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Abstract. The notion of spatio-temporal multi-granularity is fundamental when 
modeling objects in GIS applications in that it supports the representation of the 
temporal evolutions of these objects. Concepts and issues in multi-granular 
spatio-temporal representations have been widely investigated by the research 
community. However, despite the large number of theoretical investigations, no 
comprehensive approaches, have been proposed dealing with the representation 
of multi-granular spatio-temporal objects in commercially available DBMSs. 
The goal of the work that we report in this paper is to address this gap. To 
achieve it, the paper first introduces an object-relational model based on 
OpenGis specifications described in SQL3. Several extensions are developed in 
order to improve the semantics and behavior for spatio-temporal data types 
introducing an approach to represent the temporal dimension in this model and 
the multi-representation of spatio-temporal granularities. 

1   Introduction 

Since 1970 when Codd [5] proposed the relational model, database system technology 
has introduced several important changes in the way data are stored and managed. The 
relational data model has had a great impact on commercial products, mainly because of 
the development of the SQL language, which included several additional features with 
respect to those specified by the theoretical definition of the relational model. Since its 
initial definition, SQL has been widely extended [9]. A relevant set of extensions has 
dealt with the introduction of object modeling capabilities [21], resulting in the notion of 
object-relational data model. Such a model combines the simplicity and the power of 
SQL the ability of describing new data types with their associated operations, typical of 
the object-oriented approach. The object-relational data model is thus a powerful model 
combining the best aspects of two different approaches. 

The SQL3 standard [10] is the reference language for the object-relational model. 
It has been defined by extending the previous SQL92 standard with the ability to 
modify, retrieve and define the data types needed to represent a large variety of 
application domains.  Examples of those extensions include: XML, MULTISET (like 
the ARRAY data type, without implicit order), BIGINT and others. 

C
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An important class of applications is represented by spatial and GIS applications. 
These applications are relevant in a number of different domains, such as 
transportation, urban planning, homeland security, and environmental protection. 
Spatial data management is often combined with temporal data management, because 
in many cases one needs to record the temporal evolution of spatially-related entities. 
The resulting data models are thus termed spatio-temporal data models. One of the 
most crucial issues when dealing with spatio-temporal databases is the management 
of the information concerning moving objects in a spatial context. Such an issue 
represents an important requirement in several application domains, like air traffic 
control and habitat control of endangered species and so on. So far, the GIS systems 
have handled the spatial and the non-spatial data separately, which increases the 
complexity of maintaining data integrity. The use of an object-relational database 
system to manage this kind of data represents a good alternative, in particular because 
such a system is able to homogeneously and efficiently manage user-defined 
information, and to improve integrity for data of different nature. 

Most of the spatial-temporal data approaches proposed so far do not exploit the 
powerful modeling and management features that are provided by recent versions of 
commercially available DBMSs. Another main limitation of current approaches is that 
they do not support multiple granularities in the representation of spatio-temporal 
data. Multiple granularities, defined as a set of measure units for space and time, are 
crucial in facilitating the management of information for applications such as air 
traffic control, meteorological forecast and so forth [3], [17]. The goal of the work 
reported in this paper is to address such limitations by developing an object-relational 
approach to the management of spatio-temporal data supporting multiple granularities 
for both space and time. 

In particular, in the paper we propose a temporal extension expressed in the SQL3 
standard, specifically tailored to the OpenGis specifications [29]. Our start point is the 
object-relational model and meta-model that verifies the OpenGis specifications from 
which we develop an extension of the spatial and non-spatial data types defining a 
new data type composed the two parts; the first part is the object value and the second 
the valid time for this value. This extension provides the support required to model 
multiple spatio-temporal granularities and tools to operate on objects with different 
granularities in order to address their integration and inter-operability. 

The remainder of this paper is organized as follows. Next section gives an 
overview of related work dealing with the spatial and temporal representation in the 
object-relational model. Section 3 introduces the notions of spatial and temporal 
granularity and their basic properties. Section 4 describes the OpenGis specifications 
in SQL3 [29] and presents our extension to supporting multiple spatial granularities. 
Section 5 then extends the model and meta-model developed in Section 4 by 
introducing time as an extension of the SQL3 data types. The last section concludes 
the paper and outlines future work.  

