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Abstract. In this paper we assess rigid body co-registration in terms
of residual motion artifacts for the different correlation approaches used
in fMRI. We summarise, from a statistical perspective, the three main
approaches to parametric fMRI analysis and then present a new way
of visualising motion effects in correlation analysis. This technique can
be used both to select regions of relatively unambiguous activation and
to verify the results of analysis. We demonstrate the usefulness of this
visualisation technique on fMRI data sets suffering from motion corre-
lated artifacts. We use it in our assesment of rigid body co-registration
concluding that it is an acceptable basis for re-alignment, provided that
correlation is done using a measure which estimates variance from the
data at each voxel.

1 Introduction

Subject motion during the time course of functional activation studies has been
shown to cause spurious signals which can mimic “true” activation [1,2]. Mo-
tion correction using image registration software is therefore common practice
in functional imaging and many groups now routinely make use of rigid body
co-registration using software packages such as Automatic Image Registration
(AIR) [3,4,5]. However, depending on the details of the data capture, the as-
sumption of a rigid body may be inappropriate. In some cases slices of image
data may undergo different amounts of motion and in other cases the data may
suffer from motion blurring. These processes could leave residual motion artifacts
in the data which bias subsequent interpretation.

Previous workers have demonstrated the potential problems of motion in
fMRI analysis [1,2] using data sets with simulated movement. The estimation of
this effect shows the likely scale of this contribution to an fMRI signal. We have
found no paper which attempts to quantify directly the affect on the computed
correlation measures.

The objective of this work was to develop a technique to test whether rigid
body co-registration successfully removes motion effects to a statistically ac-
ceptable level. We first review the statistical characteristics of published anal-
ysis techniques in order to design a test for the effectiveness of rigid-body co-
registration which is applicable to the range of current approaches. We then
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go on to demonstrate the effects of motion and co-registration on the common
statistical correlation forms used for analysis.

2 fMRI Analysis Techniques

There have been many approaches to the analysis of functional NMR images pro-
posed in the literature. Considered from a statistical point of view these tech-
niques can be grouped as either non-parametric or parametric. It is generally
accepted that whilst non-parametric techniques are initially more robust, para-
metric techniques will ultimately have better discriminability once the analytical
models have been refined. Generally, parametric analysis can be decomposed into
two stages; the application of a voxel by voxel time dependent analysis, followed
by a regional analysis of clusters [6,7]. The first of these is designed as a signifi-
cance test, the hypothesis being that the data seen in the image can be accounted
for entirely by random noise fluctuations. The second is a significance test based
on the probability of observing particular sized regions failing the first test. This
process is well suited to removing isolated “fake” activations but doesn’t perform
well on larger connected regions such as those often presented by motion. Thus
it is the performance of the first test with which we are concerned.

The voxel based null hypothesis test is generally implemented as a correlation
measure between the image signal and a normalised wave-function which models
the activation paradigm. The details of this correlation measure vary in the
literature, but all successful measures have the same fundamental statistical
origins; some measure of correlation C is normalised by it’s expected variance
var(C) in order to produce a measure which can be treated like a ‘t test’ or
‘Z score’ [7]. As regards the selection of a wave-function, although the ability
to extract signal will be strongly dependent on having the correct functional
form and phase, the technique of error propagation can be used to show that
any normalised wave-function will produce a set of correlation measures with
an identical distribution for the null hypothesis. Thus we choose to work with a
square wave for simplicity.

Three measures, chosen to cover a set of statistically distinct possible ap-
proaches, were used for this investigation;

C1
j =

T∑
t=1

Itj .Wt

A simple correlation measure with no explicit (fixed) normalisation, where W
is a normalised correlation waveform (|W |2 = 1) and Ij is a mean subtracted
temporal data set at voxel j . This correlation measure can be converted into a
simple null hypothesis statistic by dividing by a pooled estimate of the standard
deviation on the measure

√
var(C) and will behave in the same way as any

measure which makes the basic assumption of constant uniform image noise,
including Fourier approaches. While we accept that such a simple measure is
unlikely to be used unmodified in serious fMRI analysis we have included it here
for completeness.
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C2
j =

∑T
t=1 Itj .Wt

1/(T − 1)
√∑T

t (Itj − Wt.C1
j )2

A measure with individual voxel variance estimation which we believe to be
statistically equivalent to that used in SPM [8], where the numerator is the
estimate of variation about the assumed model. This technique will behave in
the same way as any measure which estimates variance from the data, such as
‘t-tests’ and ‘z-scores’.

C3
j =

∑T
t=1 Itj .Wt√∑T

t I2
tj

A normalised correlation measure as used in STIMULATE [9]. This measure
is normalised between −1 and 1 but cannot be interpreted as a standard null
hypothesis statistic unless the numerator approaches that of C2

j , which will only
happen when the noise dominates the observed signal distribution (i.e. C1

j is
small).

