parts of the user
i’s keys. B can compute Si as follows:
– If i = m, then

Sm =
1

am + γ
(xmP + P0) = α

q∏

i=1,i�=m

(z + ai − am)Q

This is computable from the tuple challenge.
– If i �= m, then

Si =
1

ai + γ
(xiP + P0) =

(xi − xm)
q∏

j=1,j �=m,i

(z + aj − am)Q+ α

q∏

j=1,j �=i

(z + aj − am)Q

This is computable from the tuple challenge.
5. Get the output ((a∗, S∗, ·, ·), x∗) from A, where

S∗ =
1

a∗ + γ
(x∗P +P0) =

1
z + a∗ − am

(αz+x∗−xm)
q∏

i=1,i�=m

(z+ai−am)Q
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We can see that the case αz+x∗−xm = α(z+a∗−am) happens with negligible
probability, as it results in S∗ = Sm. So the case αz+x∗−xm �= α(z+ a∗− am)
happens with non-negligible probability ε1. Suppose in this case, the probability
that a∗ ∈ {a1, ..., aq} is ε2. Then the probability that a∗ /∈ {a1, ..., aq}\{am} is
ε1 − q−1

q ε2 (as m ← {1, ..., q}), which is also non-negligible if q is bound by a
polynomial of l. If αz + x∗ − xm �= α(z + a∗ − am) and a∗ /∈ {a1, ..., aq}\{am},
then 1

z+a∗−am
Q is computable from the tuple challenge and S∗ and so B can

compute (c, 1
z+cQ), where c = a∗ − am.

4.5 Relationship Between DBDH and (l, m, n)-DBDH Assumptions

We now present the (l,m, n)-Decisional Bilinear Diffie-Hellman assumption and
show that it is weaker than the DBDH assumption in Theorem 2.

(l, m, n)-Decisional Bilinear Diffie-Hellman Assumption. For every PPT

algorithm A, the following function Adv
(l,m,n)-DBDH
A (κ) is negligible.

Adv
(l,m,n)-DBDH
A (κ) = |Pr[A(t, {xuP}lu=0, {e(P, P )xuyvzw}(l,m,n)

(u,v,w)=(0,1,1)) = 1]

−Pr[A(t, {Pu}lu=0, {Γuvw}(l,m,n)
(u,v,w)=(0,1,1)) = 1]|

where t = (p,G1,GT , e, P ) ← G(1κ) and xu, yv, zw ← Z∗
p, Pu ← G1, Γu,v,w ←

GT , for (u, v, w) = (0, 1, 1)...(l,m, n).

Theorem 2. If the DBDH assumption holds then the (l,m, n)-DBDH assump-
tion also holds.

Proof. We first prove that if the DBDH assumption holds, then the (1, 1, 1)-
DBDH assumption holds. We show that if a PPT algorithmA has non-negligible

Adv
(1,1,1)-DBDH
A (κ) (i.e. the (1, 1, 1)-DBDH assumption does not hold), then

we can build an algorithm B that has non-negligible AdvDBDH
B (κ) (i.e. the

DBDH assumption does not hold). Suppose a, b, c ∈ Z
∗
p and Γ ∈ G

∗
T , we ob-

serve that if a and b are uniformly distributed in Z∗
p, then x = ab is also uni-

formly distributed in Z∗
p and if Γ is uniformly distributed in G∗

T , then s is also
uniformly distributed in Z∗

p, where Γ = e(P, P )s. So to distinguish between
(aP, bP, cP, e(P, P )abc) and (aP, bP, cP, Γ ), the algorithm B can choose an uni-
formly random d ∈ Z∗

p and simply return the output by A when it takes as input
(t, {dP, dcP}, {e(aP, bP )d, e(P, P )abcd}) or (t, {dP, dcP}, {e(aP, bP )d, Γ d}).

We now prove that if the (l,m, n)-DBDH assumption and the (1, 1, 1)-DBDH
assumption hold, then the (l+ 1,m, n)-DBDH assumption holds. We show that
if a PPT algorithm A has non-negligible

Adv
(l+1,m,n)-DBDH
A (κ) (i.e. the (l+1,m, n)-DBDH assumption does not hold),

then we can build a PPT algorithm B that has non-negligible

Adv
(l,m,n)-DBDH
B (κ) (i.e. the (l,m, n)-DBDH assumption does not hold) or has
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non-negligibleAdv(1,1,1)-DBDH
B (κ) (i.e. the (1, 1, 1)-DBDH assumption does not

hold). We define the following sets

S1 = {({xuP}l+1
u=0, {e(P, P )xuyvzw}(l+1,m,n)

(u,v,w)=(0,1,1)) | xu, yv, zw ← Z
∗
p}

S2 = {({Pu}l+1
u=0, {Γuvw}(l+1,m,n)

(u,v,w)=(0,1,1)) | Pu ← G1; Γu,v,w ← GT ; r ← Z
∗
p;

Pl+1 = rPl; Γ(l+1)vw = Γ r
lvw}

S3 = {({Pu}l+1
u=0, {Γuvw}(l+1,m,n)

(u,v,w)=(0,1,1)) | Pu ← G1; Γu,v,w ← GT }

A non-negligible Adv(l+1,m,n)-DBDH
A (κ) means that A can distinguish between

a random element of S1 and a random element of S3. It means A can distinguish
either between a random element of S1 and a random element of S2 or between
a random element of S2 and a random element of S3. We consider these 2 cases:

