
SEMANTICS-AWARE PERIMETER
PROTECTION

Marco Cremonini, Ernesto Damiani and Pierangela Samarati
Dipartimento di Tecnologie dell’Informazione

Università di Milano

26013 Crema - Italy

{cremonini,damiani,samarati}@dti.unimi.it

Abstract Web services security is becoming a critical concern for any organi-
zation adopting the XML-based Web services approach to application
integration. While many access control techniques for Web services are
becoming available, several issues still need to be solved in order to
correctly split the burden of securing Web services between the perime-
tral and the service level. In this paper, a technique is presented able to
make perimetral defences semantics-aware. Application-level semantics-
aware firewalls enforce filtering rules directly on SOAP messages based
on the nature of the services they request. Our semantics-aware firewalls
rules are written using a flexible XML-based syntax that allows sharing
metadata concepts with service level access control policies, supporting
complex security policies that integrate perimetral defences with access
control. Moreover, they can be quickly integrated into organizations’
existing infrastructure, deployed rapidly and scaled as needed. Also,
they integrate easily with existing infrastructure and can be operated
by current staff, potentially achieving a low total cost of ownership with
respect to service level solutions.

1. Introduction
It is widely acknowledged that open standards such as XML [3] and

HTTP [9] offer reduced integration cost, boosting the potential for in-
creasing organizations’ capability to compete and succeed in today’s
global e-market. A well established trend toward a Web-centric scenario
for both user-to-application and application-to-application interactions
exploits Web services1 flexibility, expressivity and standardization. As

1The term Web services describes Web application components build upon existing and
emerging technology standards including XML, SOAP, WSDL and HTTP.



230 DATA AND APPLICATIONS SECURITY XVII

far as protocols are concerned, Web services growing success hints to
a scenario where HTTP, with its secure variant HTTPS, is the only
general-purpose application protocol used for a variety of services. The
benefits of this evolution are clear:

A simplified and homogeneous level 7 of the ISO/OSI stack with
a single reference application protocol, i.e. HTTP, together with
a standard remote method invocation technique, i.e. SOAP [2],
overcomes the usual difficulties in integrating specialized services
and proprietary platforms;

a standard data interchange format, i.e. XML, makes integration
of functions offered by heterogeneous systems much easier than it
was in the past.

There is an additional claimed benefit of the Web-centric model, which
has perhaps more to do with business than with technical reasons: tun-
nelling remote method invocations through HTTP connections, serves
the goal of solving firewall traversal problems caused by the attitude of
system administrators, and actually of most network security best prac-
tices, of blocking most application protocols at the corporate network
perimeter. As a matter of fact, Web services firewall traversal capabili-
ties introduce significant security risks, encouraging companies to selec-
tively expose pieces of their enterprise applications. While a number of
access control techniques for Web services are becoming available [7, 1],
many researchers agree that the temptation to deal with Web services’
security by access control alone should be resisted, because a number of
security and operating issues are more effectively solved at perimetral
level. In order to check SOAP traffic crossing organizations’ perime-
ters, however, firewalls should become semantics-aware, at least to a
degree. Commercial SOAP proxies are becoming available capable of
performing sophisticated filtering of SOAP payload (to name but a few,
Reactivity XML firewall, http://www.reactivity.com, and Quadra-
sis/Xtradyne SOAP Content Inspector, http://www.quadrasis.com,
are examples of dedicated hardware appliances; Check Point Application
Intelligence, http://www.checkpoint.com, instead, is the new SOAP
proxy feature provided by the last release of market leader Firewall-
1). However, the debate on their usage and impact is still at a pre-
liminary stage: while enterprises have quickly come to realize the im-
portance of securing XML, they are only beginning to understand the
many operating issues and the corresponding costs involved in imple-
menting XML security at the single service and at the perimetral level.
In this paper, we introduce a new concept in application security, the



Semantics-aware Perimeter Protection 231

semantics-aware perimeter protection, aimed at cost-effectively sharing
with service-level access control the heavy protection burden that Web
services applications require, reducing the risks associated with integrat-
ing heterogeneous applications that cross organizational boundaries. In
our approach, semantics-aware firewalls are not just simple filters acting
on XML payload: rather, they systematically monitor XML-based mes-
sages between business partners, customers and others, enforcing rules
written in a highly expressive, XML based language. When it is com-
putationally feasible, rules enforced by semantics-aware firewalls may
refer to service properties smoothly integrating with service level access
control policies. Like our approach to XML and SOAP access control
[5, 6, 7], our semantics-aware firewalls cleanly separate Web services se-
curity from the business logic in each application. This allows adminis-
trators to independently define and audit multiple-level security policies.
The paper is structured as follows: Section 2 presents some basic con-
cepts, relevant to our approach, referred to: Web services, the SOAP
protocol, perimeter protection and network firewalls. Section 3 presents
our new concepts of semantics-aware perimeter protection. It clarifies
the context, which problems are tackled, how SOAP headers should be
customized for perimetral security, and highlights some performance and
manageability requirements. Section 4 describes how semantic-aware fil-
tering rules are modelled in our framework, specifies their syntax and
semantics, and presents a case-study example of semantic-aware policy.
Section 5 draws our conclusions and sketches our plans for future works.

