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Abstract. In this paper we present a novel GA-ICA method which con-
verges to the optimum. The new method for blindly separating unobserv-
able independent component signals from their linear mixtures (Blind
Source Separation BSS), uses genetic algorithms (GA) to find the sepa-
ration matrices which minimize a cumulant based contrast function. The
paper also include a formal prove on the convergence of the proposed al-
gorithm using guiding operators, a new concept in the genetic algorithms
scenario. This approach is very useful in many fields such as biomedical
applications i.e. EEG which usually use a high number of input signals.
The Guiding GA (GGA) presented in this work converges to uniform
populations containing just one individual, the optimum.

1 Introduction

The starting point in the Independent Component Analysis (ICA) research can
be found in [1] where a principle of redundancy reduction as a coding strategy in
neurons was suggested, i.e. each neural unit was supposed to encode statistically
independent features over a set of inputs. But it was in the 90´s when Bell
and Sejnowski applied this theoretical concept to the blindly separation of the
mixed sources (BSS) using a well known stochastic gradient learning rule [2]
and originating a productive period of research in this area [3]. In this way ICA
algorithms have been applied successfully to several fields such as biomedicine,
speech, sonar and radar, signal processing, etc. and more recently also to time
series forecasting [4], i.e. using stock data.

In general, any abstract task to be accomplished can be viewed as a search
through a space of potential solutions and whenever we work with large spaces,
GAs are suitable artificial intelligence techniques for developing this optimization
[4]. Such search requires balancing two goals: exploiting the best solutions and
exploring the whole search space. In this work we prove how GA-ICA algorithms
converge to the optimum. They work efficiently in the search of the separation
matrix (i.e. EEG and scenarios with the BSS problem in higher dimension)
proving the convergence to the optimum. We organize the essay as follows. In
section 2 and 3 we give a brief overview of the basic ICA and GA theory. Then
we introduce a set of genetic operators in sections 3 and 4 and prove convergence.
Finally state some conclusions in section 6.
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2 ICA and Statistical Independence Criterion

We define ICA using a statistical latent variables model (Jutten & Herault, 1991).
Assuming the number of sources n is equal to the number of mixtures, the linear
model can be expressed, using vector-matrix notation and defining a time series
vector x = (x1, . . . , xn)T , s, s̃ and the matrix A = {aij} and B = {bij} as:

s̃ = Bx = BAs = Gs (1)

where we define G as the overall transfer matrix. The estimated original sources
will be, under some conditions included in Darmois-Skitovich theorem [5], a
permuted and scaled version of the original ones. The statistical independence
of a set of random variables can be described in terms of their joint and individual
probability distribution. This is equivalent to [6]:

Π =
∑

{λ,λ∗}
βλβ∗

λ∗Γλ,λ∗ |λ| + |λ∗| < λ̃ (2)

where the expression defines a summation of cross cumulants [6] and is used
as a fitness function in the GA. The latter function satisfies the definition of
a contrast function Ψ defined in [7] as can be seen in the following generalized
proposition given in [8].

Proposition 1. The criterion of statistical independence based on cumulants
defines a contrast function Ψ given by:

ψ(G) = Π − log|det(G)| − h(s) (3)

where h(s) is the entropy of the sources and G is the overall transfer matrix.
Prove: To prove this proposition see Appendix A in [8] and apply the multi-

linear property of the cumulants.

3 Genetic Algorithms: A Theoretical Background

Let C the set of all possible creatures in a given world and a function f : C → R+,
namely fitness function. Let Ξ : C → VC a bijection from the creature space onto
the free vector space over A�, where A = {a(i), 0 ≤ i ≤ a− 1} is the alphabet
which can be identified by V1 the free vector space over A. Then we can establish
VC = ⊗�

λ=1V1 and define the free vector space over populations VP = ⊗N
σ=1VC

with dimension L = � · N and aL elements. Finally let S ⊂ VP be the set of
probability distributions over PN, that is the state which identifies populations
with their probability value.

