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Abstract. Balanced Oil and Vinegar signature schemes and the un-
balanced Oil and Vinegar signature schemes are public key signature
schemes based on multivariable polynomials. In this paper, we suggest a
new signature scheme, which is a generalization of the Oil-Vinegar con-
struction to improve the efficiency of the unbalanced Oil and Vinegar
signature scheme. The basic idea can be described as a construction of
multi-layer Oil-Vinegar construction and its generalization. We call our
system a Rainbow signature scheme. We propose and implement a prac-
tical scheme, which works better than Sflashv2 , in particular, in terms of
signature generating time.

Keywords: public-key, multivariable, quadratic polynomials, Oil and
Vinegar

1 Introduction

The subject we deal with here are generalizations of the Oil-Vinegar construc-
tion of public key authentication systems. It is part of a general effort to build
secure and efficient public key authentication systems for practical applications,
in particular, low cost smart cards. The key point of our work is the idea of
a multi-layer Oil-Vinegar system. The main achievement is the creation of a
multi-layer Oil-Vinegar system, which we call Rainbow. We show, that the sys-
tem should be more secure and more efficient than any comparable system. The
importance of the work lies in the potential application of the Rainbow system
as a strongly secure and very efficient public key authentication system.

Since the arrival of the RSA cryptosystem people have been trying to build
new public key cryptosystems. This includes systems based on multivariable
polynomials. In particular, cryptosystems based on quadratic polynomials have
undergone an intensive development in the last 10 years. The theoretical basis
for these constructions is the proven theorem that solving a set of multivari-
able polynomial equations over a finite field, in general, is an NP-hard problem,
although it does not necessarily guarantee the security of a multivariable cryp-
tosystem.
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This direction of research attracted a lot of attention with the appearance
of the construction by Matsumoto and Imai [MI88]. However, Patarin [Pat95]
proved that this scheme is insecure under an algebraic attack using linearization
equations. Since then Patarin and his collaborators have made a great effort to
develop secure multivariable cryptosystems.

One particular direction, which Patarin and his collaborators have pursued,
is inspired by the linearization equations themselves. This type of construction
includes Little Dragon, Dragon, Oil and Vinegar, Unbalanced Oil and Vinegar
[Pat96,KPG99]. The construction of the last two schemes uses the idea that
certain quadratic equations can be easily solved if we are allowed to guess a few
variables. Let k be a finite field. The key construction is a map F from ko+v to
ko:

F (x1, .., xo, x
′
1, .., x

′
v) = (F1(x1, .., xo, x

′
1, .., x

′
v), . . . , Fo(x1, .., xo, x

′
1, .., x

′
v)),

and each Fl is in the form:

Fl(x1, . . . , xo, x
′
1, . . . , x

′
v) =

∑
al,i,jxix

′
j+

∑
bl,i,jx

′
ix

′
j+

∑
cl,ixi+

∑
dl,jx

′
j+el

where xi, i = 1, . . . , o, are the Oil variables and x′
j , j = 1, . . . , v, are the Vinegar

variables in the finite field k. (Note the similarity of the above formula with the
linearization equations.) We call such a type of polynomial an ‘Oil and Vinegar
polynomial’. The reason that it is called Oil and Vinegar scheme is due to the
fact that in the quadratic terms the Oil and Vinegar variables are not fully mixed
(like oil and vinegar). This allows us to find one solution easily for any equation
of the form

F (x1, . . . , xo, x
′
1, . . . , x

′
v) = (y1, . . . , yo),

when (y1, . . . , yo) is given. To find one solution, one just needs to randomly
choose values for the Vinegar variables and plug them into the equations above,
which will produce a set of o linear equations with o variables. This should, with
a probability close to 1, give us a solution. If it does not, one can try again by
selecting different values for the Vinegar variables, until one succeeds in finding
a solution.

This family of cryptosystems is designed specifically for signature schemes,
where we need only to find one solution for a given set of equations and not a
unique solution.