– We show that if A can distinguish between a random element of S1 and
a random element of S2, then we can build an algorithm B that has non-

negligible Adv(l,m,n)-DBDH
B (κ). Suppose B is given an input (t, {P ′

u}lu=0,

{Γ ′
uvw}(l,m,n)

(u,v,w)=(0,1,1)), B chooses an uniformly random x and computes P ′
l+1

= xP ′
l and Γ ′

(l+1)vw = Γ ′x
lvw , for v = 1, ...,m and w = 1, ..., n. B then return

the output from A when it takes as input (t, {P ′
u}l+1

u=0, {Γ ′
uvw}(l+1,m,n)

(u,v,w)=(0,1,1)).
– We show that if A can distinguish between a random element of S2 and

a random element of S3, then we can build an algorithm B that has non-

negligible Adv(1,1,1)-DBDH
B (κ). Suppose B is given an input(t, {P ′

l , P
′
l+1},

{Γ ′
lmn, Γ

′
(l+1)mn}). B chooses P ′

u ← G1, Γ ′
u,v,w ← GT , for (u, v, w) = (0, 1, 1)

· · · (l − 1,m, n). B then return the output from A when it takes as input
(t, {P ′

u}l+1
u=0, {Γ ′

uvw}(l+1,m,n)
(u,v,w)=(0,1,1)).

Therefore, if the PPT algorithm A has non-negligible Adv(l+1,m,n)-DBDH
A (κ),

then the algorithm B has either non-negligible Adv
(l,m,n)-DBDH
B (κ) or non-

negligible Adv(1,1,1)-DBDH
B (κ).

It can be similarly proved that if the (l,m, n)-DBDH assumption and the
(1, 1, 1)-DBDH assumption hold, then the (l,m + 1, n)-DBDH assumption and
the (l,m, n + 1)-DBDH assumption hold. Therefore, by induction, Theorem 2
has been proved.

4.6 A New k-TAA Scheme

A dynamic k-TAA scheme can be converted into an ordinary k-TAA as follows.
The setup procedure remains the same, except that the APs do not obtain any
key, do not maintain any access group and other public information. The joining,
the bound announcement and the public tracing procedures remain the same. The
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granting access and revoking access procedures are removed. In the authentication
procedure for dynamic k-TAA, a user needs to prove to an AP three conditions:
(i) he has been registered as a group member; (ii) he is in the access group of
the AP; and (iii) he has not accessed the AP more than the allowable number
of times. For ordinary k-TAA, the user do not have to prove condition (ii) and
just needs to prove two conditions (i) and (iii).

Using the above approach we can construct a k-TAA scheme from the pro-
posed dynamic scheme. The k-TAA scheme has the following differences with the
dynamc one. In the setup procedure, the for APs part is removed and only the
part for GM is performed. The joining, the bound announcement and the public
tracing procedures remain the same. There is no granting access or revoking ac-
cess. In the authentication procedure, a different Proof2b is used and there is no
Update or Public Inspection algorithm. Security of the ordinary scheme is stated
in Theorem 3. The authentication procedure and Theorem 3’s proof are provided
in the full version [14].

Theorem 3. In the random oracle model and the list oracle model, our k-TAA
scheme provides (i) Correctness; (ii) Anonymity under the Decisional Bilinear
Diffie-Hellman assumption; (iii) Detectability under the q-Strong Diffie-Hellman
assumption, where q is the upper bound of the group size; (iv) Exculpability for
users under the Discrete Logarithm assumption on G1; (v) Exculpability for the
GM under the q-Strong Diffie-Hellman assumption, where q is the upper bound
of the group size.

4.7 Efficiency

Our schemes have the same desirable features of the TFS04 scheme. The size of
a group member’s keys does not depend on the group size and the GM can add
new members to the group without modifying the public key or secret key of
group members. After being registered into the group, a user does not need to
contact the GM. Each AP can independently determine his bound. In the dy-
namic scheme, each AP can independently decide which members are allowed to
access his services. Without considering the Update algorithm the computational
cost of authentication depends only on the bound of the AP.

Our schemes have higher communication efficiency compared to the TFS04
scheme. For instance, assume the scheme is implemented by an elliptic curve or
hyperelliptic curve over a finite field. p is a 160-bit prime, G1 is a subgroup of
an elliptic curve group or a Jacobian of a hyperelliptic curve over a finite field of
order p. GT is a subgroup of a finite field of size approximately 21024. Techniques
in [9] can be used to compress elements of GT by a factor of three. A possible
choice for the parameters can be from Boneh et al. [4]: G1 is derived from the
curve E/GF (3ι) defined by y2 = x3−x+1. In addition, we assume that system
parameters in the TFS04 scheme are ν = 1024, ε = µ = κ = 160. We summarize
the comparison of communication costs, which are measured by the number of
bytes sent, for authentication procedures in the following table.
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Bytes sent by AP Bytes sent by User Dynamic
The TFS04 scheme 40 60 k+ 1617 No
Our ordinary scheme 20 60 k+ 244 No
Our dynamic scheme 20 60 k+ 364 Yes
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