Definition 1. Let S ⊂ VP , n, k ∈ N and {Pc, Pm} a variation schedule. A Ge-
netic Algorithm is a product of stochastic matrices (mutation, selection, crossover,
etc..) act by matrix multiplication from the left:

Gn = Fn · Ck
Pn

c
· MPn

m
(4)
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where Fn is the selection operator, Ck
Pn

c
= C(K, Pc) is the simple crossover

operator and MPn
m

is the local mutation operator (see [6] and [10])

In order to improve the convergence speed of the algorithm we could include
another mechanisms such as elitist strategy (a further discussion about reduction
operators, can be found in [11]). Another possibility is:

4 Guided GAs

In order to include statistical information into the algorithm we define an hy-
brid statistical genetic operator as follows. The value of the probability to go
from individual pi to qi depends on contrast functions (i.e. based on cumulants)
as: P (ξn+1 = pi|ξn = qi) = 1

ℵ(Tn) exp
(
−Ψ(pi)+Ψ(qi)

Tn

)
; pi, qi ∈ C where ℵ(Tn)

is the normalization constant depending on iteration n; temperature follows a
variation decreasing schedule, that is Tn+1 < Tn converging to zero, and Ψ(qi)
is the value of the selected contrast function over the individual (an encoded
separation matrix). This sampling (Simulated Annealing -SA- law) is applied to
the population and offspring emerging from the canonical genetic procedure.

Proposition 2. The guiding operator can be described using its associated tran-
sition probability function (t.p.f.) by column stochastic matrices Mn

G, n ∈ N
acting on populations.

1. The components are determined as follows: Let p and q ∈ ℘N , then we have

〈q,Mn
Gp〉 =

N !
z0q!z1q! . . . zaL−1q!

aL−1∏

i=0

{P (i)}ziq; p, q ∈ PN (5)

where ziq is the number of occurrences of individual i on population q and
P (i) is the probability of producing individual i from population p given above.
The value of the guiding probability P (i) = P (i, Ψ) depends on the fitness

function used:1 P (i) =
zip exp

(
−Ψ(pi)+Ψ(qi)

Tn

)
∑aL−1

i=0
zip exp

(
−Ψ(pi)+Ψ(qi)

Tn

)

2. For every permutation π ∈ ΠN , we have πMn
G = Mn

G = Mn
Gπ.

3. Mn
G is an identity map on U in the optimum, that is 〈p,Mn

Gp〉 = 1; and
has strictly positive diagonals since 〈p,Mn

Gp〉 > 0 ∀p ∈ PN.
4. All the coefficients of a GA consisting of the product of stochastic matrices:

the simple crossover Ck
Pc

, the local multiple mutation Mn
Pm and the guiding

operator Mn
G for all n, k ∈ N are uniformly bounded away from 0.

1 The condition that must be satisfied the transition probability matrix P (i, f) is that
it must converge to a positive constant as n → ∞ (since we can always define a suit-
able normalization constant). The fitness function or selection method of individuals
used in it must be injective.
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Proof: (1) follows from the transition probability between states. (2) is obvi-
ous and (3) follows from [7] and checking how matrices act on populations. (4)
follows from the fact that Mn

Pm is fully positive acting on any stochastic ma-
trix S.

It can be viewed as a suitable fitness selection and as a certain Reduction Oper-
ator, since it preserves the best individuals into the next generation using a non
heuristic rule, unlike the majority of GAs used.

The convergence and strong and weak ergodicity of the proposed algorithm
can be proved using several ways. A MC modelling a CGA has been proved
to be strongly ergodic (hence weak ergodic, see [10]). So we have to focus our
attention on the transition probability matrix that emerges when we apply the
guiding operator. We can write the overall process as:

〈q,Gnp〉 =
∑

v∈℘N

〈q,Mn
Gv〉〈v,Cnp〉 (6)

where Cn is the stochastic matrix associated to the CGA and Mn
G is given by

equation 5.

Proposition 3. Weak Ergodicity
A MC with transition probability function associated to guiding operators that
converges to uniform populations (populations with the same individual) satisfies
weak ergodicity.