Once we have this map F , we “hide” it by composing it from the left and
the right sides by two invertible affine linear maps L1 and L2, in the same way
as it was done in the construction of [MI88]. Since L1 is on ko and L2 on ko+v,
this generates a quadratic map

F̄ = L1 ◦ F ◦ L2

from ko+v to ko (◦ means composition of two maps).
The balanced Oil and Vinegar scheme is characterized by o = v, but it was

defeated by Kipnis and Shamir [KS99] using matrices related to the bilinear
forms defined by quadratic polynomials.
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For the unbalanced Oil and Vinegar scheme, v > o, it was shown in [KPG99]
that a specific attack has a complexity of roughly qv−o−1o4, when v ≈ o. This
means, that if o is not too large (< 100) and a given fixed field of size q, then
v − o should be large enough, but also not too large, to ensure the security of
the scheme.

However, one must notice that in this scheme the document to be signed is a
vector in ko and the signature is a vector in ko+v. This means that the signature
is at least twice the size of the document and with a large v + o the system
becomes less efficient.

We propose in this paper a new construction that uses the Oil and Vine-
gar construction multiple times such that in the end the signature will be only
slightly longer than the document. This scheme is therefore much more efficient.
It is called Rainbow.

In the next section, we present the general construction and a practical exam-
ple. Then we give a general cryptanalysis. We compare our scheme with Sflash
and the original unbalanced Oil and Vinegar schemes. Finally we discuss ways
to optimize the scheme and to generalize it further.

2 Rainbow, a Signature Scheme

In this section, we present first the general construction of Rainbow and then
give an example of its practical implementation.

2.1 General Construction of Rainbow

Let S be the set {1, 2, 3, . . . , n}. Let v1, . . . , vu be u integers such that 0 <
v1 < v2 < · · · < vu = n, and define the sets of integers Sl = {1, 2, . . . , vl} for
l = 1, . . . , u, so that we have

S1 ⊂ S2 ⊂ · · · ⊂ Su = S.

The number of elements in Si is vi.
Let

oi = vi+1 − vi, for i = 1, . . . , u − 1.

Let Oi be the set such that

Oi = Si+1 − Si, for i = 1, . . . , u − 1.

Let Pl be the linear space of quadratic polynomials spanned by polynomials
of the form

∑

i∈Ol,j∈Sl

αi,jxixj +
∑

i,j∈Sl

βi,jxixj +
∑

i∈Sl+1

γixi + η

We can see that these are Oil and Vinegar type of polynomials such that xi,
i ∈ Ol are the Oil variables and xi, i ∈ Sl are the Vinegar variables. We call xi,
i ∈ Ol an l-th layer Oil variable and xi, i ∈ Sl an l-th layer Vinegar variable.
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We call any polynomial in Pl an l-th layer Oil and Vinegar polynomial. Clearly
we have Pi ⊂ Pj for i < j.

In this way, each Pl, l = 1, . . . , u− 1 is a set of Oil and Vinegar polynomials.
Each polynomial in Pl has xi, i ∈ Ol as its Oil variables and xi, i ∈ Sl as
its Vinegar variables. The Oil and Vinegar polynomials in Pi can be defined
as polynomials such that xi ∈ Oi are the Oil variables and xi, i ∈ Si are the
Vinegar variables. This can be illustrated by the fact that

Si+1 = {Si, Oi}.
Now, we will define the map F of the Rainbow signature scheme. It is a map

F from kn to kn−v1 such that

F (x1, . . . , xn) = (F̃1(x1, . . . , xn), . . . , F̃u−1(x1, . . . , xn))

= (F1(x1, . . . , xn), . . . , Fn−v1(x1, . . . , xn)),

each F̃i consists of oi randomly chosen quadratic polynomials from Pi. By a
randomly chosen polynomial, we mean that we choose its coefficients at random.

In this way, we can see that F actually has u − 1 layers of Oil and Vinegar
constructions. The first layer consists of o1 polynomials F1, . . . , Fo1 such that xj ,
j ∈ O1 are the Oil variables and xj , j ∈ S1 are the Vinegar variables. The i-th
layer consists of oi polynomials, Fvi+1, . . . , Fvi+1 , such that xj , j ∈ Oi are the
Oil variables and xj , j ∈ Si are the Vinegar variables. From this, we can build
a rainbow of our variables:

[x1, . . . , xv1 ]; {xv1+1, . . . , xv2}
[x1, . . . , xv1 , xv1+1, . . . , xv2 ]; {xv2+1, . . . , xv3}
[x1, . . . , xv1 , xv1+1, . . . , xv2 , xv2+1, . . . , xv3 ]; {xv3+1, . . . , xv4}
. . . ; . . .
[x1, . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , xvu−1 ]; {xvu−1+1, . . . , xn}

Each row above represents a layer of the Rainbow. For the l-th layer above,
the ones in [ ] are Vinegar variables, the ones in { } are Oil variables and each
layer’s Vinegar variables consists of all the variables in the previous layer.

