Dynamic and Fine-Grained Authentication and
Authorization Architecture for Grid Computing

Hyunjoon Jung, Hyuck Han, Hyungsoo Jung, and Heon Y. Yeom

School of Computer Science and Engineering, Seoul National University,
Seoul, 151-744, South Korea
{hjjung, hhyuck, jhs, yeom}@dcslab.snu.ac.kr

Abstract. The Globus Toolkit makes it very easy and comfortable for
grid users to develop and deploy grid service. As for the security mecha-
nism, however, only static authentication and coarse-grained authoriza-
tion mechanism is provided in current Globus Toolkit. In this paper
we address the limitations of current security mechanism in the Globus
Toolkit and propose a new architecture which provides fine-grained and
flexible security mechanism. To implement this without modifying ex-
isting components, we make use of the Aspect-Oriented Programming
technique.

1 Introduction

With the advent of grid computing, Globus Toolkit[8] have been playing an
important role for making grid systems. Thanks to the support of various com-
ponents in the Globus Toolkit, many grid developers have been able to develop
their own grid systems very conveniently. When the grid service administrator -
in this paper, we would like to divide grid users into grid service administra-
tor and general grid users for explaining more precisely - make their own grid
systems, the grid computing environment usually consists of many service nodes
which are managed correlatively. Namely, many nodes can be separated logically
into specific domains which can be under the same policy, so called virtual or-
ganization [I1]. The grid service administrator should manage various kinds of
services according to the policy of each domain.

Although it is possible in current Globus Toolkit, there are some limitations.
If a new user wants to use some grid service, the grid service administrator must
change the policy of the service which might be currently running. However, to
change the security policy of a specific grid service, it is required to stop the grid
services related to the altered security policy. After the policy change, the grid
services are redeployed according to the new security policy.

Besides, current security scheme of Globus Toolkit supports only service level
authorization. In other words, method level authorization is not supported. If
the grid service administrator wants to configure different authorization level for
each method, he should make extra grid service under different security policy.
Consequently, current security configuration scheme in Globus Toolkit is static
and coarse-grained, which results in extra jobs for grid service administrator.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 179-[I86 2005.
(© Springer-Verlag Berlin Heidelberg 2005

180 H. Jung et al.

Grid Service Container

EquipmentControl Service —|

public interface Equip mentControl
{
public int setParam (Object paramKey, Object paramValue);
public Object getParam (Object paramKey);
public int applyParam ();
public Record [] getControlHistory ();
public Status getStatus ();
b

Fig. 1. Motivation Example

To mitigate these limitations, we present a dynamic authentication and au-
thorization scheme. Our scheme also allows fine-grained method level security
scheme.In designing and implementating this scheme, we have used Aspect-
Oriented Programming [9,[10,[14] so that existing Globus Toolkit is left unmod-
ified.

The rest of this paper is organized as follows. We discuss the motivation of
this project in detail in section 2 and introduce our design goals and strategies
in section 3. And then we propose new architecture in section 4. In section 5, we
explain how to implement our scheme with Aspect-Oriented Programming. The
section 6 addresses issues of grid security related to our work and future works.
In the end, we conclude our paper with summary and contribution.

2 Motivation

In this section, we describe the limitations of security scheme in current Globus
Toolkit. And then our focuses of this paper will be introduced.

In grid computing, there are many users who try to access some services.
And there are also many kinds of grid services being executed by user’s request.
To manage users and services securely, grid computing have adopted security
policies for each user and service. In practice, Globus Toolkit ensures the security
of grid service and user with exploiting grid security infrastructure (GSI) [12].

With the advent of web-based architecture, grid service also have evolved
into conforming architecture[5]. However, current Globus Toolkit supports only
static management of security policy in web-based architecture. In other words,
the security policy of specific service would be set before deploying. Besides,
while that service is running, security policy cannot be reconfigured and applied
instantly to that service. Owing to this kinds of limitations, grid service ad-
ministrator should first stop the service, reconfigure specific security policy and
then redeploy that service. Since this reconfiguration and redeplyment should be
done for each small change, the burden on the part of the administrator could
be huge.

Dynamic and Fine-Grained Authentication and Authorization Architecture 181

In addition to the static management of security policy, security level in
authorization can be also considered as a limitation. When the grid service
administrator deploys some services with current Globus Toolkit, the level of
authorization is the service instance. Figure 1 describes the motivating exam-
ple. When EquipmentControl service is deployed, grid administrators configure
security policies for each user level. If EquipmentControl grid service would be
subject to the policy of tablel, it is impossible to provide service to each user’s
permission using existing Globus Toolkit.

