
Eliminating Redundant Tests in a Checking
Sequence

Jessica Chen1, Robert M. Hierons2,
Hasan Ural3, and Husnu Yenigun4

1 School of Computer Science,
University of Windsor, Windsor,

Ontario, N9B 3P4, Canada
2 Department of Information Systems and Computing,

Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK

3 School of Information Technology and Engineering,
University of Ottawa, Ottawa,
Ontario, K1N 6N5, Canada

4 Faculty of Engineering and Natural Sciences,
Sabanci University, Tuzla 34956, Istanbul, Turkey

Abstract. Under certain well–defined conditions, determining the cor-
rectness of a system under test (SUT) is based on a checking sequence
generated from a finite state machine (FSM) specification of the SUT.
When there is a distinguishing sequence for the FSM, an efficient check-
ing sequence may be produced from the elements of a set Eα′ of α′-
sequences that verify subsets of states and the elements of a set EC of
subsequences that test the individual transitions. An optimization algo-
rithm may be used in order to produce a shortest checking sequence by
connecting the elements of Eα′ and EC using transitions drawn from
an acyclic set. Previous work did not consider whether some transition
tests may be omitted from EC . This paper investigates the problem of
eliminating subsequences from EC for those transitions that correspond
to the last transitions traversed when a distinguishing sequence is ap-
plied in an α′–sequence to obtain a further reduction in the length of a
checking sequence.

1 Introduction

Finite state machines (FSMs) can be used to model many types of systems in-
cluding communication protocols [1] and control circuits [2]. A number of specifi-
cation languages such as SDL, Estelle, X-machines and Statecharts are based on
extensions of FSMs. FSM based test techniques can often be applied to systems
specified using such languages [3, 4, 5, 6, 7, 8].

Given a formal model or specification of the required behaviour of the system
under test (SUT) I it is normal to assume that I behaves like some unknown
model that can be described using some particular formalism [9]. Given an FSM

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 146–158, 2005.
c© IFIP 2005

Eliminating Redundant Tests in a Checking Sequence 147

M , that models the required behaviour of SUT I, it is normal to assume that I
behaves like some (unknown) FSM MI with the same input and output alphabets
as M . A common further assumption is that MI has no more states than M .

Suppose M has n states. Let the set of deterministic FSMs with the same
input and output alphabets as M and no more than n states be denoted Φ(M).
A finite set of input sequences is a checking experiment for M if, between them,
they distinguish M from every element of Φ(M) which is not equivalent to M .
Given FSM M , there is some checking experiment [10]. A checking sequence is
an input sequence that forms a checking experiment.

The problem of generating a checking sequence for an FSM M is simplified
if M has a distinguishing sequence: an input sequence D̄ with the property that
the output sequence produced by M in response to D̄ is different for the different
states of M . There has been much interest in the generation of short checking
sequences from an FSM M when a distinguishing sequence is known [11,12,13,
14]. Hierons and Ural [13] showed that an efficient checking sequence may be
produced by combining the elements in some predefined set Eα′ of α′–sequences
that verify subsets of states and the elements of a set EC of subsequences that
test individual transitions using an acyclic set E′′ of transitions from M . An
optimization algorithm is then used in order to produce a shortest checking
sequence by connecting the elements of Eα′ and EC using transitions drawn
from E′′. Their work did not consider whether some transition tests may be
omitted from EC .

In this paper, we show that the length of the checking sequences can be
reduced even further, since not every element in EC needs to be included in
a checking sequence. Specifically, we eliminate subsequences from EC for each
transition that corresponds to the last transition traversed when a distinguishing
sequence is applied in an α′–sequence to obtain further reductions in the length of
a checking sequence. The reason we can eliminate the tests for such transitions is
that, the existence of α′–sequences and the existence of the other transition tests
in the checking sequence, already guarantee the correctness of the transitions for
which the test segments are eliminated.

The shortest prefix of a distinguishing sequence D̄ that distinguishes a state
in M can actually be used as a special distinguishing sequence for that state [15].
Based on this observation, we use prefixes of distinguishing sequences as well, in
order to further reduce the length of checking sequences.

The remaining of this paper is structured as follows. Section 2 introduces
the basic concepts and notations used in this paper. Elements of an existing
checking sequence construction method [13] which will be utilized in the proposed
approach are also summarized here for completeness. Section 3 gives the details of
the proposed approach to elimination of redundant transition tests in a checking
sequence. A running example is used to illustrate the proposed approach and
to compare the length of the resulting checking sequence to the one constructed
by [13]. Conclusions are drawn in Section 4.