3 Experiments

Experiments were performed on 6 healthy volunteers. Volunteers A,B and C
were scanned at rest and volunteers D, E and F performed a motor activation
paradigm (finger tapping) during scanning. Head movements were minimised
using foam padding and a velcro strap and a bite bar with a groove was used
to provide a reference to minimise out of plane movements. For each subject 18
dynamic acquisitions of 50×3mm contiguous transverse slices covering the whole
head using a T2*-weighted gradient echo sequence were acquired.

Our investigation involves the following steps:

– Calculate rigid body motion for genuine null hypothesis data (no
activation) for two groups of three subjects. One group performing the
motion stimulus paradigm and the others at rest. All data were registered to
a base volume for each volunteer using the Woods algorithm [3,4]. The main
automated image registration (AIR) parameters were set as follows: intensity
threshold = 275, initial sampling interval = 81, final sampling interval = 1
pixel, sample increment decrement ratio = 3, convergence criteria = 0.0005,
maximum number of iterations for each sampling density = 300, no spatial
smoothing was used, interpolation to standard voxel size was active.

– Compute simulated data from the motion vectors.
The motion parameters were used to interpolate a set of data from the
first volume with equivalent motion vectors to those estimated by the AIR
package.
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– Demonstrate the effects of motion on the correlation measures
used in real data.
As the effects of motion are expected to be proportional to local image
gradient, we plot correlation scores against this quantity. Here we define
image gradient Gj as follows;

dIx,y/dx = (I ′x+1 − I ′x−1)/2

dIx,y/dy = (I ′y+1 − I ′y−1)/2

Gj =
√
((dIj/dx)2 + (dIj/dy)2)

where x and y are image indices and I ′ is the first input image of the tempo-
ral sequence smoothed with a unit Gaussian kernel. The smoothing process
sets the scale for the range of applicability of the linear assumption and al-
lows the gradient information to be estimated from a single temporal slice.
Averaging of the temporal data set to produce a mean gradient would also
be possible and perhaps even preferable for very large motions, but was not
found necessary for this work.
For data without motion artifact, this plot is expected to show the correlation
score, distributed normally around zero correlation with variable density
along the image gradient axis. For this case a fixed threshold value will
have the same affect in terms of rejecting the null hypothesis for all values of
image gradient. Any variation from this distribution shows itself as increased
broadening or non-ideal structure perpendicular to the image gradient axis.

– Demonstrate that these effects are also visible in the simulated
data.
The simulated data, being effectively noise free, does not yield sensible vari-
ance estimates in the denominator terms of the standard correlation mea-
sures, C2 & C3. However, the individual estimates of the denominators are
expected to be quite constant across the dataset. As a consequence C1 is
used to analyse the simulated data as it is expected to behave in a very
similar fashion to the other two measures.

– Demonstrate that these effects are removed by rigid body co-
registration in the real data by repeating the analysis for motion
corrected data.

– Simulate the effect of isolated failures of co-registration by shifting
an image in each co-registered sequence.

4 Results and Discussion

The standard deviations on the estimated motions are shown in figure 1 for the
two groups of three subjects (A,B,C and D,E,F). For the group with no stimulus
these results are close to the expected accuracy of the AIR software and the
motion scatter plots, figure 2(a), show no unexpected structure or observable
correlation between edge contrast and the correlation score for any of the three
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Pitch Roll Yaw X Y Z

A 0.20 o 0.22 o 0.30 o 0.49 pixels 0.31 pixels 0.06 pixels
B 0.22 o 0.49 o 0.16 o 0.25 pixels 0.50 pixels 0.11 pixels
C 0.22 o 0.33 o 0.18 o 0.28 pixels 0.30 pixels 0.09 pixels
D 0.90 o 0.60 o 0.38 o 0.96 pixels 0.84 pixels 0.31 pixels
E 0.85 o 0.06 o 0.41 o 0.45 pixels 0.57 pixels 0.16 pixels
F 0.39 o 0.12 o 0.37 o 0.37 pixels 0.41 pixels 0.17 pixels

Fig. 1. Standard deviations on estimated movement for each subject calculated
using AIR

measures. In contrast subjects D, E & F show significant movement, figure 1,
and generate plots with distinct structure, figure 2(b). Notice the broadening
of the data in the y-dimension (correlation score) towards the end of the x-axis
where the image gradient is largest (at edges).
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Fig. 2. Correlation scores v edge contrast (G) plots. Correlation scores are
rows C1, C2, C3 from top to bottom

Applying motion vectors estimated using the AIR software to the genuine null
hypothesis data (no activation) gives the plots of figure 3(a). The distributions
we see in these plots are entirely consistent with rigid body motion plus random
noise. In contrast the plots of co-registered data, figure 3(b), show that this
correlation has been significantly reduced by the process of co-registration. C1

shows a gradual increasing instability (broadening) of the correlation score with
edge contrast when compared to C2 and C3. C3 is marginally less affected by
motion than the conventional null hypothesis statistic because the denominator
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term is increased by the variation in the image data induced by motion. While C3

may be adequate for visually identifying relative large measures, the lack of a
meaningful scaling makes this correlation score more difficult to interpret.
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Fig. 3. Correlation scores v edge contrast (G) plots for subjects D, E and F
(columns). Correlation scores are rows C1, C2, C3 from top to bottom (only C1

is shown in the left plot)

