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Abstract. A wireless Ad-hoc network is expected to be made up of
energy aware entities (nodes) interested in their own perceived perfor-
mance. An important problem in such a scenario is to provide incentives
for collaboration among the participating entities. Forwarding packets
of other nodes is an example of activity that requires such a collabora-
tion. However, it may not be in interest of a node to always forward the
requesting packets. At the same time, not forwarding any packet may
adversly affect the network functioning. Assuming that the nodes are ra-
tional, i.e., their actions are strictly determined by their self-interest, we
view the problem in framework of non-cooperative game theory and pro-
vide a simple punishing mechanism considering end-to-end performance
objectives of the nodes. We also provide a distributed implementation
of the proposed mechanism. This implementation has a small computa-
tional and storage complexity hence is suitable for the scenario under
consideration.

Keywords: Game theory, Stochastic approximation algorithm.

1 Introduction

In order to maintain connectivity in an Ad-hoc network, mobile terminals should
not only spend their resources (battery power) to send their own packets, but
also for forwarding packets of other mobiles. Since Ad-hoc networks do not have
a centralized base-station that coordinates between them, an important question
that has been addressed is to know whether we may indeed expect mobiles to
collaborate in such forwarding. If mobiles behave selfishly, they might not be
interested in spending their precious transmission power in forwarding of other
mobile’s traffic. A natural framework to study this problem is noncooperative
game theory. As already observed in many papers that consider noncooperative
behavior in Ad-hoc networks, if we restrict to simplistic policies in which each
mobile determines a fixed probability of forwarding a packet, then this gives rise
to the most “aggressive” equilibrium in which no one forwards packets, see e.g.
[3—Corollary 1], [4], thus preventing the system to behave as a connected network.
The phenomenon of aggressive equilibrium that severely affects performance has
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also been reported in other noncooperative problems in networking, see e.g. [1]
for a flow control context (in which the aggressive equilibrium corresponds to all
users sending at their maximum rate).

In order to avoid very aggressive equilibria, we propose strategies based on
threats of punishments for misbehaving aggressive mobiles, which is in the spirit
of a well established design approach for promoting cooperation in Ad-hoc net-
works, carried on in many previous works [3, 7]. In all these references, the well
known “TIT-FOR-TAT” (TFT) strategy was proposed. This is a strategy in
which when a misbehaving node is detected then the reaction of other mobiles
is to stop completely forwarding packets during some time; it thus prescribes a
threat for very “aggressive” punishment, resulting in an enforcement of a fully
cooperative equilibrium in which all mobiles forward all packets they receive (see
e.g. [3-Corollary 2]). The authors of [6] also propose use of a variant of TFT in
a similar context.

In this work we consider a less agressive punishment policy. We simply as-
sume that if the fraction ¢’ of packets forwarded by a mobile is less than the
fraction ¢ forwarded by other mobiles, then this will result in a decrease of the
forwarding probability of the other mobiles to the value ¢’. We shall show that
this will indeed lead to non-aggressive equilibria, yet not necessarily to complete
cooperation. The reasons for adopting this milder punishment strategy are the
following:

1. There has been criticism in the game-theoretical community on the use of
aggressive punishments. For example, threats for aggressive punishments
have been argued not to be credible threats when the punishing agent may
itself loose at the punishing phase. This motivated equilibria based on more
credible punishments known as subgame perfect equilibria [5].

2. An individual that adopts an “partially-cooperative” behavior (i.e. forwards
packets with probability 0 < ¢ < 1) need not be considered as an “aggres-
sive” individual, and thus the punishment needs not be “aggressive” either;
it is fair to respond to such a partially-cooperative behavior with a partially-
cooperative reaction, which gives rise to our mild punishment scheme.