148 J. Chen et al

2 Preliminaries

2.1 Finite State Machines

A deterministic FSM M is defined by a tuple (S, s1,X, Y, δ, λ) in which S is a
finite set of states, s1 ∈ S is the initial state, X is the finite input alphabet, Y is
the finite output alphabet, δ is the next state function and λ is the output function.
The functions δ and λ can be extended to input sequences in a straightforward
manner. The number of states of M is denoted n and the states of M are
enumerated, giving S = {s1, . . . , sn}. An FSM is completely specified if the
functions λ and δ are total. If an FSM M is not completely specified, it is
possible to make M completely specified by either adding an error state or, for
each si ∈ S, a ∈ X such that (si, a) /∈ dom δ, adding the transition (si, si, a/null)
where null represents no output being produced.

A transition τ is defined by a tuple (si, sj , x/y) in which si is the starting
state, x is the input, sj = δ(si, x) is the ending state, and y = λ(si, x) is the
output.

Two states si and sj of M are equivalent if, for every input sequence x̄,
λ(si, x̄) = λ(sj , x̄). If λ(si, x̄) �= λ(sj , x̄) then x̄ distinguishes between si and sj .
An FSM M is minimal if no FSM with fewer states than M is equivalent to M .
A sufficient condition for M to be minimal is that every state can be reached
from the initial state of M and no two states of M are equivalent. Through-
out this paper M = (S, s1,X, Y, δ, λ) will denote a deterministic, minimal, and
completely specified FSM that describes the required behaviour of the SUT I.

An FSM, that will be denoted M0 throughout this paper, is described in
Figure 1. Here, S = {s1, s2, s3, s4, s5}, X = {a, b} and Y = {0, 1}.

Two FSMs M1 and M2 are equivalent if and only if for every state of M1

there is an equivalent state of M2 and vice versa. An input sequence distin-
guishes between two FSMs if its application leads to different output sequences
for these FSMs. An input sequence x̄ is a checking sequence for M if and only
if x̄ distinguishes between M and all elements of Φ(M) that are not equivalent
to M .

Given FSM M , a distinguishing sequence is an input sequence D̄ whose out-
put distinguishes all the states of M . More formally, for all si, sj ∈ S if si �= sj

then λ(si, D̄) �= λ(sj , D̄). Thus, for example, M0 has distinguishing sequence aba.

s2 s3

s5

s1 s4

b/1 a/0

a/0

a/1 b/0

a/1

b/0

b/1

b/1 a/0

Fig. 1. The FSM M0

Eliminating Redundant Tests in a Checking Sequence 149

We will use the notation D̄i to denote the prefixes of distinguishing sequences
that is sufficient to distinguish the states. Formally, given a distinguishing se-
quence D̄ and a state si, D̄i is the shortest prefix of D̄ such that for any state
sj , if si �= sj then λ(si, D̄i) �= λ(sj , D̄i).

While not every minimal FSM has a distinguishing sequence and determining
whether a minimal FSM has a distinguishing sequence is PSPACE-Complete [16],
there has been interest in the problem of generating a checking sequence in the
presence of a distinguishing sequence [12, 13, 17, 14]. This paper considers the
problem of generating an efficient checking sequence from a deterministic, mini-
mal, and completely specified FSM M with a known distinguishing sequence D̄.

2.2 Directed Graphs

A directed graph (digraph) G is defined by a tuple (V,E) in which V is a set of
vertices and E is a set of directed edges between the vertices. Each edge may
have a label. An edge e from vertex vi to vertex vj with label l will be represented
by (vi, vj , l). Edge e leaves vi and enters vj . For a vertex v ∈ V , indegreeE(v)
denotes the number of edges from E that enter v and outdegreeE(v) denotes the
number of edges from E that leave v.

Given an FSM, it is possible to produce a corresponding digraph in which
each state is represented by a vertex and each transition is represented by an
edge. Throughout this paper G = (V,E) (V = {v1, . . . , vn}) will be a digraph,
that represents M , in which state si is represented by vertex vi. A transition
from state si to state sj with input x and output y is represented by edge
e = (vi, vj , x/y) from E.

A sequence P̄ = (n1, n2, x1/y1), . . . , (nr−1, nr, xr−1/yr−1) of pairwise adja-
cent edges from G forms a walk in which each node ni represents a vertex from
V and thus, ultimately, a state from S. Here initial(P̄) denotes n1, which is the
initial node of P̄ , and final(P̄) denotes nr, which is the final node of P̄ . The
sequence T̄ = (x1/y1), . . . , (xr−1/yr−1) is the label of P̄ and is denoted label(P̄).
In this case, T̄ is said to label the walk P̄ . T̄ is said to be a transfer sequence
from n1 to nr. The walk P̄ can be represented by the tuple (n1, nr, T̄) or by
the tuple (n1, nr, x̄/ȳ) in which x̄ = x1, . . . , xr−1 is the input portion of T̄ and
ȳ = y1, . . . , yr−1 is the output portion of T̄ .