Table 1. The list of user’s permission of each service method

user group defined security policy
experiment, operator permit all methods
other reseacher permit getXXX() methods
guest permit getControlHistory() method

In other words, current Globus Toolkit cannot support method-level autho-
rization scheme. Since only service-level authorization scheme is provided, the
grid service administrator ought to make each service separately according to
each user’s request and authorization policy. Consequently, it leads to the inef-
ficient utilization of resources.

3 Design Goals and Strategy

As stated in the previous section, our goal in this paper is to ameliorate the
current Globus Toolkit as follows:

- To provide dynamic authentication and authorization

- To support fine-grained authorization

- To implement this scheme as an extra module without modifying the Globus
Toolkit.

To provide dynamic authentication and authorization means that grid service
administrators would be able to reconfigure the security policy of running ser-
vices without suspending them. Supporting fine-grained authorization presents
enhancements of security granularity and removes the redundancy of grid ser-
vices. For instance, if some grid administrator would like to change security
policy of some grid services, they would be troubled like the example of the
section2. It is an inefficient utilization of resources due to multiple security poli-
cies. Therefore, method level authorization with dynamicity would be a better
alternative to solve this kind of problem. In order to support these two secu-
rity schemes in the Globus Toolkit, it would be easy to implement if we modify
security part in Globus Toolkit.

In that case, however, Globus Toolkit should be recompiled and then it causes
undesirable extra needs. For these challenges of implementation, we adopt gra-
cious programming skill that is Aspect-Oriented Programming. It ensures that

182 H. Jung et al.

any existing program does not need to be modified. By exploiting this way,
we would present more compact and modularized architecture. Aspect-oriented
programming would be explained down to the minutest details in the implemen-
tation part.

4 Proposed Architecture

To achieve our goals, we propose the architecture composed of three components
in accordance with each role as shown in figure2.

4.1 FSecurity Manager

Originally, security mechanism of Globus Toolkit is mainly divided into authen-
tication part which verifies someone and authorization part which checks the
right of a user in grid service. And the policy of the authentication and au-
thorization can be set only ahead of the deployment of grid service. Hence, to
achieve the dynamicity of security scheme, FSecurity Manager intercepts the
request of authentication and authorization in current Globus Toolkit when the
request is invoked. And then, that request is processed in F'Security Manager
with Security Configuration Data.

For instance, we assume that the grid administrator expects 10 users would
use his grid service A before deployment. But, after some time, 5 new users
would want to use the grid service A. In that case, the grid administrator must
stop the grid service A to modify new security policy for the 5 new users. And
after applying new security policy, grid service will be executed again correctly.
However, this kind of process would be changed with FSecurity Manager as
follows. Above all, the most troubled part which do not check the security policy
at running time is changed with intercepting request of FSecurity Manager.

Globus Toolkit Container. Security Configuration Data Repository

Deployed

service

grid application

Authentication
Component

Authorization
Component

File-based
repository

Database
repository

Serialized data
repository

DynamicSecurity
Descriptor

DynamicSecurity
Descriptor

DynamicSecurity
Descriptor

< fgridmap >

< fgridmap >

< fgridmap >

FSecurity
Manager Client

Security Configuration Data Controller

FSecurity
Manager Client

Fig. 2. Proposed architecture

Dynamic and Fine-Grained Authentication and Authorization Architecture 183

And then FSecurity Manager reads the security policy at that time, applied
that scheme to authentication and authorization instantly. Therefore, FSecurity
Manager supports the reconfigurable security processing.

Moreover, F'Security Manager provides a fine-grained authorization process-
ing with adding the element which describes the relation between user and grid
service method. In current Globus Toolkit, before the service deployment, grid
service administrator used to configure the gridmap file which describes simply
those who can use specific grid service. However, that mechanism is changed
into supporting the dynamic management and the fine-grained description with
FSecurity Manager. In the former case, grid service administrator can reconfig-
ure gridmap file even though service is executing. There is no need to stop the
service and redeploy it later. And as for the latter, the description which some
user have rights to use some grid service method is added into new type gridmap
file, which is called fgridmap.

4.2 Security Configuration Data Controller

Security Configuration Data Controller is an extra module in order to manage
security policy information. Security policy information can be stored as a XML
file, serialized file or database records. To support this kind of function, this con-
troller is responsible for connecting, storing, and loading specific security policy
information with a data repository.In real grid computing, grid administrator
can install this part in a machine which Globus Toolkit is executed or another
machine which may be dedicated to data repository.