We call F a Rainbow polynomial map with u − 1 layers.
Let L1 and L2 be two randomly chosen invertible affine linear maps, L1 is

on kn−v1 and L2 on kn.
Let

F̄ (x1, . . . , xn) = L1 ◦ F ◦ L2(x1, . . . , xn),

which consists of n − v1 quadratic polynomials with n variables.

We will now use the above to construct a public key Rainbow signature
scheme.

1. Public Key
For a Rainbow signature scheme, the public key consists of the n−v1 polynomial
components of F̄ and the field structure of k.
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2. Private Key
The private key consists of the maps L1, L2 and F .

3. Signing a Document
To sign a document, which is an element Y ′ = (y′

1, . . . , y
′
n−v1

) in kn−v1 , one
needs to find a solution of the equation

L1 ◦ F ◦ L2(x1, . . . , xn) = F̄ (x1, . . . , xn) = Y ′.

We can apply the inverse of L1 first, then we have

F ◦ L2(x1, . . . , xn) = L−1
1 Y ′ = Ȳ ′.

Next we need to invert F . In this case, we need to solve the equation

F (x1, . . . , xn) = Ȳ ′ = (ȳ′
1, . . . , ȳ

′
n−v1

).

We first randomly choose the values of x1, . . . , xv1 and plug them into the first
layer of o1 equations given by

F̃1 = (ȳ′
1, . . . , ȳ

′
o1

).

This produces a set of o1 linear equations with o1 variables, xo1+1, . . . , xv2 , which
we solve to find the values of xo1+1, . . . , xv2 . Then we have all the values of xi,
i ∈ S2.

Then we plug these values into the second layer of polynomials, which will
again produce o2 number of linear equations, which then gives us the values of
all xi, i ∈ S3. We repeat the procedure until we find a solution.

If at any time, a set of linear equations does not have a solution, we will
start from the beginning again by choosing another set of values for x1, . . . , xv1 .
We will continue until we find a solution. We know from [Pat96], that with a
very high probability we can expect to succeed if the number of layers is not too
large.

Then we apply the inverse of L2, which gives us a signature of Y ′, which we
will denote by X ′ = (x′

1, . . . , x
′
n).

4 Verifying the Signature
To verify a signature, one only needs to check if indeed

F̃ (X ′) = Y ′.

In order to sign a large document, one can go through the same procedure
for Flash as in [PCG01] by applying a hash function first, then sign the hash
value of the document.

2.2 A Practical Implementation of Rainbow

For a practical implementation we have chosen k to be a finite field of size q = 28.
Let n = 33 and S be the set {1, 2, 3, . . . , 33}.
Let u = 5 and v1 = 6, v2 = 12, v3 = 17, v4 = 22, v5 = 33.
We have o1 = 6, o2 = 5, o3 = 5, o4 = 11.
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In this case, both F̄ and F are maps from k33 to k27.
The public key consists of 27 quadratic polynomials with 33 variables. The

total number of coefficients for the public key is 27 × 34 × 35/2 = 16, 065, or
about 15 KB of storage.

The private key consists of 11 polynomials with 22 Vinegar variables and 11
Oil variables, 5 polynomials with 17 Vinegar and 5 Oil variables, 5 polynomials
with 12 Vinegar and 5 Oil variables, and 6 polynomials with 6 Vinegar and 6
Oil variables plus the two affine linear transformations L1 and L2. The total size
is about 10 KB.

This signature scheme signs a document of size 8 × 27 = 216 bits with a
signature of 8 × 33 = 264 bits.

3 Cryptanalysis

We will present a short cryptanalysis of the Rainbow signature scheme by looking
at the cryptanalysis of the example above. There are several ways to attack,
which we will deal with one by one. For those methods where quadratic forms
are used one has to remember that the theory of quadratic forms over finite
fields is different when the characteristic is 2 compared to the case when the
characteristic is odd [D09].