2   Related Works 

Initial approaches, aimed at supporting advanced data management applications, have 
recognized that spatial information [15], [24] and temporal information [25], [22], 
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[23], [19] are both crucial. However, those early approaches have dealt with space 
and time representations separately. Most recent proposals have proposed integrated 
approaches able to model both spatial and temporal aspects of data objects. 

A first relevant approach has been developed by Guting et al. [16]. The approach 
supports the change of the position or extension for geometry through the use of 
abstract data type definition capabilities. It develops a set of constructors and query 
operators in an abstract model thus giving a compact and uniform vision for every 
data type. In the proposed approach [16], some data types, namely Integer, Boolean, 
Spatial, can be transformed in a temporal data type. Such an abstract model has been 
then transformed in a discrete model [14], closer to the implementation but more 
restricted with respect to the abstract model. The discrete model represents the object 
values that have a temporal dimension through the use of snapshots. This method is 
thus referred to as sliced representation. As part of their work, Guting et al. [14] have 
shown how the sliced representation can be mapped onto relational data structures 
such as records and arrays. However, they do not have specifically addressed how to 
map their abstract model onto the SQL3 standard. 

Chen and Zaniolo [6], based on the spatial-temporal representation model proposed 
by Worboys [26], propose a number of SQL3 extensions aiming at supporting 
advanced queries. Unlike the previous proposals, they adopt a point-based approach 
to model the time dimension and queries are expressed through user-defined 
aggregate functions. Such an approach to handle time for spatio-temporal databases 
represented in a relational framework, it is very simple and minimizes SQL3 
extensions in comparison with the complex functions one has to apply when using 
based-intervals approaches [13], [19]. Such an approach has then been architected by 
solutions supporting efficient storage [7]. Finally, a more recent paper [8] by the same 
authors describes how to implement these functions in ATLAS [28] in order to model 
specific application domains. This approach keeps the SQL philosophy; therefore it is 
easy to use for developers and users. A major drawback of this approach is that it is 
not able to support multiple temporal attributes with different granularities in the 
same relation. 

Another approach very close to implementation has been proposed by Lee [18]. 
The spatial object history is modeled through the creation of relations. The developed 
framework is based on the creation of some special purpose relations, called 
dimensions, storing the current values of the object geometry.  Besides those 
dimension relations, the approach requires the introduction of two additional relations 
keeping historical information. The approach by Lee also includes a set of macro 
operators that are used to execute queries. The macro operators are applied to spatial 
data, temporal data, and spatio-temporal data. Also, an aggregate operator is defined 
to manage the history of a spatio-temporal data. The main drawback of this approach 
is that it requires executing join operations among the dimension tables in order to 
produce complete spatial information. The use and maintenance of data under such an 
approach is thus quite complicated. 

An extensive analysis of the most important approaches to represent spatio-
temporal in the object-relational model has been carried out by Erwig et al. [12]. This 
paper presents an extensive comparison between two approaches to represent the 
temporal dimension in a spatio-object-relational model. The first approach is based on 
extending each relation storing spatial data objects, with an additional column 
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representing temporal information. The column essentially records the temporal 
validity of row values. The second approach exploits the expressive power of the 
object-relational model. It is based on the definition of an abstract data type (ADT) 
joining space and time on the same column. The second approach better represents 
the semantics of the original data and allows one to create relations containing time 
information at column level. 

Compared to previous work, the main contributions of our work are summarized as 
follows. First, the spatial representation we adopt is based in the proposal of OpenGis 
specifications described through SQL3 [29].  The above approaches, by contrast, 
adopt much simpler spatial data models not supporting OpenGis. Second, we provide 
support for multiple spatial granularities. Third, we use an abstract data type approach 
to represent and manage the temporal dimension; thus our approach is more flexible 
than other approaches and supports a finer degree of control over temporal behavior. 
Our approach facilitates the formulation of queries in SQL and provides a 
representation which is more intuitive and easy to use. Finally, we propose solutions 
to maintain multiple granularities, in both space and time, and provide conversion 
functions to map data representations among different granularities. None of the 
above described approaches provides such functions.  