2. Basic concepts

2.1. Web services in a nutshell
Web services are the last evolution of basic Remote Procedure Calls

(RPCs) and are aimed at providing a new form of distributed computing
environment for business-to-business and business-to-consumer applica-
tions. Aside implementation differences with respect to RPCs, Web
services emphasizes the adoption of standard technologies: a standard
definition mechanism, standard lookup services and standard transport
definitions. The goal is to make remote systems fully interoperating.

For the purpose of this paper, we are expecially interested in SOAP [2,
12], which is the key technology for carrying out Web services interac-
tions on the net. In the following we give a brief overview of SOAP
features that are relevant within the scope of this paper. In particular,
we focus on the SOAP HTTP Binding scenario [12], which is represented
by applications exchanging SOAP messages via HTTP.



232 DATA AND APPLICATIONS SECURITY XVII

SOAP is a stateless, one-way message exchange paradigm that, if
combined with features of the underlying application protocol, could
be used to realize different interaction patterns like: the response mes-
sage exchange pattern, which is provided by the use of the HTTP GET
method in a HTTP request to return a SOAP message in the body
of the HTTP response; the request/response pattern, which is the one
followed by using the HTTP POST method for passing SOAP mes-
sages in the body of HTTP requests and response messages; and the
request/multiple responses, which is not directly supported by HTTP
but should be implemented at application level [12]. We are interested
in the request/response exchange message pattern, because expecially
well-suited for RPC-like interaction, as Web services are.

The general structure of a SOAP message consists of an XML docu-
ment composed by an Envelope element that contains two sub-elements:
an Header and a Body. A SOAP Header contains auxiliary information
such as directives or contextual information related to the processing
of the message. SOAP is exensible in an application-specific manner
by customizing such auxiliary header’s information. Within a SOAP
Header, sub-elements called Header Blocks represents data logically
grouped that can be used by intermediaries handling a SOAP message
between a sender and an ultimate receiver.

2.2. Perimeter protection concepts

The goal of perimeter protection is to deploy security measures at the
perimeter of a corporate network. The perimeter of a corporate network
is represented by the access points to and from external networks, like
the network segments connecting the company to the Internet, external
routers facing the Internet Service Provider’s network, dial-in modem
pools, Virtual Private Networks, or Wireless LANs.

The underlying assumption that motivates security measures based
on the notion of corporate’s perimeter is that relying on host-based se-
curity only is not an effective strategy. If interaction between untrusted
domains and application hosts are not mediated by any filtering com-
ponent, then all application servers are exposed to the whole range of
security threats, either based on application related features or network
accesses. Securing and hardening all application servers to be resistant
to direct Internet attacks has been proven to be extremely hard, too
complex and expensive to maintain for representing a general solution.
Here comes perimetral defense that uncouples possibly hostile environ-
ments from data or resources to be protected and inspects interaction
either at network or application level.



Semantics-aware Perimeter Protection 233

Firewalls are the main and most popular perimeter protection sys-
tems. A firewall is a system or a group of systems that enforces an access
control policy on network traffic as it passes through access points [4].

Firewalls are typically classified into three main classes: static packet
filtering, stateful firewalls, and proxies.