3.1 Method of Rank Reduction
In [CSV97] a method of rank reduction is used to break the birational permuta-
tion signature scheme of Shamir. The reason this attack could work is that the
space spanned by the polynomial components of the cipher of Shamir’s scheme
consists of a flag of spaces:

V1 ⊂ V2 ⊂ · · · ⊂ Vt,

where Vt is the space spanned by the polynomial components of the cipher, each
Vi is a proper subset of Vi+1 and the rank of the corresponding bilinear form
corresponding to the elements in Vi+1 − Vi is strictly larger than the ones in Vi

and the difference of the dimensions between Vi and Vi+1 is exactly 1. Due to
these properties, in particular the last one, it allows one to easily find this flag
of spaces, namely all the Vi by first finding Vn−1 then Vn−2 and so on by rank
reduction.

But this attack method can not work against our scheme anymore. The reason
for this is that even though in our case, there also exists such a flag of spaces
such that

1) the number of components is exactly the number of layers;
2) the dimension of each component of the flag corresponds exactly to the one

of Vi+1, i = 1, . . . , u − 1;

but

3) the difference in the dimensions of the last two big spaces is exactly Ou−1,
which we have chosen specifically to be a rather large number 11 unlike in
Shamir’s case where it is 1.
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The property 3) above is exactly the reason why the attack in [CSV97] can
not work anymore. The rank reduction method can not be used here due to the
fact that ou−1 = 11 and no longer 1. The “thick last layer of Oil” enables our
scheme to resist the rank reduction attack in [CSV97].

3.2 Method of Attack for Oil-Vinegar Schemes

One can see that the action of L1 is to mix all polynomial components of F .
Therefore, each component of the cipher F̄ now belongs to the top layer of Oil-
Vinegar polynomials, namely they are all elements in P4. These are Oil and
Vinegar polynomials with 22 Vinegar variables and 11 Oil variables.

We can apply the method in [KPG99] for an unbalanced Oil and Vinegar
signature scheme in order to try to attack the system, which will allow us to
separate the top layer Oil and Vinegar variables. For this, what we need to do
is to separate the top (or the final) layer of 11 Oil variables and 22 Vinegar
variables. According to the cryptanalysis in [KPG99], the attack complexity of
this first step is q22−11−1 × 114 > 290.

3.3 Method of Minrank

There are two totally different ways of using the Minrank method. The first
one is to search for the polynomial whose associated matrix has the lowest rank
among all possible choices. This set of polynomials with 6 Vinegar and 6 Oil
variables belongs to the first layer, that is P1, and was denoted by F̃1. To do
this, we first associate to each polynomial a bilinear form, which has a matrix
of size 33 × 33. We then can use linear combinations of the matrices associated
with the components of F̄ to derive a polynomial, whose associated matrix has
rank 12.

Now, to attack the system, the problem becomes a search for a rank 12 matrix
among a group of 27 matrices of size 33×33. From the Minrank method [Cou01]
we know that the complexity to find such a matrix is q12 × 273, which is much
larger than 2100.

Another possibility it to search for polynomials corresponding to the polyno-
mials in the second last layer, namely the one that belong to P3 and come from
linear combinations of F̃i, i < 4. In this case, the Minrank method definitely can
not be used, because those are of rank 22 in general. One way surely is to ran-
domly search for it. Because the dimension of P3 is 16, this becomes a problem to
search for an element in a subspace of dimension 16 in a total space of dimension
27. Therefore, such a random search needs at least q11 searches to find one, but
we also need to determine if indeed the rank is lower than 22 for each search.
In this case, the total complexity should be at least q11 × (22 × 332/3) > 2100.
This attack idea is actually related to the attack method in [CSV97], and the
argument above explains why the method in [CSV97] can no longer work.

From the most recent e-print results in this direction [WBP], where they
study a very general system called STS, we know that their method can also
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be applied to our case. In accordance with their estimate, the security of our
system is at least 27 × 333 × (28)12 × 5 > 2100

3.4 The Attack Using the Structure of Multi-layers

For the case of Matsumoto-Imai cryptosystem, Patarin [Pat95] realized that if
the cipher is made of several independent parallel “branches”, we can perform
a separation of variables such that all polynomials in the cipher are derived as
linear combinations of polynomials over each group of variables. This property
actually can be used to attack the system. At first glance, one would think that
our layers look like different “branches”. Nevertheless, one should realize that
our layers are in no way “independent”, because each layer is build upon the
previous one. In simple terms one can say that all layers stick together and there
is no way we can do any kind of separation of variables. This is clear by looking
at the polynomials in the last layer P4. Therefore the attack using the property
of the parallel independent branches in [Pat95] cannot work here. Similarly one
can argue that the attack using syszygies cannot work here neither, due to the
fact there are no branches and everything is actually “glued together”.