3   Preliminaries: Multi-granular Spatio-Temporal Representation 

In this section, we introduce the relevant notions underlying our approach to multiple 
granularities in both time and space aspects. From an informal view point, we can 
think of a temporal or spatial granularity as a discrete partition of time or space. 
Different partitions may be defined, thus resulting in multiple granularities. 

The temporal granularity has been defined as the partitioning of a temporal domain 
in groups of elements ordered through an index set, where each group is perceived as 
an indivisible unit (a granule) [2]. The granularities set is denoted by GT and its 
elements are related by the relationship finer_than. A granularity S is finer_than R if 
for each index i a index j∈R exists such that S(i) ⊆ R(j), where S(i) denotes the granule 
belonging to the i index position. This relation is denoted by S ≤T R. Semantically, when 
we define a granularity for an object we specify the time instants at which the object’s 
values are relevant to the specific application domain. Days, months and years are 
several kinds of temporal granularity; days are finer than months and months are finer 
than years. Operations and comparisons between objects at different temporal 
granularity require the use of conversion functions. These functions change the temporal 
properties of an object from a finer granularity to a coarser granularity and we can 
compose a macro function with the function composition. Conversion functions can be 
like the ones shown in the Table 1, or aggregation functions available in SQL [4] or 
created according to the application’s semantics. 

The spatial granularity is defined as the unit of measure in a spatial reference 
system. It thus represents the unit according to which spatial properties, like the area, 
are measured. The set of the spatial granularity is denoted by GS. The elements of GS 
would be meters, kilometers, grades and others. Each one of those elements must be 
defined with respect to a spatial reference system. In GS, the relation finer_than is 
similar to the temporal granularity given before and it is denoted by M ≤S N. 
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Table 1. Temporal and spatial conversion functions 

Proj 
(index) 

It returns, for each  granule 
in the coarser granularity, 
the value corresponding to 
the granule of position index 
at the finer granularity 

First,  
Last 

First and  last index in the 
Proj (index) function 

Main It returns, for each granule in 
the coarser granularity, the 
value which appears most 
frequently in the included 
granules at the finer 
granularity 

All It returns, for each granule in 
the coarser granularity, the 
value which always appears 
in the included granules at 
the finer granularity if this 
value exists, the null value 
otherwise  

Contract functions 

l_contr It contracts an open line, endpoints 
included, to a point 

r_contr It contracts a simple connect region 
and its bounding to a point 

r_thinning It reduces a region and its bounding 
lines to a line 

Merge functions 

l_merge It merges two lines sharing an endpoint 
into to single line 

r_merge It  merges two regions sharing a 
boundary line into a single region 

Absorption operations 

P_abs It eliminates (abstracts) an isolated 
point inside a region 

l_abs It eliminates a line inside a region 
 

Possible conversion functions are shown in Table 1; we refer the reader to [1] for 
additional details. The application of these conversion functions guarantees the 
topology consistency. 

Suppose we were interested in studying the evolution of a river’s course. 
According to this specification, we can define a time unit as century thus obtaining 
the representation shown in the Fig. 1. Semantically speaking, the temporal and 
spatial granularity integration provides, on the one hand, the timestamp at which a 
spatial object is observed and, on the other hand, establishes the spatial measure 
within a reference system. 

Our approach represents spatial-temporal multiple granularities considering the 
spatial representation of an object with respect to one temporal granule. Therefore, we 
must specify the observation unit for both space and time. These objects are called 
moving objects [16]. The Fig. 1 shows the time variation in the river course with 
centuries as temporal granularity. 

The temporal and spatial multi-representation is built when executing user queries 
by using the conversion functions defined for each application depending on the 
domain. In the next section, we show how to specify the conversion functions 
 

(a) River course in 1800.                      (b) River course in 1900                   (c) River course in 2000 

Fig. 1. River course evolution 
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composition and their composition order what we denote as composition sequence. 
The composition of functions is strongly domain-dependent and it is very important to 
store it with the scheme definition to provide more semantics. 

4   Spatial Framework: Modeling OpenGis Specifications with 
SQL3  

In this section, we describe the OpenGis specifications in SQL3 considering the 
abstract data types to define the Geometry type besides the meta-scheme definition 
necessary to manage the spatial data in an object-relational database. 