3. The TFT policy would lead to complete cooperation at equilibrium. How-
ever, our milder punishment seems to us more descriptive of actual behavior
in the society in which we do not obtain full cooperation at equilibrium (for
example in the behavior of drivers on the road, in the rate of criminality etc.)
It may indeed be expected that some degree of non-cooperative behavior by
a small number of persons could result in larger and larger portions of the
society to react by adopting such a behavior.

As already mentioned, incentive for cooperation in Ad-hoc networks have
been studied in several papers, see [3, 4,6, 7]. Almost all previous papers however
only considered utilities related to successful transmission of a mobile’s packet to
its neighbor. In practice, however, multihop routes may be required for a packet
to reach its destination, so the utility corresponding to successful transmission
depends on the forwarding behavior of all mobiles along the path. The goal of
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our paper is therefore to study the forwarding taking into account the multihop
topological characteristics of the path.

Most close to our work is the paper [3] which considers a model similar to ours
(introduced in Section 2 below). [3] provides sufficient condition on the network
topology under which each node employing the “aggressive” TFT punishment
strategy results in a Nash equilibrium. In the present paper, we show that a less
aggressive punishment mechanism can also lead to a Nash equilibrium which
has a desirable feature that it is less resource consuming in the sense that a
node need not accept all the forwarding request. We also provide some results
describing the structure of the Nash equilibrium thus obtained (Section 5). We
then provide a distributed algorithm which can be used by the nodes to compute
their equlibrium strategies and enforce the punishment mechanism using only
local information (Section 6). The algorithm is implemented using the MATLAB
suite and some numerical results are presented (Section 7). Scetion 8 concludes
the paper.

2 The Model

Consider an Ad-hoc network described by a directed graph G = (N, V). Along
with that network, we consider a set of source-destination pairs O and a given
routing between each source s and its corresponding destination d, of the form
7w(s,d) = (s,n1,n3,...,nk,d), where k = k(s,d) is the number of intermediate
hops and n; = n;(s,d) is the jth intermediate node on path 7(s, d). We assume
that mobile j forwards packets (independently from the source of the packet)
with a fixed probabilty ;. Let v be the vector of forwarding probabilities of all
mobiles. We assume however that each source s forwards its own packets with
probability one. For a given path 7(s,d), the probability that a transmitted

packet reaches its destination is thus: p(s,d; ) = H?S{d) ~v(n;(s,d)).

If i belongs to a path 7(s,d) we write ¢ € 7(s,d). For a given path 7(s,d)
of the form (s,n1,na,...,nk, d) and a given mobile n; € (s, d), define the set
of intermediate nodes before n; to be the set S(s,d;n;) = (n1,...,nj—1). The
probability that some node i € 7 (s, d) receives a packet originating from s with
d as its destination is then given by p(s, d;i,v) = Hjes(s’d;i) v(4)-

Note that p(s,d;d,y) = p(s,d;7v), the probability that node d receives a
packet originating from source s and having d as its destination.

Define O(i) to be all the paths in which a mobile ¢ is an intermediate node.
Let the rate at which source s creates packets for destination d be given by some
constant Agq. Then the rate at which packets arrive at node ¢ in order to be
forwarded there is given by &(7) = >_ (s ayeo() AsdP(s, d5 i,7).

Let E; be the total energy needed for forwarding a packet (which includes
the energy for its reception and its transmission). Then the utility of mobile i
that we consider is

Ui(y) = Z Ainfi(p(i,n57)) + Z Anigi(p(n,i57)) — aB&i(v), (1)

n:(i,n)€0 n:(n,i)€O
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where f; and g; are utility functions that depend on the success probabilities
associated with node 7 as a source and as a destination respectively and a is some
multiplicative constant. We assume that f;(-) and g;(-) are nondecreasing concave
in their arguments. The objective of mobile ¢ is to choose v; that maximizes
Ui (7). We remark here that similar utility function is also considered in [3] with
the difference that node’s utility does not include its reward as a destination,
i.e., they assume that ¢;(-) = 0.