Prove: If we define a GGA on CGAs, the ergodicity properties depends on the
new defined operator since they satisfy them as we said before. To prove this
proposition we just have to check the convergence of the t.p.f. of the guiding
operator on uniform populations. If the following condition is satisfied:

〈u,Gnp〉 → 1 u ∈ U (7)

Then we can find a series of numbers which satisfies:
∞∑

n=1

min
n,p

(〈u,Gnp〉) = ∞ ≤
∞∑

n=1

min
q,p

∑

v∈℘N

min (〈v,Mn
Gp〉〈v,Cnq〉) (8)

which is equivalent to weak ergodicity [9].

Proposition 4. Strong Ergodicity
Let Mn

Pm
describe multiple local mutation, Ck

Pn
c

describe a model for crossover
and Fn describe the fitness selection. Let (Pn

m, Pn
c )n ∈ N be a variation schedule

and (φn)n∈N a fitness scaling sequence associated to Mn
G describing the guiding

operator according to this scaling. 2 Let Cn = Fn ·Mn
Pm

·Ck
Pn

c
represent the first

n steps of a CGA. In this situation,

2 A scaling sequence φn : (R+)N → (R+)N is a sequence of functions connected
with a injective fitness criterion f as fn(p) = φn(f(p)) p ∈ ℘N such that M∞

G =
limn→∞ Mn

G exist.
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v∞ = lim
n→∞Gnv0 = lim

n→∞(M∞
GC∞)nv0 (9)

exists and is independent of the choice of v0, the initial probability distribu-
tion. Furthermore, the coefficients 〈v∞, p〉 of the limit probability distribution
are strictly positive for every population p ∈ ℘N .

Prove: The demonstration of this proposition is rather obvious using the results
of Theorem 16 in [10] and the point 4 in Proposition 2. In order to obtain the
results of the latter theorem we only have to replace the canonical selection op-
erator Fn with our guiding selection operator Mn

G which has the same essential
properties.

Proposition 5. Convergence to the Optimum
Under the same conditions of propositions 3, 4 the GGA algorithm converges to
the optimum.

Prove: To reach this result, one has to prove that the probability to go from any
uniform population to the population containing only the optimum is equal to 1
when n → ∞:

lim
n→∞〈p∗,Gnu〉 = 1 (10)

since the GGA is an strongly ergodic MC hence any population tends to uniform
in time. If we check this expression we finally have the equation 10. In addition we
have to use point 3 in Proposition 2 to make sure the optimum is the convergence
point. Thus any guiding operator following a simulated annealing law converges
to the optimum uniform population in time.

5 Simulations

At the first step, we compare the previous canonical method for apply GAs to
ICA [12] with the GGA version for a reduced input space dimension (n = 3).
The Computer used in these simulations was a PC 2 GHz, 256 MB RAN in
the case of a low number of signals and the software used is an extension of
ICATOOLBOX2.0 in MatLab code, protected by the Spanish law N◦ CA-235/04.
We test these two algorithms for a set of independent signals plotted in figure 2(a)
using 50 randomly chosen mixing matrices (50 runs); i.e. using the mixing matrix:
B = {1.0000,−0.9500, 0.5700;−0.5800, 1.0000, 0.0900; 0.6300,−0.0100, 1.0000},
we get the signals shown in figure 2(b). We have chosen two super-gaussian
signals and one bimodal signal for the first attempt (ninps = 3). The order of the
statistics used is the same in both methods (cumulants of 4thorder)3 and the size

3 Based on section 2, we can define the fitness function approach for BSS as:

f(po) =
∑

i,j,...

||Cum(

stimes︷ ︸︸ ︷
yi, yj , . . .)|| ∀i, j, . . . ∈ [1, . . . , n] (11)

where po is the parameter vector (individual) containing the separation matrix and
|| . . . || denotes the absolute value.
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(a) Original signals (b) Mixed signals

Fig. 1. Set of independent series used in the comparison GA-GGA and a mixed case

Table 1. Mean and deviation of the parameters in the separation over 50 runs for

the cost function of 4th order by the GA-method, GGA method and the FASTICA

method. 1st row GA-ICA, 2nd row GGA-ICA and 3th row FATICA

param a11 a12 a13 a21 a22 a23 a31 a32 a33

mean
dev.(%)

-0.2562
≤ 5

0.1473
≤ 5

-0.1657
≤ 5

-0.0647
≤ 5

-0.1393
≤ 5

0.2475
≤ 5

-0.4910
≤ 5

0.0998
≤ 5

-0.0350
≤ 5

mean
dev.(%)