Our approach begins with the framework developed in [29] and provides an 
extension through the new meta-information and SQL3 functions to support the 
spatial granularity. The proposal is focused on this spatial framework for two reasons; 
first, the representation agrees with the OpenGis standard and, second, it is specified 
by another standard, the SQL3 language, which provides an easy implementation in 
any object-relational DBMS. 

4.1   Spatial Data Description  

We describe OpenGis from two different viewpoints. The first describes the geometry 
data types, their properties and functions related to the spatial relationships among 
geometric objects. The second describes the meta-scheme which gives support to the 
geometry data type. The meta-scheme is similar to a data dictionary. It is composed of 
relations describing the spatial domain. The meta-schema in [29] describes the spatial 
domain as geometric objects in ℜ2 space. 

The relations belonging to the meta-schema cannot be modified by the user. The 
relation definition is fixed in the meta-schema and modifications to it are achieved 
through the use of views. We consider a view as a subset of meta-information that can 
be modified by the user.  

In the spatial meta-scheme presented in [29], framework of our proposal, when we 
define a geometric object in an object-relational scheme, the meta-scheme stores the 
information concerning its dimension, its geometry type (if it is a point, a line, a 
polygon and so on) and the spatial reference system over it is defined. This 
information allows, for example, one to check whether the relationships among 
geometric objects can be determined. The spatial relationship functions can just apply 
to objects with the same granularity and spatial reference. 

We introduce a notation to reference this meta-information. We denote by SOR the 
spatio-object-relational model and by SOR-M the meta-scheme over SOR defined in [29].  

Definition 1: The SOR-M = {RM1,…, RMn} is a set of relations that describe the 
spatial domain. We define Vs as a set of views, Vs = {Vs1, …,Vsi} such that Vsj = Ops 
(RMk,..,RMj) where Ops is a macro-operator composed of relational algebra 
operators.                                

The meta-information held in Vs can be modified by user. We reference to SOR-M 
as the set of views (Vs). 
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Definition 2: The Geometry data type (G) is defined as an abstract data type whose 
features1 are described in two important views, Geometry_Columns and 
Spatial_Ref_Sys, such that Geometry_Columns, Spatial_Ref_Sys ∈ Vs.   

The geometry type in SOR model is represented using a discrete model because 
SOR is a model close to the implementation. The spatial representation is stored as a 
set of vertexes that are interpreted through the linear interpolation between them. 

According to Fig. 2, the Geometry type has a hierarchical structure that is 
specialized into Point, Curve, Surface and Geometry Collection subtypes. Fig. 2 is 
based on Geometry Model specified in the OpenGis Abstract Specification restricted 
to 0, 1, and 2 dimensions for the collection types named Multipoint, MultiLineString 
and MultiPolygon. Therefore, Geometry, Curve, Surface, Multicurve and 
Multisurface are introduced as abstract data types. The subtypes of Geometry are 
restricted to 0, 1, and 2 dimensions in a coordinate space (ℜ2).  

The geometry type includes basic functions that retrieve information about spatial 
properties and methods for testing the spatial relationships and analyzing geometric 
objects; besides for each type specific functions are defined. In this paper, we do not 
show these functions and methods because they are specified in [29]. We focus our 
paper on how we can define a geometry object in a relation and how to represent its 
spatial properties in SOR-M. 

Definition 3: Let R (A1:D1,…,An:Dn) be a relation where Ai  is a column defined over 
a domain Di. R is a feature relation if ∃ Ai (i ∈ {1,..,n}) such that Ai ∈ G. Ai is called 
geometry or spatial column.         

When we define a feature relation, the spatial attribute definition shows just the 
geometry type. In the SOR model, every geometry column stores its features in the 
Geometry_Columns and it is referred to Spatial Reference System (SRS). A Spatial 
Reference System (also called Coordinate System) is a way to assign coordinates to a 
location and to establish relationships between sets of such coordinates. It enables the 
interpretation of a set of coordinates as a representation of a position in a real world 
space. Any spatial data in SOR has a coordinate system associated with it through the 
Spatial_Ref_Sys view. 

To define the geometry column features we introduce procedures to insert these 
features in SOR-M in order to make the update operations easy for the users. The 
Spatial_Ref_Sys view has defined SRS by default but the user can define other SRSs. 
For this reason, we create two SQL 3 procedures.  