Definition: For any choices of strategy ~ for all mobiles, define (v,,7~%) to be
the strategy obtained when only player i deviates from ; to ~i and other mobiles
maintain their strategies fized.

In a noncooperative framework, the solution concept of the optimization
problem faced by all players is the following:

Definition: A Nash equilibrium, is some strategy set v* for all mobiles such that
for each mobile 7, B

Ui(y") = max Ui (v, (") 7).
We call argmax,ygUi(%{,Z*i) the set of optimal responses of player ¢ against
other mobiles policy y~¢ (it may be an empty set or have several elements).

In our setting, it is easy to see that for each mobile i and each fixed strategy
~~% for other players, the best response of mobile i is 7; = 0 (unless O(i) = () in
which case, the best response is the whole interval [0, 1]). Thus the only possible
equilibrium is that of 7; = 0 for all ¢. To overcome this problem, we consider the
following “punishing mechanism”. in order to incite mobiles to cooperate.

Definition: Consider a given set of policies v = (v,7,7,...). If some mobile
deviates and uses some ' < 7y, we define the punishing policy x(v',7) as the
policy in which all mobiles decrease their forwarding probability to ~'.

When this punishing mechanism is enforced, then the best strategy of a
mobile ¢ when all other mobiles use strategy v is 4 that achieves

J(y) = max Ui(v') (2)

where v = (v',7,7/,....).

Definition: If some v* achicves the minimum in (2) we call the vector v* =
(v*,v*, 7", ...) the equilibrium strategy (for the forwarding problem) under threats.
J(7) is called the corresponding value.

Remark: Note that v* = 0 is still a Nash equilibrium, a fact that will be used
frequently in Section 5 where we obtain some structural properties of equilibrium
strategy under threats.

3 Utilities for Symmetrical Topologies

By symmetrical topology we mean the case where f;, g; and ; are independent
of i. This implies that for any source-destination pair (s, d), there are two nodes



490 E. Altman et al.

s’ and d’ such that the source-destination pairs (s',s) and (d,d’) are identical
o (s,d) in the sense that there view of the network is similar to that of (s, d).
This implies that, under the punishment mechanism where all nodes have same
forwarding probability, we have p(s,d;~) = p(s’, s;y). Thus we can replace the
rewards f; + g; by another function that we denote f(-).

Consider v where all entries are the same and equal to v, except for that of
mobile i. For a path 7(s, d) containing n intermediate nodes, we have p(s, d;~) =
4™. Also, if a mobile 7 is n + 1 hops away from a source, n = 1,2,3, ..., and is
on the path from this source to a destination (but is not itself the destination),
then p(s, d;i,v) = v™. We call the source an “effective source” for forwarding to
mobile 7 since it potentially has packets to be forwarded by mobile i. Let h(n)
be the rate at which all effective sources located n + 1 hops away from mobile
i transmit packets that should use mobile i for forwarding (we assume that h
is the same for all nodes). Let A(®) denote the rate at which a source s creates
packets to all destinations that are n + 1 hops away from it. Then we have

Ui(7) =Z AW (") —aBp Y h(n)y™. (3)
n=1 n=1

The equilibrium strategy under threat is then the value of v that maximizes the
r.h.s.

Remark: If we denote by A(z) = >.°7 | 2" A" the generating function of A(")
and H(z) := Y .2, 2"h(n) the generating function of h. Then max, (/1(7) -

aEfH(’y)> is the value of the problem with threats in the case that f is the

identity function.

4 Examples

In this section we present, by means of two examples, the effect of imposing the
proposed punishment mechanism.