A tour is a walk whose initial and final nodes are the same. Given a tour
Γ̄ = e1, . . . , ek, ei = (ni, ni+1, li), (1 ≤ i ≤ k) then ej , . . . , ek, e1, . . . , ej−1 is
a walk formed by starting Γ̄ with edge ej , and hence by ending Γ̄ with edge
ej−1. An Euler Tour is a tour that contains each edge exactly once. If the set of
vertices represented by the nodes of walk P̄ are distinct, P̄ is said to be a path.
A sequence of edges e1, . . . , ek, ei = (ni, ni+1, li), (1 ≤ i ≤ k) forms a cycle if
e1, . . . , ek−1 is a path and n1 and nk+1 represent the same vertex. A set E′ of
edges from G is acyclic if no subset of E′ forms a cycle.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a walk from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM considered
in this paper is strongly connected.

150 J. Chen et al

2.3 Recognizing States and Verifying Edges

The algorithms of Ural et al. [14] and Hierons and Ural [13] use the notion of
recognizing a node, corresponding to the state reached by a given input/output
sequence, and verifying an edge of E. These notions, which are defined in terms of
a given distinguishing sequence D̄, are defined below. The key point is that, since
the SUT I has no more states than M , if we observe the n possible responses of
M to D̄ when applied to I, then D̄ must also be a distinguishing sequence for
I. Once this has been demonstrated, we can use D̄ to investigate the structure
of I and thus to determine whether it is equivalent to M .

Consider a walk P̄ and the nodes within it. Let Q̄ = label(P̄).

Definition 1. 1. A node ni of P̄ is d–recognized in Q̄ as state s of M if ni

is the initial node of a subpath of P̄ whose label is input/output sequence
D̄/λ(s, D̄).

2. Suppose that (nq, ni, T̄) and (nj , nk, T̄) are subpaths of P̄ and D̄/λ(s, D̄) is
a prefix to T̄ (and thus nq and nj are d–recognized in Q̄ as state s of M).
Suppose also that node nk is d–recognized in Q̄ as state s′ of M . Then ni is
t–recognized in Q̄ as s′.

3. Suppose that (nq, ni, T̄) and (nj , nk, T̄) are subpaths of P̄ such that nq and nj

are either d-recognized or t–recognized in Q̄ as state s of M and nk is either
d–recognized or t–recognized in Q̄ as state s′ of M . Then ni is t–recognized
in Q̄ as s′.

4. If node ni of P̄ is either d–recognized or t–recognized in Q̄ as state s then ni

is recognized in Q̄ as state s.
5. Edge e = (va, vb, x/y) is verified in Q̄ if there is a subpath (ni, ni+1, xi/yi)

of P̄ such that ni is recognized as sa in Q̄, ni+1 is recognized as sb in Q̄,
xi = x and yi = y.

The first rule says that a node is d–recognized as a state s if it is followed by
the input/output sequence D̄/λ(s, D̄). This is essentially saying that D̄ defines a
one–to–one correspondence between the states of the SUT and the states of M :
this must be the case if the n different responses to D̄ are observed in the SUT.
The second and third rules say that if an input/output sequence is observed
from two different nodes n and n′ that are both recognized (d–recognized or
t–recognized) as the same state then their final nodes should correspond to the
same state of M .

The fifth rule is related to a transition test that is defined as follows: The
transition test for a transition τ = (si, sj , x/y) is x/yD̄/λ(sj , D̄)T̄j for some
transfer sequence T̄j . The following result, that provides a sufficient condition
for an input sequence to be a checking sequence, may now be stated.

Theorem 1. (Theorem 1, [14]) Let P̄ be a walk from G representing M that
starts at v1 and Q̄ = label(P̄). If every edge (vi, vj , x/y) of G is verified in Q̄,
then the input portion of Q̄ is a checking sequence of M .

In this paper checking sequence generation is based on this result.

Eliminating Redundant Tests in a Checking Sequence 151

2.4 Defining α′–Sequences

Suppose that an input/output sequence x̄/ȳ, that labels a walk from the initial
state of M , contains the n subsequences of the form D̄i/λ(si, D̄i) (1 ≤ i ≤ n).
If x̄/ȳ labels a walk from the initial state of the SUT then, since the SUT has
at most n states, D̄ must be a distinguishing sequence for the SUT. Further,
the response to D̄ defines a bijection between the states of M and the states
of the SUT. This observation lies at the heart of algorithms for generating a
checking sequence on the basis of a distinguishing sequence and motivates the
use of α′–sequences. We now adapt α′–sequences [13], so that they use prefixes
of D̄, and then explain their role in the construction of a checking sequence.