Definition 4: Let R (A1:D1,…,An:Dn) be a feature relation. We define geometry 
features ∀ Ai ∈ G through the following procedures: 

• SP (R, Ai, Dimension_Number, DRS_ID) is a SQL3 procedure which inserts the 
dimension number and the identifier DRS (DRS_ID) in the Geometry_Columns 
view when Ai is defined in a SRS by default (DRS) 

• SR (SRID, SRText) is a SQL3 procedure to create a new spatial reference 
system. It inserts the identifier reference system and the specification textual in 
Spatial_Ref_Sys. The SRText column describes a standard specification defined 
in [29].                        

                                                           
1 We use the term feature to indicate an attribute of an abstract data type. 
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•  

Fig. 2. Geometry description in ODMG [21] 

Example 1: Let City be a relation defined with two attributes, Name of Varchar type 
and Extension of Polygon type. We define the City feature relation as: 

City(Name:varchar(60),Extension:Polygon);  

The Extension column is defined as a Polygon subtype. If we want to define the 
Extension column in City as a polygon with two dimensions at meters in a spatial 
reference system by default (DRS_ID = 14), we must specify them with the SP 
procedure to insert these features in the Geometry_Columns view: 

SP(‘City’, ‘Extension’, 2, 14); 

The SP signature indicates with the number 2 that Extension is a two-dimensional 
geometry object having 14 as identifier for the spatial reference system (DRS_ID). 
This identifier references a row of Spatial_Ref_Sys view.          

4.2   Spatial Granularity Description and Proposed Extensions by SOR Model 

The spatial granularity is a measure unit in relation to a Spatial Reference System 
(SRS). In the previous spatial framework, the spatial granularity is referred to the SRS 
chose. We can distinguish between a spatial granularity referred to a default reference 
system (DRS) and a new spatial reference. The DRS supported in the OpenGis 
specifications appears in [29] and the granularity is always defined according to the 
default unit. The definition of a new reference system involves the insertion of a new 
row in Spatial_Ref_Sys view. In order to provide an easy interaction with the SOR-M 
to define a spatial granularity different with respect to the Unit parameter defined over 
DRS we create a new granularity procedure. 

Definition 5: Let SOR be a model, we define SG procedure such that 
SG(Table_Name, Geometry_Name, DRS_ID, Granularity, Factor) inserts the spatial 
granularity of the Geometry_Name column in Table_Name relation concerning a DRS 
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which is identified by DRS_ID. The Factor parameter indicates the conversion rate 
relative to the unit by default supported by DRS.         

This procedure defines the spatial granularity in a geometry column when the DRS 
has a unit different from the default one. The SG inserts a new row in the 
Spatial_Ref_Sys view.  

Example 2: Consider example 1. Suppose that the system, defined as DRS_ID = 14 
with ‘Meters’ as default unit, is a DRS. To define the Extension granularity in 
hectometers, we should use the SG() procedure with the following parameters. 

SG (‘City’, ‘Extension’, 14, ‘Hms’, 100.0) 

The last parameter indicates the mapping between meters and hectometers.       

Another important aspect is to provide functions to compare geometries with 
different spatial granularities. Two geometries with different spatial granularities can 
be compared if they have associated conversion functions that modify their 
granularity while maintaining their topological properties. Thus, we must extend the 
set of functions defined in [29] to support the conversion functions and to create a 
view in the SOR-M recording how to apply them. 

We extend the SOR model by adding the conversion functions shown in Table 1 as 
SQL3 functions (Table 3). SOR-M is extended to also include a view called 
S_Coarser that specifies what conversion functions can be applied to a geometry 
column.  

Definition 6: Let R(A1:D1, .., An:Dn) be a feature relation, ∀ Ai (i ∈ {1,..,n}) Ai∈G, 
we can define the conversion functions for Ai by modifying S_Coarser view with the 
SC procedure, defined as follows: 

SC (Table_Name, Geometry_Column, Order, Sg, Eg, Operator_Name, Condition) 
The Order attribute indicates the application sequence of the operator the name of 

which is stored in Name_Operator. This attribute is needed when a spatial data has 
conversion functions concatenation to specify the change to several coarser 
granularities. The Sg and Eg record the initial and final granularities necessary to 
apply the conversion function and Condition is an expression that indicates what 
objects are affected for this operator.         