4.1 An Asymmetric Network

Consider the network shown in Figure 1. For this case nodes 1 and 4 have no
traffic to forward. Note also that if we assume that g3(-) = 0 in Equation 1 then
node 3 has no incentive even to invoke the punishment mechanism for node 2.
This will result in no cooperation in the network. Assume for the time being
that fa(z) = g3(z) = x, i.e., fo and g3 are identity functions. In this case it is
seen that the utility functions for nodes 2 and 3 are, assuming A3 = Aoy = 1,
Us(v2,7v3) = 73 — aEpy2 and Us(y2,7v3) = 72 — aEyys. When we impose the
punishment mechanism, it turns out that the equilibrium strategy for the two
nodes is to always cooperate, i.e., 79 = 73. This is to be compared with the TFT
strategy of [3] which would imply 7o = 3 = 0.
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Fig. 1. An asymmetric network

4.2 A Symmetric Network

We consider here equally spaced mobile nodes on a circle and assume that each
node ¢ is a source of traffic to a node located L hops to the right, i.e. to the node
i+ L.

Let the rate of traffic generated from a source be A. For this case, h(n) =
Mp<r—1y- Also, A = Mp—ry, for some A. It follows from Equation 3 that
the utility function for mobile i is U; (y) = Af(v2 ™) —aEp A Zﬁ;g ~™. For f(-) an
identity function, we see that U;(7) =X [yE ™1 — aEp (272 + 4273+ ..+ + 1)].
Note that if L =2 and a = ELf, the utility function is independent of « hence in
this case the equilibrium strategy is any value of forwarding probability. Also,
if aEy > 1, the equilibrium strategy is v = 0. We will have more to say on
this in th next section where we study the structure of equilibrium strategy for
symmetric network.

5 Structure of Equilibrium Strategy

In this section we undertake the study of dependence of the equilibrium strategy
on the various system parameters. We restrict ourselves to the case of symmetric
topologies. Symmetry of the problem along with the imposed punishment mech-
anism implies that the equilibrium strategy (the forwarding probabilities) will
be same for all the nodes in the network. We denote this probability by v*.

This is to be understood as follows. When a node i computes its equilibrium
strategy -y;, it must consider the fact that the other nodes will respond with a
punishing mechanism to its strategy. Thus, the problem faced by node ¢ is not
that of optimizing Equation 3 with respect to «; considering v~ fixed (which will
lead to the trivial solution of v; = 0 as seen before). Owing to the punishment
mechanism, node i should apriori assume that all the forwarding probabilities
are same, i.e., Y° = (v;,...,7:). This makes the problem faced by node i a
single variable optimization problem.

Though f(-) is concave in its argument (p(7y), which is a polynomial in ),
f(p()) may not be concave as a function of . For example, in the case of circular
network above, f(p(y)) = p(y) = ¥X~1, convex in 7. Thus obtaining a direct
structural result for v* seems to be hard for general f(-) and p(-). We can get
some interesting insights using some approximations; this is the aim of present
section. In particular, we study how v* depends on the system paramaters, L,
f(), (), a and Ejy.

It is clear from the expression of the utility function that +* will depend on
a and E; only through their product. Let us introduce the notation K := aFEy.
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It is also clear from the definition of utility function (U;(y)) that if either
K or L is large, the equilibrium strategy of the game is at smaller ~y. It is also
intuitive that for small values of K (or L), a node may forward most of the
requesting packets. In the following we characterize what value of K or L can
be considered as large or small. Clearly this characterization will depend on f(+)
and the network, i.e., p(-) and H(-).

5.1 Dependence of v* on K

The case of General Network and f(:). Consider the line starting at v = 0
with a value f(0) and having a slope f/(0)p’(1) for 0 < v < 1. This slope is an
upper bound on the slope of f(p(y) in the stability region since p(-) is convex and
f(+) is concave. Thus the line constructed above is an upper bound to f(p(7y))
for 0 < v < 1. Consider also the line starting from f(0) and having a slope
F/(1)p'(0) (this slope is clearly a lower bound on the slope of f(p(v)). It is thus
true that f lies in between these two lines. Thus we can get conditions under
which the equilibrium strategy is less than (or equal to) the maximal possible
value, i.e., the extreme point v = 1.