The first step is to choose a set V1, . . . , Vq, q ≥ 1, of non-empty subsets
of V whose union is V . We then order the elements of each Vk, 1 ≤ k ≤ q,
to give Vk = {vk

1 , . . . , vk
mk

}. Each vk
i represents a state sf(i,k) of M (defining

a function f). For each vk
i , we produce a sequence D̄f(i,k)/λ(sf(i,k), D̄f(i,k))T̄ k

i

that is the result of applying D̄f(i,k) in state sf(i,k) followed by a (possibly
empty) transfer sequence T̄ k

i = (x̄k
i /ȳk

i) whose final state corresponds to vk
i+1,

1 ≤ i ≤ mk, (vk
mk+1 can be any vj

w, 1 ≤ j ≤ q, 1 ≤ w ≤ mj). Each Vk

thus defines a walk P̄k whose starting state is sf(1,k) and whose label is the
α′–sequence ᾱ′

k = D̄f(1,k)/λ(sf(1,k), D̄f(1,k))T̄ k
1 D̄f(2,k)/λ(sf(2,k), D̄f(2,k))T̄ k

2 . . .

D̄f(mk,k)/λ(sf(mk,k), D̄f(mk,k))T̄ k
mk

D̄f(w,j)/λ(sf(w,j), D̄f(w,j))T̄ j
w (1 ≤ j ≤ q,1 ≤

w ≤ mj). The set A = {ᾱ′
1, . . . , ᾱ

′
q} is called an α′–set. Given ᾱ′

i ∈ A, ᾱ′
i is

called an α′–sequence from A. Where A is clear, its members are simply called
α′–sequences.

The α′–sequences play the following roles in checking sequence generation.

1. They verify that D̄ is a distinguishing sequence for the SUT since they
contain the n different D̄i/λ(si, D̄i).

2. For each si ∈ S they d–recognize the final state of the walk from si with
label D̄i/λ(si, D̄i)T̄ k

i . This is achieved by the subsequence D̄i/λ(si, D̄i)T̄ k
i

followed by the sequence D̄j/λ(sj , D̄j) for some 1 ≤ j ≤ n. Thus, if the
subsequence D̄i/λ(si, D̄i)T̄ k

i is seen elsewhere in the label of a walk, then
the final node of this is t–recognized as the state sj reached from si by a
walk with label D̄i/λ(si, D̄i)T̄ k

i .
3. An α′–sequence with starting state si starts with D̄i/λ(si, D̄i) and thus its

initial node is recognized.
4. If the label of a walk P̄ contains every α′–sequence from α′–set A then the

final node of each P̄k is t–recognized.

2.5 Checking Sequence Construction: An Existing Approach

The proposed reduction of the length of a checking sequence is an enhance-
ment of the checking sequence generation approach given in [13] where first a
digraph G′ = (V ′, E′) is obtained by augmenting the given digraph G = (V,E),
representing an FSM as follows:

Let the labels ᾱ′
1, . . . , ᾱ

′
q of walks P̄1, . . . , P̄q form an α′–set A. Then, from

the elements of A, a set of transfer sequences, called T–set, is formed as a set

152 J. Chen et al

of labels of subpaths R̄1, . . . , R̄p of walks P̄1, . . . , P̄q, such that each element
T̄i of T–set is label(R̄i) where {R̄i : i = 1, 2, . . . , p} = {(vk

j , δ(vk
j , D̄f(j,k)x̄

k
j),

D̄f(j,k)/λ(vk
j , D̄f(j,k))T̄ k

j : 1 ≤ k ≤ q and 1 ≤ j ≤ mk}. Thus, the starting state
of R̄i is recognized in some ᾱ′

k because D̄f(j,k) is applied to the starting state
of R̄i and the ending state of R̄i is recognized in some ᾱ′

k because the ending
state of R̄i is δ(vk

j , D̄f(j,k)x̄
k
j) to which D̄f(j+1,k) is applied. The set of walks

P̄1, . . . , P̄q and the set of subpaths R̄1, . . . , R̄p are included in G′ as edges in
Eα′ ⊂ E′ and in ET ⊂ E′, respectively, in order to facilitate the recognition of
vertices in the label Q̄ of the solution P̄ . Moreover, a transition test for each
edge of G is induced in G′ as edges in EC ⊂ E′ in order to verify every transition
of M in label(P̄) = Q̄. Furthermore, a set of edges from E are included in G′ as
edges in E′′ ⊂ E′ to increase the connectivity of the vertices in G′.