Definition 7: Let R(A1:D1, .., An:Dn) be a feature relation in the SOR model. We 
define SGranularity (Name_Attribute, Spatial_Ganularity): Geometry such that 
SGranularity() is a SQL3 function transforming the Name_Attribute spatial column 
values to values in the indicated granularity by Spatial_Ganularity according to the 
specification in S_Coarser view.          

Example 3: Following with the example 2, we can specify that the Extension attribute 
can change to a coarser granularity through application of the r_thinning operator. 
The conversion function for this attribute is specified in the meta-scheme through the 
SC procedure the signature of which is the following:  

SC (’City’,’Extension’,1,’Hms’,‘Kms’,’r_thinning’,ALL); 

As such signature specification shows, the Extension column can change the 
hectometers to kilometers granularity by applying the r_thinning function over all 
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Extension geometry. In this case, we are indicating that Extension values can be 
represented at kilometers as well. The Order attribute records the 1 value although in 
this case is not significant because we just apply one conversion operator.  

The city names and theirs extensions in kilometers can be queried as: 

Select SGranularity (Extension, Kms) 

From City;  � 

Table 2. Functions of spatial conversions 

 

 
 
 
 
 
 
 

The extended SOR model provides two important semantics restrictions. First, the 
spatial granularity definition through the SR procedure defines a new spatial reference 
system, and the SG procedure changes the granularity in a default spatial reference 
system. The second is the facility supporting the representation of a geometry type in 
several spatial granularities using the conversion functions. 

5   Temporal Representation in the SOR Model  

In the object relational model, the temporal representation can use a point-based 
approach or an interval-point approach and it could affect the relation’s tuples, called 
tuple level [6], [22], [23], [8] or to the relation attribute, attribute level [13], [14]. As 
we discussed in the Section 2, the point-based approach avoids the coalescing 
problems and provides a simpler vision of spatial-temporal systems. For this reason, 
our proposal represents the time with a point-based approach. Furthermore, it focuses 
on attribute level because we believe that is closer to the real world and supports the 
definition of several temporal attributes in the same relation.  

We consider a temporal granularity as foreseeable or unforeseeable. A foreseeable 
granularity describes periodical phenomena. Granules are calculated through a time 
function and a temporal seed.  The foreseeable temporal granularity can be calculated 
by applying the time function to the seed, e.g. if the seed is ’12-1-2003’, and the time 
function is to add one day, the ‘13-2-2003’ records the next timestamp. The temporal 
seed can be the first value observed or a value chosen by the user. The unforeseeable 
granularity is described by random phenomena. For example, if we want to represent 
the price changes of shares, we could define the unforeseeable granularity in that we 
do not know the time units when the share could change. This temporal granularity 
classification allows us to differentiate among several application domains and will be 

Contract functions l_contr (G:Line): Point 

 r_contr (G: Polygon): Point 

 r_thinning (G: Polygon): Line 

Merge functions l_merge (L1: Line, L2: Line): Line 

 r_merge  (G1:Polygon, G2:Polygon):Polygon 

Absorption operations p_abs (G:Polygon, P:Point):Polygon 

 l_abs (G:Polygon, L:Line):Polygon 
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represented in our approach by the definition of a temporal reference system within 
the Gregorian calendar. 

The proposal will carry out a temporal representation with the definition of 
abstract data types provided by the standard SQL3 inside the spatial framework 
explained before. The new data types will take into account that the temporal 
dimension can be expressed as a function over time for a spatial or non-spatial 
attribute. This function will be provided by the DBMS or/and customized by the user 
to collect the information for a certain domain. 

In the next section, we explain the approach we adopt to represent temporal 
attributes in the SOR model; specifically; we focus on the presentation of the 
foreseeable object moving representation.  

5.1   Temporal Attributes 

Until now, we can classify the relation columns as atomic or spatial depending on the 
data type over which they are defined. The atomic columns are defined over a 
predefined SQL3 data type and the spatial columns over Geometry type. Both types 
could be grouped and denoted as non-temporal columns (NTD). The temporal column 
will be considered as an extension of the atomic and spatial column where the 
changes produced along the time in those columns will be reflected. At present, the 
spatial o non-spatial representation shows the current values of the application 
domain. In this section, we describe how the time evolution is presented. 