Proposition 1. If the network topology and f(-) satisfy f'(0)p'(1) < Kh(1),
then the equilibrium strategy is v* = 0.

Proof: Follows from the construction of bounds above.

Remark: Above result shows that if K, i.e., the energy spent in reception and

transmission is larger than a threshold (say K* = %), it is best for the
nodes to not forward packets at all even under the punishing mechanism. This is
to be compared with the fact proved below that v = 0 is always a local maximum
for L > 2 for the circular network. Thus the above result gives a criteria when

v = 0 is also a global maximum.

The Case of the Circular Network with f(p(v)) = p(v). For the case of
circular network and f(-) being an identity function, we can say more about the
dependence of v* on K. It is seen that for this particular case, U;(0) = —K.
For the optimum, the derivative of U;(v) with respect to v should be zero,
i.e.,
L-1,_,

- - L—1)4" 3+ +1.
e ( ) S

So, if K > L — 1, the above requirement is not possible for v < 1. Thus the only
solution is either v = 0 or v = 1. But, as will be seen in later section, v = 0
is always a local maximum. Thus, in absence of any other critical point (where
U!(v) = 0), the global maximum is at v* = 0. Thus, for K > L — 1, we have that
~v* = 0. This is, as argued before, reasonable, as for K large, a node will spend
more energy to forward packets, hence will not do it for any packet it gets for
forwarding; we thus obtain the expression for energy requirement that can be
characterised as large, i.e., K* := L — 1.

In getting the above bound on K we assumed that f(z) = x. The above

reasoning is however true for any f(-) whenever f'(0) < £ for the circular
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networks, i.e., if f/(-) > £=L since f() is concave. Thus, for a fixed set of K and
L, we get that v* = 0 for any f(-) that has slope < %
other point, we again see that if K > % then v* = 0.

Looking at it from

5.2 Dependence of v* on L

In the above we saw that in the case of a symmetric network and for a fixed L,
if K > K*, we get that v* = 0. The intuition for this result is that a node will
have to spend more energy in forwarding the packets as compared to the reward
it gets by its own packet forwarded by other nodes. However, if we fix K and
increase the hop-length L, it is intuitive that v* will eventually start decreasing
as a function of L. This is established in [9)].

6 Algorithm for Computing the Equilibrium Strategy in
a Distributed Manner

It is interesting to design distributed algorithms which can be used by the mobiles
to compute the equilibrium strategy and simultaneously enforce the proposed
punishment mechanism. The obvious desirable features of such an algorithm are
that it should be decentralised, distributed scalability and should be able to
adapt to changes in network.

We propose such an algorithm in this section. We present it, for ease of
notation, for the case of symmetric network. Assume for the moment that f(-)
is the identity function. In this case each node has to solve the equation (recall
the notation of Section 3)

U'(y)=A(y) - KH'(v) =0, (4)

where the primes denote the derivatives with respect to . In general this equa-
tion will be nontrivial to solve directly. For the case of more general network,
one needs to compute the derivative of the utility function of Equation 1, the
rest of procedure that follows is similar.

Note that in the above expression we first assume that the forwarding prob-
abilities of all the nodes in the network are same (say ) and then compute the
derivative with respect to this common ~. This is because in the node must take
the effect of punishment mechanism into account while computing its own opti-
mal forwarding probability, i.e., a node should assume that all the other nodes
will use the same forwarding probability that it computes.

Thus, solving Equation 4 is reduced to a single variable optimization prob-
lem. Since the actual problem from which we get Equation 4 is a maximization
problem, a node does a gradient ascent to compute its optimal forwarding prob-
ability. Thus, in its n** computation, a node i uses the iteration

W = am)(A (") - KH'(3(")), (5)
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where a(n) is a sequence of positive numbers satisfying the usual conditions
imposed on the learning parameters in stochastic approximation algorithms [8],
ie.,
Za(n) = oo and Za(n)2 < 00.
n n

The relation to stochastic approximation algorithm here is seen as follows:
the network topology can be randomly changing with time owing to node fail-
ures/mobility et cetera. Thus a node needs to appropriately modify the functions
A(+) and H(-) based on its most recent view of the network (this dependence of
A(-) and H(-) on n is suppressed in the above expression).