3.5 General Methods

Other methods that could be used to attack our signature scheme are those,
which solve polynomial equations directly, for example the XL method and its
various generalizations, or those, which use Gröbner bases.

Surely, it is very difficult to solve a set of 27 equations with 33 variables,
because there are too many solutions for this set of equations. In general, it is
much better to solve an equation with only one variable.

Because of the nature of design of our system, one can guess the values for
any set of v1 = 6 variables and we have the probability 1/e < 1/2.71828 < 0.37
to have a unique solution. Now the problem becomes a problem to solve a set of
27 quadratic equations with 33 variables. We should think of it as if it is a set of
randomly chosen quadratic equations. According to what is commonly believed,
to solve this set of equations, the complexity is at least 23×27 > 281.

From this we conclude that the total complexity to attack our example is at
least 280.

3.6 General Security Analysis

From the discussion above, we can see that in order to attack the system, one
can approach it either from the top layer or form the bottom layer. The security
of the bottom layer depends on how effectively the Minrank method can be used.
The attack complexity in general is q(v2−1)o3

u−1 if v1 > o1 or q2v1o3
u−1 if v1 ≤ o1.

From this we know that we can not let v2 = o1 + v1 be too small.
From the most recent e-print results [WBP], the security of our system is at

least (n− v1)× n3 × (q)o1+v1 × u, which surely requires o1 + v1 not to be small.
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As for the case of attack from the top, the attack method for unbalanced
Oil and Vinegar method tells us that vu−1 − ou−1 can not be too small. Also to
avoid random search attacks ou−1 should not be too small.

4 Comparison with Other Multivariable
Signature Schemes

In this section, we will present the differences between our new system and two
similar multivariable cryptosystems, the unbalanced Oil and Vinegar scheme and
the Sflash scheme.

4.1 Comparison with Unbalanced Oil and Vinegar

First, our new system is a generalization of the original Oil and Vinegar construc-
tion and the original scheme can be interpreted as just a single layer Rainbow
scheme, where u = 2.

Let us assume that we want to build an unbalanced Oil and Vinegar scheme,
which has the same length for a document that can be signed as our practical
example above.

In this case, we choose k again to be a finite field of size q = 28 and we
know that the number of Oil variables should be 27. Because of the attack
for unbalance Oil and Vinegar schemes [KPG99], we know that the number of
Vinegar variables should be at least 27+11 = 38 in order to have the same level
of security.

In this case, the public key consists of 27 polynomials with 38 + 27 = 65
variables. The size of public key is therefore 27 × (67 × 66/2) bytes, which is
about 116 KB, about 10 times the size of our practical example. This implies
that the public computation of verifying the signature will take at least 10 times
as long.

The private key for the unbalanced Oil and Vinegar scheme consists of one
affine linear transformation on k27 and another one on k65 and a set of 27 Oil and
Vinegar polynomials with 27 Oil variables and 38 Vinegar variables. This means
that the private key is about 40 KB. This implies that the private calculation to
sign the document will take about four times longer compared to our example.

The length of the signature is 65 × 8 = 520 bits, which is also about twice
the size of the signature of our example.

From this, we conclude that our scheme should be a much better choice in
general in terms of both security and efficiency.

4.2 Sflash

NESSIE, New European Schemes for Signatures, Integrity, and Encryption, is a
project within the Information Society Technologies Programme of the European
Commission. It made its final selection of the crypto algorithm after a process
of more than 2 years. (www.cosic.esat.kuleuven.ac.be/nessie)
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Sflashv2, a fast multivariate signature scheme was selected by the Nessie
Consortium and was recommended for low-cost smart cards. However, due to
security concerns, the designer of Sflash once recommended that Slashv2 should
not be used, instead a new version Sflashv3 is recommended [PGC98]. It is a
simple extension of Sflashv2 by increasing the length of the signature. Sflashv3

has the signature length of 469 bits and a public key of 112 KBytes. But more
recently Sflashv2 was again deemed to be secure and we compared our imple-
mentation to that of Sflashv2.