Let SOR be the spatial relational model. The spatio-temporal object relational 
model (TSOR) is defined as an extension of SOR where the data types are specialized 
by adding a time attribute. This model is supported by the meta-scheme TSOR-M.  

Definition 8: The TSOR-M = {TM1,…, TMn} is a set of relations that describe the 
temporal domain. We define VT as a set of views, VT = {VT1, …,VTi} such that VTj = 
Opt = (TMk,..,TMj) where Opt is a macro-operator composed of relational algebra 
operators.        

By using such model extension, we can define the temporal data type as follows. 

Definition 9: Let α be a data type belonging to NTD, the temporal data type based on 
α is denoted by Tα and it is defined as a pair (Tvalue, Tgranule) where the Tvalue is a 
valid value over α data type in the Tgranule time instant, such that Tgranule ∈ S 
where S ∈ GT and S is the temporal granularity for Tα.         

In order to support attribute evolution we use the collection type defined in SQL 3.  

Definition 10: Let R(A1:D1, .., An:Dn) be a relation R. R is a temporal relation if ∃ Ai  

(i ∈ {1,..,n}) such that Ai∈Collection_Tα and Collection_Tα records a collection of 
ordered pairs of Tα type. Each Ai ∈ Collection_Tα is denoted as temporal column.  

A particular case is when α is the G spatial data type. R is a temporal -feature and 
∀ Ai (i ∈ {1,..,n}) Ai∈Collection_TG, Ai is denoted as moving column.         

The temporal column definition in a relation requires that the meta-scheme, the 
Temporal_Columns view to be exact, be updated in order to maintain the data 
consistent. 
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Therefore, a temporal granularity is defined for each temporal column. The 
granularity is defined by using a SQL3 procedure, like the spatial granularity 
procedure.  

Definition 11: Let TSOR model and R(A1:D1, .., An:Dn) a temporal relation. The 
temporal granularity ∀ Ai (i ∈ {1,..,n}) such that Ai∈Collection_Tα is defined by TG. 
TG is a SQL3 procedure which modifies the Temporal_Columns view in TSOR_M 
inserting a new row with the following specifications: 

TG (Table_Name, Temporal_Column, Unit, Granularity, Seed, Rate, Function)  
The TG signature specifies various information. Unit is the temporal domain that 

can get the values Y (year), M (month), D (day), H (hour), Mi (minutes) and S 
(second), all of them belonging to SQL3 DATETIME. Granularity describes the 
chosen temporal unit and Rate denotes the conversion factor to obtain the next 
granule from Seed. When the time function is different from an arithmetic succession 
of the time, the Function attribute stores the user-defined function name.          

According to this definition, we have covered the foreseeable temporal granularities 
to represent applications where certain phenomenon is observed at periodic 
timestamp. 

Moreover, we create the conversion functions described in Table 1 as SQL3 
functions to facilitate the integration and comparison among attributes with different 
temporal granularities. The SOR-M is extended by including a view denoting 
T_Coarser that specify what conversion functions are applied to each temporal 
column.  

Definition 12: Let R(A1:D1, .., An:Dn) be a temporal relation, ∀Ai (i ∈ {1,..,n}) such 
what Ai∈ Collection_Tα, we can define the conversion specification for Ai modifying 
T_Coarser  view with the TG procedure. The TG signature is: 

TG (Table_Name, Temporal_Column, Order, St, Et, Operator_Name, Condition) 
where, the Order attribute indicates the application sequence of the operator whose 
name is stored in Name_Operator. The St and Et record the initial and final 
granularity parameters necessary to apply the conversion function and Condition is an 
expression that indicates which objects are affected by this operator.         

Definition 13: Let R (A1:D1, .., An:Dn) be a temporal relation in the TSOR model. We 
define TGranularity (Name_Attribute, Temporal_Ganularity):Collection_ Tα as a 
SQL3 functions that transform the temporal column values, Name_Attribute ∈ Tα , to 
values in the indicated temporal granularity, Temporal_Ganularity, according to 
T_Coarser view.     