4.3 FSecurity Manager Client

This component supports that grid service administrator controls and manages
the security policy of grid service from a remote or local node. Client program can
be installed in a ordinary computing node or mobile node such as PDA, mobile
phone. Also the grid service administrator can manage a FSecurity Manager via
web interface.

5 Implementation

As we mentioned above, our implementation without the change of Globus Took-
its is done with a refined programming skill which is Aspect-Oriented Program-
ming. In this part, we would describe the reason why we have adopt Aspect-
Oriented Programming and how it was applied. And then the operation flow of
the proposed architecture would be explained with a structural perspective.

5.1 Aspect-Oriented Programming and Our Architecture

Aspect-Oriented Programming (AOP) complements Object-Oriented program-
ming by allowing the developer to dynamically modify the static OO model
to create a system that can grow to meet new requirements. The reason why
we use Aspect-Oriented Programming technology is to separate the core part of

184 H. Jung et al.

program from the extra part of program because there is some kinds of different
properties between the former and the latter. For instance, many of us have
developed simple web applications that use servlets as the entry point, where a
servlet accepts the values of a HTML form, binds them to an object, passes them
into the application to be processed, and then returns a response to the user.The
core part of the servlet may be very simple, with only the minimum amount of
code required to fulfill the use-case being modeled. The code, however, often
inflates to three to four times its original size by the time extra requirements
such as exception handling, security, and logging have been implemented.

Therefore, AOP allows us to dynamically modify our static model to include
the code required to satisfy the extra requirements without having to modify
the original static model - in fact, we don’t even need to have the original code.
Better still, we can often keep this additional code in a single location rather
than having to scatter it across the existing model, as we would have to if we
were using OO on its own.

The Globus Toolkit 3 is also implemented with Object-Oriented program-
ming. Therefore, the supplement of Globus Toolkit should conform to the Ob-
ject Oriented model. However, Globus Toolkit is so complicated and complex.
And the security part of Globus Toolkit are involved with almost area. On the
ground of that, this case would be modeled as the cross-cutting concerns which
are named in aspect-oriented programming.

Whenever grid users try to access some grid services, security component
must be activated and then perform the process of authentication and autho-
rization. Hence, the invocation point of security component in Globus Toolkit
should be defined as point-cut in aspect-oriented programming which is the term
given to the point of execution in the application at which cross-cutting concern
needs to be applied. And then to perform some predefined action, code will be
implemented as an advice which is the additional code that someone wants to
apply to the existing model. As a result, aspect-oriented programming is ex-
ploited to instantiate proposed architecture using point-cut and advice which is
named in that field. Besides, it is possible to implement the proposed architec-
ture without any modification of Globus Toolkit thanks to this programming
technique.

5.2 Operational Flow

In this section, we describe the implementation details of the proposed architec-
ture. The implementation was done using AspectJ[13].

Let us first look at the left side of figure3. It shows how the authentication is
processed in our architecture. Originally, initSecurityDescriptor and getSecuri-
tyDescriptor are performed in current Globus Toolkit. However, there’s only one
time check which means getSecurityDescriptor does not check SecurityDescrip-
tor at running time. Hence, we defined two point-cuts at the invocation time
of initSecurityDescriptor and getSecutityDescriptor. In this way, any invocation
of SecurityDescriptor can be substituted DynamicSecurityConfig which always

Dynamic and Fine-Grained Authentication and Authorization Architecture 185

SecurityConfig AuthorizationHandler ServiceAuthorization

InitSecurityDescriptor authorize
— authorize
intcut "
getSecurityDescriptor pol r;u pointcut ld
> |
— DynamicSecurityConfig . : o
F dMap,

Fig. 3. The operational flow of authentication part(left) and authorization part(right)

checks the SecurityDescriptor and applies up-to-the-minute information to the
specific grid service at running time.

In authorization, FlexibleGridMap Authorization (fgridmap authorization)
functions as the core. Whenever AuthorizationHandler is invocated, the point-
cut leads the execution flow to fgridmap authorization. And then operation
would be continued with the authorization which conform the defined policy
between the user and grid service method. The style of fgridmap is illustrated
in the right side of figure3. This authorization part can be performed using the
latest authorization information for the specific grid service no matter when
the update has been made. As was done in authentication part, the processing
of authorization is performed at running time with the help of aspect-oriented
programming.