It is known by the o.d.e. approach to stochastic approximation algorithm
that the above algorithm will asymptotically track the o.d.e. [8]:

Fi(t) = A'(vi(t)) — KH'(7:(t)), (6)

and will converge to one of the stable critical points of o.d.e. of Equation 6.
It is easily seen that a local maximum of the utility function forms a stable
critical point of Equation 6 while any local minimum forms an unstable critical
point. Thus the above algorithm inherently makes the system converge to a local
maximum and avoids a local minimum.

However, it is possible that different nodes settle to different local maxima (we
have already seen that there can be multiple maxima). The imposed punishment
mechanism then ensures that all the nodes settle to the one which corresponds
to the lowest values of . This is a desirable feature of the algorithm that it
inherently avoids multiple simultaneous operating points. An implementation of
the punishment mechanism is described next.

6.1 Distributed Implementation of the Punishment Mechanism

An implementation of punishment mechanism proposed in Section 2 requires,
in general, a node to know about the misbehaving node in the network, if any.
Here we propose a simple implementation of the punishment mechanism which
requires only local information for its implementation.

Let N (i) be the set of neighbours of node i. Every node computes its for-
warding policy in a distrubuted manner using the above mentioned stochastic
approximation algorithm. However, as soon as a neighboring node is detected to
misbehave by a node, the node computes its forwarding policy as follows:

Vi = min{%’jg}\ifl(li) Yit (7)
where 7; and 4; represents, respectively, the forwarding policy adopted by node
i and the estimate of node j’s forwarding probability available to node i. v}
represents the new policy selected by node i. Note here that ; is still computed
using iteration of Equation 5. We are also assuming here that a node can differ-
entiate between a misbehaving neighbouring node and the failure/mobility of a
neighbouring node.
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This punishment propagates in the network until all the nodes in the net-
work settle to the common forwarding probability (corresponding to that of the
misbehaving node). In particular, the effect of this punishment will be seen by
the misbehaving ndoe as a degradation in its own utility. Suppose now that the
misbehaving node, say n;, decides to change to a cooperative behavior: at that
point, it will detect and punish its neighbors because of the propagation of the
punishment that induced its neighbouring nodes to decrease their forwarding
policy. Thus, the intial punishment introduces a negative loop and the forward-
ing policy of every node of the network collapses to the forwarding policy selected
by the misbehaving node. Since now every node in the network has same value of
forwarding probability, none of the nodes will be able to increase its forwarding
probability even if none of the node is misbehaving now.

An example of this phenomenon can be seen from the network of Figure 1.
Assume that v = 3 = 7 and now node 2 reduces 7 to a smaller value +'.
Owing to the punishment mechanism, node 3 will respond with ~3 = ~/. This
will result in a reduced utility for node 2 which would then like to increase 7.
But, since y3 = 7/, the punishing mechanism would imply that v = v/ as well.
This lock-in problem is avoided by the solution proposed below.

We modify our algorithm using timers to account for the above mentioned
effect. Details are given in [9].

7 Numerical Results

In this section we present numerical results from a MATLAB implementation of
the proposed algorithm. We consider a circular network with N mobiles where
each mobile is a source of a traffic stream having as its destination the mobile
that is L hops away. The numerical results are meant to validate the structural
results obtained in the paper and also to indicate the possibility of practical
implementation of the proposed punishment scheme. The particular choice of
function f(-) are motivated by need to facilitate a better visual presentation.
The plots of this section show the value of v* computed in the n** iteration
of the algorithm vs. the iteration number. The sequence of learning parameters
is chosen to be a(n) = m (we used various other options also, the results
were similar). In the simulations we assume that each node has a lower bound
Ymin > 0 on the value of forwarding probability. We take v;,:, = 0.01 in results
reported here.