Therefore, the TG() procedure and TGranularity() contribute to extend the TSOR 
model. 

Example 4: In this example, City is a temporal feature relation (see Fig. 3) because the 
Extension is defined as a moving column.  

City(Name:varchar(60),Extension:Collection_Tpolygon) 

TG(‘City’, ‘Extension’, ‘Y’, ’Century’, 100); 

SG(‘City’, ‘Extension’, 14, ’Hms’, 100.0); 
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We use the SG and TG procedures to define the spatio-temporal granularity in 
Extension and the SC operator to specify the spatial conversion function that can be 
applied. 

SC (’City’,’Extension’,1,’Hms’, ‘Kms’, ’r_thinning’, 
ALL); 

To determine the New York boundary at year 1900, we specify the following query 
using SGranularity() operator. 

Select SGranularity (c.Extension[].Tvalues, ‘Kms’)From 
City c Where c.Name=’New York’ and 
c.Extension[].Tgranule = ‘1900’; 

Fig. 3. Example to illustrate the City temporal feature relation 

The SGranularity() realizes a query to S_Coarser view description to calculate the 
correct topology by the geometry. The Extension column changes from hectometers 
to kilometers granularity applying r_thinning function.         

Each temporal attribute has defined a temporal granularity and the relation is the 
context that joins them. For this reason, the database design aspects are more 
significant; we must choose the temporal attributes, in a relation, with granularities 
that define the domain semantics. With insertion, delete or update operations we must 
check the temporal validity according to the definition in the TSOR-M. Therefore, the 
temporal validity maintenance could be achieved through the temporal information 
that is included in the meta-scheme. The implementation of active mechanisms will 
allow to validate the time for each operation in the database. These mechanisms are 
strongly domain-dependent because describe the time relationships among the 
attributes of a relation. 

The temporal granularity for a temporal column is an inherent restriction of the 
TSOR model. That is, for each temporal attribute, the model forces one to define a 
temporal granularity. A semantic restriction is defined in the TSOR model giving the 
possibility to describe the conversion functions. Therefore, this model is semantically 
richer and allows one to support a larger variety of application domains. 

7   Conclusion and on Going Research  

The proposed framework is based on [29] with the definition of the Geometry data 
type. We have discussed how the spatial granularity is implicitly defined in the spatial 
reference system described in [29]. At the spatial level, our approach proposed the 
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following improvements with respect to a SOR model: an extension of the meta-
schema described in [29], referred to as SOR-M, that includes new views, functions and 
operators. Among the new views, the S_Coarser view specifies the conversion 
functions required to change the spatial granularity preserving the consistency of the 
spatial attribute. The conversion operators are added to the functions presented in [29].  

With respect to the temporal level, our approach is the first proposal to represent 
temporal attributes in the framework described before. We explain and define how the 
SQL3 data types can be converted into SQL3 temporal data types. This proposal is 
based on [13] but our temporal treatment is addressed to point-based approach. The 
temporal representation based on points makes it easy the use of aggregate functions 
as proposed in [28]. We define, as well, new views, functions and procedures 
extending the SQL3 functionalities. These functionalities are necessary to keep the 
consistency between temporal attributes in a relation and to deal with different 
granularities. 

The main problem when we apply the relational model is the bi-dimensional 
structure of the relations. This problem reverts in our approximation and generates 
some difficulties that we are currently investigating. In a relation with several 
temporal attributes, the attribute with the finest granularity will be the marker of the 
variability in the relation. To improve the storage problems we are investigating the 
use of other SQL3 structures, as the REF type in order to avoid redundant information 
and the use of point-based view at the query level and the interval-based view at the 
storage level following the approach reported in [25]. The consistency of the temporal 
attributes within the same relation is another problem that in this approach has been 
commented. As future work, we plan to develop a set of triggers to check the time 
validity between attributes of the same relation as well as the execution model and its 
implications on the inheritance relationships among object types. Finally, other future 
work will dealing with supporting granularities per value instead of per column like 
the TOOBIS project approach [31] and the development of an effective and efficient 
query processing technique. This is an important issue to improve the retrieval of data 
from temporal attributes using new indexing techniques.   
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