-0.1481
≤ 6.5

0.1647
≤ 6.5

-0.2564
≤ 6.5

0.1401
≤ 6.5

-0.2464
≤ 6.5

-0.0649
≤ 6.5

-0.1003
≤ 6.5

0.0345
≤ 6.5

-0.4914
≤ 6.5

mean
dev.(%)

0.0756
≤ 10

-0.1099
≤ 10

0.2271
≤ 10

-0.0715
≤ 10

0.1648
≤ 10

0.0659
≤ 10

0.0512
≤ 10

-0.0226
≤ 10

0.4435
≤ 10

of population was 100. In this way we can compare the search efficiency of both
methods. Later we will focus our attention with a third statistical algorithm for
ICA, the well-known FastICA [3]. This method uses the same level of information
in its contrast function (4th order) thus the comparison is significant.

Results obtained from simulations are conclusive. We find out how the num-
ber of iterations (CPU time) needed to reach convergence is higher using the
proposed method in [12]. This is due to blind search strategy used in the lat-
ter reference unlike the guided strategy proposed in this paper. We measure
convergence by means of the well-known methods: Crosstalk (between original
and recovered signals) and Normalized Round Mean Square Error (NRMSE).
The set of recovering signals using GGA method can be found in figure . In
the case of the three method comparison we observe how the efficiency of the
FastICA in low dimension is better than the genetic approaches (see figure 2
somehow the standard deviation in time and error measure in higher than the
genetic methods (see tables 1 and 2) since it suffers the local minima effect. As
is shown in the latter tables the genetic procedures are slower but finally reach
a better solution (the new proposed method is faster than the method in [12]).

2(b)



Fig. 2. Schematic representation and comparison of the 3 method

Table 2. Mean and deviation of the parameters in the separation over 50 runs for the

cost function of 4th order by the GA-method, GGA method and the FASTICA method

(cont)

Method param. Comp. Time(s) NRMSE Crosstalk(dB)

GA-ICA
mean

dev.(%)
10.21
≤ 2

1.5635−4

≤ 1
-34.709
≤ 1

GGA-ICA
mean

dev.(%)
3.3
≤ 2

1.5408−4

≤ 1
-37.7507

≤ 1

FastICA
mean

dev.(%)
1.64
≤ 5

1.6355−4

≤ 2
-29.663
≤ 4

Finally, we checked the performance of the proposed hybrid algorithm in a
high dimensional scenario [6]. The results for the crosstalk were conclusive: FAS-
TICA convergence rate decreases as dimension increases whereas GA approaches
work efficiently. Of course we used the number of starting points equal to the
number of individuals in the genetic generation.

6 Conclusions

A GGA-based BSS method has been developed to solve BSS problem from the
linear mixtures of independent sources. The proposed method obtain a good per-
formance overcoming the local minima problem over multidimensional domains.

(a) Schematic Representation of the
Separation System in ICA-GA

(b) Comparison for number of in-
puts equal to 3 GGA (red) ,GA
(light blue) and FastICA (blue).
Observe how GA methods obtain
the same level of recovery but the
time efficiency is quite different

Simulated Annealing Based-GA Using Injective Contrast Functions for BSS 591
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Extensive simulation results prove the ability of the proposed method. This is
particular useful in some medical applications where input space dimension in-
creases and in real time applications where reaching fast convergence rates is
the major objective. In this work we have focussed our attention to linear mix-
tures. The nonlinear problem can be interpreted as a piece-wise linear model
and is expected that results improve even more since the higher parameters to
encode the better results we obtain. GAs are the best strategies in high dimen-
sional domains so it would be interesting how these algorithms (non CGAs) face
the nonlinear ICA. The experimental work on this part is on the way. In the
theoretical section we have prove the convergence of the proposed algorithm to
the optimum unlike the ICA algorithms which usually suffer of local minima
and non-convergent cases. Any injective contrast function can be used to build
a guiding operator, as a elitist strategy i.e. the Simulated Annealing function
defined in section 4. The convergence is shown under little restrictive conditions
for the guiding operator: its effect must disappear in time like the simulated
annealing.
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