The majority of problems occur when motion artifacts mimic the effects of
signal by correlating with the stimulus response function (see figure 2(b)). No
motion correction procedure can be perfectly accurate and some residual errors
are to be expected. This can be observed after motion correction by calculating
the ratio of variances for the correlation measures for two ranges of image gradi-
ent, figure 4(a). The ratio of the variance is calculated between the first eighth
(corresponding to brain tissue) and second eighth (corresponding to the bound-
ary between brain tissues) of the dynamic range of image gradients (x-axis). The
accuracies of these ratios are of the order of 1%. Figure 4(a) shows that C1 in
particular is badly affected by the increased instability around edges.

When performing rigid body alignment with an iterative automated system
there is always a chance that the alignment algorithm will fail. When this hap-
pens (if it is not picked up by a validation process) it will generate isolated tem-
poral data points at each voxel which will reduce the overall correlation scores
for measures such as C2. We can illustrate this by offsetting the first image in
each sequence of data by two pixels and recomputing the variances for gradients
corresponding to tissue boundaries, figure 4(b). In general, any motion correction
technique, even a poor one, removing the majority of the motion from the data
set and leaving only residual behaviour which is uncorrelated with the stimulus
response curve, will not invalidate (statistically) the conclusions of any study us-
ing such a measure. Thus our results suggest that rigid body co-registration does
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Subject D E F

C1 1.27 1.21 1.13
C2 1.00 0.98 1.05
C3 1.01 1.03 1.04

(a) Intermediate
and low gradient
correlations

Subject D E F

C1 1.31 1.58 1.21
C2 0.96 0.99 0.93
C3 0.96 0.98 0.95

(b) Intermediate
gradient correla-
tions for offset
data

Fig. 4. Dimensionless measures of relative standard deviation
(
√

var(C1/8)/var(C0/8))

effectively remove false correlations caused by motion correlated to the stimulus
response.

5 Use of Motion Correlation Plots in fMRI Quality
Control

Figure 5(a) shows a motion correlation plot for data generated during analy-
sis (C2). Activations are present in this data at both high and low level image
gradient. In itself this would not be unduly worrying, but there is also a general
broadening of the underlying distribution for positive correlation values at high
gradient. On closer inspection this data set was found to have systematic shift
artifacts at the level of 0.5 pixels in almost half of the re-sliced data set due to
failure of the automatic co-registration software. The manually selected region
of relatively unambiguous activation is shown as a rectangle. The new analysis
technique allowed us not only to identify genuine activation, figure 5(b) but also
perform quality control on our software analysis chain.

6 Conclusions

We have analysed the affect of motion on fMRI analysis. Given the broad range
of approaches in the literature we have concentrated this analysis on the common
statistical foundations of the parametric methods, which are the use of correla-
tion measures. Our results are expected to be independent of the details of the
shape of the correlation stimulus and should generalise to all fMRI studies based
on assessing levels of significance from correlation scores.

We have constructed a method for visualising the effects of motion on fMRI
analysis. As the effects of motion are expected to be proportional to the lo-
cal image gradient, a scatter plot of correlation function versus image gradient
separates the effects of motion across the plot. This distribution is self scaling,
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(a) Correlation
score C2 v edge
contrast

(b) fMRI image with su-
perimposed activation

Fig. 5. Quality control of fMRI analysis showing the activation corresponding
to unambiguous correlations (data within manually selected box)

easily visually interpreted and can be used as a general tool to check the relative
accuracy of different motion correction procedures. Such a method could also
be used with non-normalised correlation measures (i.e. C1) in order to assess
the adequacy of particular co-registration procedures in the absence of ground
truth.

In this study we have used the new technique to visualise the effects of motion
in a typical fMRI study for three correlation approaches. The results indicate
that motion artifacts are manifest in motion based experiments. These effects are
significantly reduced after motion correction but still observable in simple cor-
relation analyses which assumed pooled variance. Finally, null hypothesis based
correlation methods which estimate the variance from the data at each voxel are
unaffected by motion provided that any resulting residual motion, is uncorrelated
with the stimulus. As we see no residual correlation with the stimulus response
curve following rigid body re-alignment, we consider the rigid body assumption
an acceptable basis for motion correction for these measures. In general, it will
never be possible to remove all stimulus correlated motion completely, but tech-
niques, such as those described here, could be used to monitor the success or
failure of attempts to do so.

Our TINA software system is available as open source, including the algo-
rithms discussed in this paper, from http://www.niac.man.ac.uk/Tina
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