7.1 Structural Results

We now validate against simulations the structural results obtained in the paper.
Figure 2 depicts the distributed computation of v* using the proposed algorithm.
We use f(z) = In(100z + 1) and L = 3. The various curves are obtained by
varying the value of K. We see that 7* is indeed a dereasing function of K.
Similar observation is made from Figure 3 where we fix K = 0.2 and f(z) =
(r + 0.0005)°2 and vary L. It is seen that v* decreases with increasing L and
for large value of L(= 11), v* = Ynin.
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Fig. 2. L = 3 and K is varied. The func- Fig. 3. K = 0.2 and L is varied. The func-
tion f(x) = In(100x 4 1) tion f(x) = (z + 0.0005)°-2

7.2 Results with Punishment Mechanism Invoked

Figure 4 gives the evolution of the estimated of v* of various nodes for the circular
network with N =6, L = 3, K = 2 and f(x) = In(100z + 1). Node 1 starts
misbehaving at iteration number 100 and continues to misbehave till iteration
number 130; during this period node 1 keeps a forwarding probability of 0.1. Note
that during this period all the other nodes decrease their individual forwarding
probability to the value used by node 1, i.e., 0.1. The jumps in the forwarding
probabilities during these period are because of the implementation of timer for
punishment in the individual nodes (detailed in previous section). The timer
value was set to 10 simulation slots. Soon after node 1 stops misbehaving, the
forwarding probabilities of all the other nodes increase to settle to the optimal
value 0.48. Note here that the convergence of the gradient algorithm is fast
enough and that the nodes restart the learning sequence a(n) after each timer
expiry. Also shown in the figure is that node 2 misbehaves in the period between
iteration 600 and 650.

7.3 The Asymmetric Network of Figure 1

We now consider the case of asymmetric network of Figure 1. We assume that
f2(x) = g3(z) = /(x) and that gz(-) = 0. In this case it is seen that the
utility functions for nodes 2 and 3 are, assuming A3 = Aoy = 1, Us(y2,73) =
V(13) — aEfye and Us(72,73) = v/(72) — aEyvs. On imposing the ponushment
mechanism for this case it is seen that, the optimal value of forwarding proba-

bilities of node 2 and node 3 are v, = 3 = \/22—15 Figure 5 gives the evolution
f

of the estimates of v, and 73 for this network for different values of K = aFy.
The minimum value of 7; was taken to be 0.1 and the maximum value was 0.9.
Note from the figure that for K = 1, the equilibrium strategy of % as obtained
above is achieved. For large (resp. small) value of K, the equilibrium strategy is

at Ymaz (T€SP. Yimin)-
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N=6, L=3, K=2, f(x)=In(x+0.01)-In(0.01)
T T T

Node 1 misbehaving Node 2 misbehaying
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Fig.4. N =6, K =2, L = 3, f(z) =
In(100z + 1). Nodes 1, 2 misbehave in
nonoverlapping intervals

Fig. 5. Evolution of the estimates of 72
and 3 for the network of Figure 1

8 Conclusion

We use the framework of non-cooperative game theory to provide incentives for
collaboration in the case of wireless Ad-hoc networks. The incentive proposed in
the paper is based on a simple punishment mechanism that can be implemented
in a completely distributed manner with very small computational complexity.
The advantage of the proposed strategy is that it results in a less “aggressive”
equilibrium in the sense that it does not result in a degenerate scenario where
a node either forwards all the requested traffic or does not forward any of the
request.

Some structural results relating the equlibrium strategy to the system pa-
rameters were also presented and were verified using an implementation of the
punishing mechanism.
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