Formally, G′ = (V ′, E′) is obtained from G = (V,E) as follows:
V ′ = V ∪U ′ where U ′ = {v′

i : for every vi ∈ V } and E′ = Eα′ ∪EC ∪ET ∪E′′,
Eα′ = {((starting state of P̄k), (ending state of P̄k)′, ᾱ′

k) : 1 ≤ k ≤ q},
EC = {(v′

i, vj , x/y) : (vi, vj , x/y) ∈ E},
ET = {((starting state of R̄i), (ending state of R̄i)′, T̄i) : 1 ≤ i ≤ p},
E′′ is a subset of {(v′

i, v
′
j , x/y) : (vi, vj , x/y) ∈ E} such that G′′ = (U ′, E′′) has

no tour and G′ is strongly connected.
Once G′ is formed, a minimal symmetric augmentation G∗ of the graph in-

duced by the edges in Eα′ ∪EC , that may be produced by adding edges from E′,
is found. If G∗, with its isolated vertices removed, is connected, G∗ has an Euler
tour. Otherwise, a heuristic is applied to make G∗ connected and an Euler tour is
formed. This Euler tour Γ̄ of G∗ contains all edges in Eα′∪EC . Let τ be a transi-
tion with ending state s1 which is represented by an edge e = (v′

i, v1, x/y) ∈ EC

in Γ̄ . Let P̄ be a walk of G′ that is formed by ending Γ̄ with edge e. Then, the
input portion of Q̄ = label(P̄)D̄1/λ(s1, D̄1) is a checking sequence of M that
starts at v1, in accordance with Theorem 1.

3 Producing Checking Sequences

This section explains how, given an α′–set A, we can produce a checking sequence
without considering some of the edges in EC which represent test segments for
a subset L of E. Thus, L is a set of edges which stand for transitions whose
transition tests are redundant and can be eliminated. In this paper, we use pre-
fixes of distinguishing sequences wherever it applies, and we use empty transfer
sequences in the formation of α′-sequences. In the following, we first define L,
and then explain the algorithm to generate the checking sequence.

3.1 Transition Test Exemption

Similar to showing an edge being verified as given in Definition 1, in order to
show a sequence of edges being verified we first introduce the notion of a sequence
of edges being traced.

Eliminating Redundant Tests in a Checking Sequence 153

Definition 2. Let ρ̄ = e1e2 . . . eh be a sequence of edges in G, where em =
(vim

, vim+1 , xm/ym) for 1 ≤ m ≤ h. ρ̄ is traced in Q̄= label(P̄) of a walk P̄
in G if there exists a subpath (n1, nh+1, x

′
1x

′
2 . . . x′

h/y′
1y

′
2 . . . y′

h) in P̄ such that
n1 is recognized as vi1 , nh+1 is recognized as vih+1 , and xm/ym = x′

m/y′
m for

1 ≤ m ≤ h.

Lemma 1. Let ρ̄ = e1e2 . . . eh (h ≥ 1) be a sequence of edges in G, where
em = (vim

, vim+1 , xm/ym) for 1 ≤ m ≤ h, and Q̄ = label(P̄) be the label of a
walk P̄ in G. Assume that ρ̄ is traced in Q̄. Further assume that e1, e2, . . . , eh−1

(all the edges in ρ̄ except the last one) are all verified in Q̄. Then, eh is also
verified in Q̄.

Proof. The proof is by induction on h. When h = 1 the lemma holds trivially,
since ρ̄ has only one edge, hence Definition 1 applies.

For the induction step, since e1 is verified in Q̄, there must exist a sub-
path P̄1 = (nj , nk, x′

1/y′
1) in P̄ where nj is recognized as vi1 , nk is recognized

as vi2 , and x′
1/y′

1 = x1/y1. Since ρ̄ is traced Q̄, there must exist a subpath
P̄2 = (nq, ns, x

′′
1x′′

2 . . . x′′
h/y′′

1 y′′
2 . . . y′′

h) in P̄ where nq is recognized as vi1 , ns is
recognized as vih+1 , and x′′

m/y′′
m = xm/ym for 1 ≤ m ≤ h. Let us divide the path

P̄2 into two as P̄21 = (nq, ni, x1/y1) and P̄22 = (ni, ns, x2x3 . . . xh/y2y3 . . . yh).
According to Definition 1, the paths P̄1 and P̄21 recognize ni as vi2 . Then, the
existence of P̄22 in P̄ implies that ρ̄′ = e2e3 . . . eh is traced in Q̄. This concludes
the proof since the length of ρ̄′ is h−1, ρ̄′ is traced in Q̄ and em (for 2 ≤ m < h)
is verified in Q̄. ��

Lemma 1 suggests that if there is a sequence of edges which is traced in the
label Q̄ of a path, then Q̄ already includes what it takes to verify the last edge
in the sequence, provided that all the other edges in the sequence are verified in
Q̄. In fact, inclusion of α′–sequences in the checking sequences guarantee that
there are some sequences of edges which are traced.

For each si ∈ S, there exists an α′-sequence in the α′-set that can d-recognize
the final state of the walk from si with label D̄i/λ(si, D̄i), as the subsequence
D̄i/λ(si, D̄i) is followed by D̄j for some 1 ≤ j ≤ n. This is due to the fact
that we use empty transfer sequences between the applications of D̄i and D̄j in
α′–sequences. Formally, we have the following result.