To explain the whole flow of operation with authentication and authorization,
let us assume that there are grid user 1, grid user 2, and grid user 3. Also, there
is a grid service S1 which can provide methodA, methodB, and methodC. If
user 1 who is set to use methodA and methodB, the request for methodC by
user 1 shuld be denied by the authorization part. Even if new grid user 4 who
is not set on DynamicSecurityDescriptor at deployment time, grid user 4 may
be added according to the decision of grid service administrator. And then the
request by grid user 4 in compliance with the DynamicSecurityDescriptor and
the FlexibleGridmap may be accepted or denied.

To sum up, with the proposed architecture, grid service administrator can
configure the authorization scheme up to method level. Moreover, grid service
administrator can reconfigure the authentication and authorization policy at ser-
vice running time. It enhances the limitation of Globus Toolkit by using aspect-
oriented programming.

6 Conclusion

In this paper, we present a dynamic and fine-grained security architecture for grid
service administrators who use Globus Toolkit. With this component, the extra
needs of many grid administrators who frequently have to reconfigure security
policies and redeploy grid services can be alleviated very simply.

To make current Globus Toolkit more efficient, we have studied the limitation
of security part of current Globus Toolkit and then proposed some refinements
of this research. The proposed architecture has been implemented using Aspect-

186 H. Jung et al.

Oriented Programming technique without modyfing Globus Toolkit. Therefore,
in real grid computing, grid service administrator can use this component very
conveniently with existing Globus Toolkit.

References

1. Von Welchr, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Sam Meder and Frank Siebenlist “X.509 Proxy Certificates
for Dynamic Delegation”, In Annual PKI R&D workshop, April,2004

2. Von Welch, Frank Siebenlis, Ian Foster, John Bresnaban, Karl Czajkowski, Jarek
Gawor, Carl Kesselman, Sam Meder, Laura Pearlman and Steven Tuecke , “Secu-
rity for Grid Services”, In IEEE Symposium on High Performance and Distributed
Computing ,June,2003.

3. Tan Foster, Carl Kesselman, Cene Tsudik and Steven Tuecke “A Security Architec-
ture for Computational Grids”, In 5th ACM Conference on Computer and Com-
munication Security, 1998.

4. “Security in a Web Services World: A Proposed Architecture and Roadmap”, A
Joint White Paper from IBM Corporation and Microsoft Corporation, April 2002.

5. Tuecke S. and Czajkowski K. and Foster I. and Frey J and Graham S. and Kessel-
man C. and Maguire T. and Sandholm T. and Snelling D. and Vanderbilt P “Open
Grid Services Infrastructure(OGSI) Version 1.0”, Global Grid Forum, June 2003.

6. Nataraj Nagaratnam, Philippe Janson, John Dayka, Anthony Nadalin, Frank
Siebenlist, Von Welch, Tan Foster and Steve Tuecke “The Security Architecture
for Open Grid Services”, July 2002.

7. Foster, 1., Kesselman, C., Nick, J. and Tuecke, S. “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration ” , Globus
Project, 2002. http://www.globus.org/research/papers/ogsa.pdf.

8. Jarek Gawor, Sam Meder, Frank Siebenlist and Von Welch, “GT3 Grid Security
Infrastructure Overview”, In ,Globus Project 2003.

9. the Aspect] Team, “The AspectJTM Programming Guide”, Copyright (c) 1998-
2001 Xerox Corporation, 2002-2003 Palo Alto Research Center, Incorporated. All
rights reserved.

10. Markus Voelter, “Aspectj-Oriented Programming in Java” in the January 2000
issue of the Java Report

11. Foster, I. and Kesselman, C. and Tuecke, S., “The anatomy of the grid : Enabling
scalable virtual organizations”, Intl. J. Supercomputer Applications, 2001

12. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke., “Security Architecture for Compu-
tational Grids”, 5th ACM Conference on Computer and Communications Security
Conference, pp. 83-92, 1998.

13. Palo Alto Research Center, “The AspectJ(TM) Programming Guide”,
http://eclipse.org/aspectj/

14. Tzilla Elrad ,Robert E. Filman and Atef Bader “Aspect-oriented programming;:
Introduction”, In Communications of the ACM , 2001

	Introduction
	Motivation
	Design Goals and Strategy
	Proposed Architecture
	FSecurity Manager
	Security Configuration Data Controller
	FSecurity Manager Client

	Implementation
	Aspect-Oriented Programming and Our Architecture
	Operational Flow

	Conclusion