Sflashv2 has a signature of length 37×7 = 259 for a document of 26×7 = 182
bits. Our example has a signature of length 33 × 8 = 264 for a document of
27×8 = 216 bits. In terms of per bits efficiency the two are essentially the same.

For a comparison of the running times on a PC, we implemented Sflashv2

as described in [ACDG03]. The generation of the signature is about twice as
fast for our example with Rainbow when compared to Sflash. The times for the
verification of a signature is of course nearly identical.

From this, we conclude that our scheme should be a good choice in terms of
both security and efficiency.

4.3 TTS

We can also compare our system with the new TTS schemes [YC03], but these
schemes are broken as was shown in a presentation in IWAP’04 [DY04]. One
should also see, that the Tractable Rational Map Signature, as presented in
[WHLCY], is very similar to TTS and can be viewed as a very special examples
of our scheme.

5 Optimization of Rainbow and Further Generalization

Because of all the possible choices of the design, one has to ask what is the best
design. In the practical example above, we presented a very simple realization
of Rainbow to make it easier to understand. In this section, we will look at the
possibility in general to optimize the scheme for both key size and computational
efficiency under the same security requirement.

Let us assume that we want to build a rainbow system to sign a document of
size m× r bits in the space kn, where k is a finite field of size q = 2r. A question
one has to ask is: What is the most efficient choice, if we are given a requirement
of a security level of 2θ?

For a document of length m the length of the signature is vu = (m+v1). The
security level is determined on the one side by 23r(v2−1) due the possibility of the
Minrank attack. We should choose v1 > o1 to make the system more efficient,
and from this we know that v2 = o1 + v1 should be at least 1 + θ/3r. But if
we want to make the signature as short as possible, the private key as small as
possible, and the private calculations as easy as possible, we can see that we
should choose v1 and o1 such that the difference between o1 and v1 should be 0
or 1.
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Now assume that we have fixed v2, o1, and v1 already. Due to the security
requirement, we know that we should make sure that qvu−vu−1−1(ou−1)4 is larger
than 2θ.

Let us assume that we have chosen vu − vu−1. The next choice are the layers
in-between. Clearly, we can see that the best choice is vi+1 = vi + 1, as it has
the shortest secret key, the fastest computation speed and it does not affect at
all the security of the system. In this case each F̃i has only one polynomial.

We suggest to further improve the scheme with an even better choice. For
this we set all coefficients of any quadratic term to zero, which mixes the one
Oil variable with its Vinegar variables at its layer, and only the coefficient of the
linear term of Oil variable is chosen to be a nonzero element. This will ensure that
the corresponding linear equation in the signing process always has a solution.
It also makes the process faster and does not at all affect the security. We call
this type of polynomial, a linear Oil and Vinegar polynomial.

If one wants to make sure to have the maximum probability for success in
finding a signature, even the lowest layer should have the same construction,
namely v2 − v1 = 1 and the Oil- and Vinegar polynomial is chosen in the same
way. In this case, the only possible place for the signing process will be the top
layer. This type of construction, can be viewed also as a combination of the Oil
and Vinegar method with the method first suggested in [Sha98].

As for the case of an attack from the top, the attack method for unbalanced
Oil and Vinegar method tells us that vu−1 − ou−1 can not be too small. Also to
avoid random search attack ou−1 should not be too small.

For example, we can improve our practical example such that u = 13 and
v1 = 6, v2 = 12, v3 = 13, v4 = 14, . . . , v12 = 22, v13 = 33, o1 = 6, o2 =
1, . . . , o11 = 1, o12 = 11. This now is a 12 layer Rainbow scheme.

Another possibility for optimization is to use sparse polynomials when we
choose at random the coefficients of the Oil-Vinegar polynomials. Nevertheless,
this is a very subtle and delicate task, as it opens up the possibility of new, often
hidden and unexpected weakness. The use of sparse polynomial in the new TTS
scheme caused it to be broken in [DY04]. Therefore we strongly suggest that
such a method should not be used except if one can establish a way to prove
that the security level has not been changed.

6 Conclusion

In this paper, we presented a generalization of the Oil and Vinegar signature
scheme. It, in general, improves the efficiency of the system. We also suggested
to further improve the system by using linear Oil and Vinegar polynomials.
We believe that our construction produces excellent multivariable polynomial
signature schemes for practical applications.
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