Lemma 2. Let A be an α′–set, and Q̄ = label(P̄) be the label of a walk P̄ in G.
If Q̄ includes all the α′–sequences in A, then for all si ∈ S, ρ̄i = ej1ej2 . . . ej|Di|

,
where label(ρ̄i) = Di/λ(si,Di), ρ̄i is traced in Q̄.

Proof. Note that ρ̄i corresponds to the application of D̄i at state si. Consider the
occurrence of D̄i/λ(si, D̄i) in Q̄ which is immediately followed by an occurrence
of D̄j/λ(sj , D̄j), for some 1 ≤ j ≤ n, which is guaranteed since all α′–sequences
are included in Q̄. initial(ρ̄i) will be recognized as state si. Since there exists
an application of some D̄j after D̄i, final(ρ̄i) will be recognized as state sj =
δ(si, D̄i). ��

154 J. Chen et al

Lemma 3. Let A be an α′–set, and Q̄ = label(P̄) be the label of a walk P̄ in
G such that Q̄ includes all the α′–sequences in A. Let ρ̄i = ej1ej2 . . . ej|Di|

, be
a sequence of edges where label(ρ̄i) = Di/λ(si,Di) for some state si ∈ S. If all
the edges ej1ej2 . . . ej|Di|−1 are verified in Q̄, then ej|Di|

is also verified in Q̄.

Proof. The result follows from Lemma 1 and Lemma 2. ��
Suppose Figure 2 shows a subgraph of G where D̄1 = D̄2 = x1x2x2. Suppose

also that Q̄ contains α′-sequences with

– x1/y1 x2/y2 x2/y3 D̄3/λ(s3, D̄3) and
– x1/y4 x2/y3 x2/y2 D̄4/λ(s4, D̄4)

as subsequences. Then using the above lemma, we know that

– if edges (n1, n3, x1/y1), (n3, n4, x2/y2) are verified in Q̄, then (n4, n3, x2/y3)
is verified in Q̄;

– if edges (n2, n4, x1/y4), (n4, n3, x2/y3) are verified in Q̄, then (n3, n4, x2/y2)
is verified in Q̄.

Of course, we cannot draw conclusion in this case that if edges (n1, n3, x1/y1)
and (n2, n4, x1/y4) are verified in Q̄, then (n3, n4, x2/y2) and (n4, n3, x2/y3) are
verified in Q̄.

The following procedure shows a possible way to calculate a set of edges that
can be excluded from the transition tests.

Let PS = {ρ̄i | ∀si ∈ S, ρ̄i is a sequence of edges such that label(ρ̄i) =
D̄i/λ(si, D̄i) }. For any ρ̄ ∈ PS , the last edge of ρ̄, denoted as last(ρ̄), is verified
in Q̄ provided that all other edges in ρ̄ are verified in Q̄ as proposed by Lemma 3.

Let L0 = {e | e = last(ρ̄), ρ̄ ∈ PS}. Obviously, we want to have as many
edges in L0 as possible to be excluded from being considered for transition test.

First note that, for an α′–sequence ᾱ′
k with starting state si, if we do not

test any of the incoming transitions of si, then ᾱ′
k will not be included in the

n3

n4

n1

n2

x1/y1

x2/y2

x2/y3

x1/y4

Fig. 2. An example to illustrate the edges that can be excluded from the transition

tests

Eliminating Redundant Tests in a Checking Sequence 155

generated checking sequence, since each α′–sequence is used to test the end
state of a transition. Similarly, since we want to generate a checking sequence
that starts from s1, the initial state of M , at least one incoming transition of s1

must be tested, so that the tour generated passes over v1. Therefore let L1 be
a maximal subset of L0 such that, indegreeL1(vi) < indegreeE(vi) for each vi

corresponding to a state si which is s1 or a starting state of an α′–sequence.
Further note that according to Lemma 1, the test for a transition can be

exempted only if some other transitions are tested. Therefore, we need to make
sure that there is no cyclic dependency between the transitions that are exempted
from transition tests. The following algorithm can be used for this purpose:

Construct a digraph GS = (VS , ES) where VS contains one node for each
e ∈ L1. (v1, v2) ∈ ES if and only if v1 �= v2, and for some ρ̄ ∈ PS , v2 corresponds
to e2 = last(ρ̄), and v1 corresponds to some e which appears in ρ̄. Now, if GS is
cyclic, remove the minimal number of nodes from GS so that it becomes acyclic.
For each removed node, also remove its corresponding edge in L1. This is an
instance of Feedback Vertex Set problem [18], which is NP–complete. However
certain heuristic approaches exist for this problem [19,20].

The remaining edges in L1 then represent transitions for which we do not
need a transition test. We use L below to denote this set of edges. Since there
can be at most n edges in L0, there can be at most n transition tests that can
be removed from the checking sequence.

3.2 Checking Sequence Construction

Now using L, we can improve on the algorithm in [13] for the checking sequence
generation, by reducing the set of edges that must be included in the checking
sequence. This is summarized below. Recall that we use prefixes of a distin-
guishing sequence and empty transfer sequences. The digraph G′ = (V ′, E′) is
obtained from G = (V,E) as follows

– V ′ = V ∪U ′ where U ′ = {v′
i : for every vi ∈ V }, and E′ = Eα′∪EC∪ET ∪E′′,

– Eα′ = {((starting state of P̄k), (ending state of P̄k)′, ᾱ′
k) : 1 ≤ k ≤ q},

– EC = {(v′
i, vj , x/y) : (vi, vj , x/y) ∈ E},

– ET = {(vi, (δ(vi, D̄i))′, D̄i/λ(vi, D̄i)): for every vi ∈ V s.t. there exists an
edge in EC ending at vi},

– E′′ is a subset of {(v′
i, v

′
j , x/y) : (vi, vj , x/y) ∈ E} such that G′′ = (U ′, E′′)

has no tour and, excluding isolated nodes in G′, G′ is strongly connected.

E′′ can be constructed similarly as discussed in [14]. However, we obtain an
additional issue in the proposed algorithm; since we are using empty transfer
sequences in the α′-sequences, such a set E′′ might not exist. Where this is the
case it is necessary to use non-empty transfer sequences, along the lines of [14,13].
It is straightforward both to extend the approach given in this paper to the case
where non-empty transfer sequences are used and to show how a set of transfer
sequences can be chosen in order to ensure the existence of E′′.

Theorem 2. Let E′
C be defined as E′

C = {(v′
i, vj , x/y) : (vi, vj , x/y) ∈ E − L}.

Let Γ̄ be a tour of G′ that contains all edges in Eα′ ∪ E′
C which is found in

156 J. Chen et al

the same manner as in [13]. Let τ be a transition with ending state s1 which is
represented by an edge e = (v′

i, v1, x/y) ∈ E′
C in Γ̄ . Let P̄ be a walk of G′ that is

formed by ending Γ̄ with edge e, and Q̄ = label(P̄)D̄1/λ(s1, D̄1). Then the input
portion of Q̄ is a checking sequence of M .

Proof. All edges in E − L are verified in Q̄ = label(P̄)D̄1/λ(s1, D̄1). According
to Lemma 3 and the way L is constructed, if all edges in E − L are verified in
Q̄, then all edges in L are verified in Q̄. Thus, all edges of G are verified in Q̄,
and by Theorem 1, the input portion of Q̄ is a checking sequence of M . ��

3.3 Application

Let us consider FSM M0 given in Figure 1. A distinguishing sequence for M0 is
D̄ = aba. The shortest prefixes of D̄ that are sufficient to distinguish each state
are: D̄1 = aba, D̄2 = aba, D̄3 = ab, D̄4 = ab, and D̄5 = ab. Using these D̄i’s, the
α′–set for M0 is {ᾱ′

1}, where ᾱ′
1, the label of P̄1 = (v3, v1, ᾱ

′
1), is

D̄3D̄5D̄1D̄2D̄4D̄5/λ(v3, D̄3D̄5D̄1D̄2D̄4D̄5)

The set L0 consists of the edges corresponding to the last transition of D̄i

when applied at si, 1 ≤ i ≤ 5, hence L0 = {(v1, v2, a/0), (v3, v4, a/1), (v4, v5, b/0),
(v1, v1, b/1)}. The starting state of the only α′–sequence is s3 and we have at
least one incoming edge of v3 (e.g. (v5, v3, b/1)) which is not included in L0.
Similarly, we have at least one incoming edge of v1 (e.g. (v2, v1, b/1)) which is
not in L0. Therefore L1 = L0. The graph GS for L1 can shown to be acyclic,
hence we also have L = L1.

ET = {T̄1, T̄2, T̄3, T̄4, T̄5} where T̄i = D̄i/λ(si, D̄i). The graph G′ = (V ′, E′)
is given in Figure 3.

v1 v2 v3 v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

a/0
a/0 b/1

a/1

T̄ 1

T̄2 T̄3

T̄ 4

T̄5

ᾱ′
1

b/
1

a/0

b/1

a
/
0

a
/
1

b/
0

a/0 b/0

a
/
1

b/1

Fig. 3. G′ = (V ′, E′) for M0. The nodes in V and U ′ are at the bottom, and at the

top respectively. The dashed lines are the edges in ET , and the dotted lines are the

edges in E′′. The edges in Eα′ ∪ EC are given in solid lines. The bold solid lines are

the edges in Eα′ ∪ E′
C , and the remaining solid lines are the edges in L

Eliminating Redundant Tests in a Checking Sequence 157

A tour Γ̄ over G′ that contains all the edges in Eα′ ∪ E′
C is

(v1, v
′
2, T̄1), (v′

2, v
′
5, a/0), (v′

5, v
′
3, b/1), (v′

3, v
′
4, a/1), (v′

4, v4, a/0), (v4, v
′
5, T̄4),

(v′
5, v

′
3, b/1), (v′

3, v5, b/0), (v5, v
′
1, T̄5), (v′

1, v
′
2, a/0), (v′

2, v1, b/1), (v1, v
′
2, T̄1),

(v′
2, v5, a/0), (v5, v

′
1, T̄5), (v′

1, v
′
2, a/0), (v′

2, v
′
5, a/0), (v′

5, v3, b/1), (v3, v
′
1, ᾱ

′
1),

(v′
1, v

′
2, a/0), (v′

2, v
′
5, a/0), (v′

5, v1, a/1)

Note that Γ̄ already starts at v1. Hence when we consider the the walk P̄
corresponding to Γ̄ given above, the input portion of Q̄ = label(P̄)D̄1/λ(s1, D̄1)
forms a checking sequence of length 44, which is a shorter checking sequence
than the one given in [13], which was reported as 64.

4 Conclusion

We have shown that, when α′–sequences are used in constructing a checking se-
quence, some transitions tests can be identified as redundant. Such tests are then
eliminated by the optimization algorithm used to construct a shorter checking
sequence, and hence a further reduction is obtained in the length of a resulting
checking sequence.

The approach proposed in this paper starts with a given set of α′–sequences
where empty transfer sequences are used after the application of each distin-
guishing sequence or its prefix at a state. We believe that selecting α′–sequences
judiciously will result in further reductions in the length of a checking sequence.
A recent study by Hierons and Ural [21] show how α′–sequences can be chosen so
that their use minimizes the sum of the lengths of the subsequences to be com-
bined in checking sequence generation. The related checking sequence generation
algorithm then produces the set of connecting transitions during the optimiza-
tion phase. Our proposed approach can also be incorporated to the method given
in [21].

Acknowledgment

This work was supported in part by “Natural Sciences and Engineering Research
Council of Canada under grant RGPIN 976”, “Leverhulme Trust grant number
F/00275/D, Testing State Based Systems”, and “Engineering and Physical Sci-
ences Research Council grant number GR/R43150, Formal Methods and Testing
(FORTEST)”.

References

1. Tanenbaum, A.S.: Computer Networks. 3rd edition edn. Prentice Hall International
Editions, Prentice Hall (1996)

2. Pomeranz, I., Reddy, S.M.: Test generation for multiple state–table faults in finite–
state machines. IEEE Transactions on Computers 46 (1997) 783–794

158 J. Chen et al

3. Hierons, R.M., Harman, M.: Testing conformance to a quasi–non–determinstic
stream X–machine. Formal Aspects of Computing 12 (2000) 423–442

4. Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Springer–Verlag (1998)

5. Luo, G., Das, A., v. Bochmann, G.: Generating tests for control portion of SDL
specifications. In: Proceedings of Protocol Test Systems VI, Elsevier (North-
Holland) (1994) 51–66

6. Tan, Q.M., Petrenko, A., v. Bochmann, G.: Modeling basic lotos by fsms for
conformance testing. In: IFIP Protocol Specification, Testing, and Verification
XV. (1995) 137–152

7. Ural, H., Saleh, K., Williams, A.: Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications 23
(2000) 609–627

8. v. Bochmann, G., Petrenko, A., Bellal, O., Maguiraga, S.: Automating the process
of test derivation from SDL specifications. In: SDL Forum’97, Paris, France (1997)

9. International Telecommunications Union Geneva, Switzerland: Recommendation
Z.500 Framework on formal methods in conformance testing. (1997)

10. Moore, E.P.: Gedanken-experiments. In Shannon, C., McCarthy, J., eds.: Au-
tomata Studies. Princeton University Press (1956)

11. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19 (1970) 551–558

12. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey (1964) 95–110

13. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51 (2002) 1111–1117

14. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46 (1997) 93–99

15. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84 (1996) 1089–1123

16. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43 (1994) 306–320

17. Kohavi, I., Kohavi, Z.: Variable-length distinguishing sequences and their applica-
tion to the design of fault–detection experiments. IEEE Transactions on Computers
(1968) 792–795

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

19. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.: Approximation algorithms for
the vertex feedback set problem with applications to constraint satisfaction and
bayesian inference. In: Proceedings of Fifth ACM-SIAM Symposium on Discrete
Algorithms. (1994) 344–354

20. Fujito, T.: A note on approximation of the vertex cover and feedback vertex set
problems. Information Processing Letters 59 (1996) 59–63

21. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. (submitted)

	Introduction
	Preliminaries
	Finite State Machines
	Directed Graphs
	Recognizing States and Verifying Edges
	Defining α'--Sequences
	Checking Sequence Construction: An Existing Approach

	Producing Checking Sequences
	Transition Test Exemption
	Checking Sequence Construction
	Application

	Conclusion