3. Semantics-aware perimeter protection

Traversing firewalls is more a management than a technological prob-
lem, since every firewall technology lets system administrators make the
screening provided by firewalls completely transparent at will, with re-
spect to every communication protocol. In other words, every remote
method invocation protocol could traverse firewalls provided that sys-
tem administrators configure the perimetral policy accordingly. Unfor-
tunately, many applications and protocols have been proven to be highly
insecure or simply too complex to be effectively secured. This situation
has brought most system administrators to prevent some application-
level traffic from flowing through perimeter defences. From the network
security’s viewpoint the fact that traversing firewalls is usually severely
restricted should be regarded as an useful feature and the right attitude
of a savvy administrator rather than a problem. the standpoint
of application service providers, vendors or developers of Internet appli-
cation services and corporate managers willing to exploit the business
possibilities of the Internet, the constraints imposed by firewalls impair
full exploitation of business opportunities. While one might be tempted
to remove this impairment by entirely leaving application security to
service-level access control policies, this choice is likely to prove unwise
in the long run. Indeed, an inherent danger of the widespread adoption
of Web services would be neglecting the value of perimeter protection by
assuming that Internet applications and users will attempt to directly
interact with Web services, with no intermediate screening and active
monitoring. This would make the services’ interfaces open to exposure:
if compromised (and all components direcly exposed to Internet connec-
tions should be considered at high risk), application policies might be
subverted and critical assets, databases and systems, might be put to
risk.2

2Also, lowering the importance of perimetral defences policy would leave definition and man-
agement of corporate security to application managers alone, another choice that may prove
organizationally unwise.



234 DATA AND APPLICATIONS SECURITY XVII

3.1. The firewall traversal problem
The SOAP protocol lets interactive application traffic to be tunnelled

through regular HTTP communications, which makes the usual associ-
ation between service and application port for TCP and UDP commu-
nications no longer descriptive of the type of service carried out by a
certain flow of packets (i.e. all SOAP-based services appear directed to
servers responding at port 80, the conventional HTTP daemon). The
net effect of this use of HTTP as a general-purpose application protocol
for distributed computing is that conventional firewalls, screening net-
work traffic mostly at level 2 and 3 of the TCP/IP stack, are no longer
able to efficiently filter out packets. Firewalling SOAP network traffic
needs content-based inspection capabilities and detailed knowledge of
Web services and their semantics.

With SOAP, there is no longer a straight separation between the
perimetral and the service level with respect to data used for enforc-
ing security policies. Both must use same data, either in the SOAP
header or body, and with similar enforcing mechanisms. This makes
perimetral and service levels more strictly coupled than in the past and
calls for a new comprehensive and integrated approach to corporate se-
curity by developing systems that allow managing a uniform corporate
security policy and permit to enforce it at both the perimeter and the
service level.

3.2. Using SOAP headers for perimeter
protection policies

SOAP headers, used to hold metadata associated with the requestor,
have already been used to carry security credentials. A first proposal
exploiting SOAP’s headers for enforcing access control was presented by
Damiani et al. [7]. The authors represented all the information charac-
terizing the subject of a request by means of a custom header included
in each SOAP call. This usage of SOAP’s headers has then gained ac-
ceptance and has been adopted in popular frameworks like the Microsoft
WS-Security specification [1], which proposes a set of SOAP extensions
that can be used to implement integrity and confidentiality in Web ser-
vices.

Both [1] and [7] are based on the assumption that a requestor of a
service declares the possession of some personal credentials to the server
providing the requested Web services, which, in turn, authenticate the
requestor and provide the permissions corresponding to a defined se-
curity policy. This design choice is coherent with the overall design
principle of SOAP interactions and security model, where requestor cre-



Semantics- aware Perimeter Protection 235

dentials, stored in the Header part, are firstly used to prune an access
control policy, and then each service request is matched at run-time
against the set of permissions available for the given requestor. How-
ever, it does not match two basic requirements of a perimeter protection
policy, namely:

Filter Granularity. There exists a trade-off between communica-
tion performances and complexity of filtering techniques. Filtering
operations at the corporate’s perimeter should generally be coarse-
grained and not requiring complex parsing activity;

Organization-wide Policy Management. There exists a clear sepa-
ration of duties between corporate system administrators and ap-
plication administrators with respect to the definition and manage-
ment of access control policies. Attributes to be matched against a
perimeter protection policy should be corporate-wide and specify
application classes instead of being related to single services and
single requestors.

3.3. Performance and manageability
requirements

the performance point of view, SOAP-based screening at corpo-
rate borders could become a severe communication bottle-neck. A list
of requirements that should be taken into account when dealing with
performance issues follows:

simplicity of screening mechanisms (e.g. string pattern matching
or simple regular expression matching), with the option of making
them more complex and refined only at will;

heavy usage of cryptographic mechanisms could easily become the
dominating factor of processor workloads with consequent degra-
dation of routing capabilities of network traffic;

complex parsing techniques of the SOAP Body and network la-
tency due to communication with third-parties like Security To-
ken Services, Authorization engines or Certification Authorities are
possibly sources of severe degradation of performance and routing
capabilities;

in real-world situations, communication efficiency is one of the
most critical assets for business and, in practice, always takes the
precedence over security. Security measures that may cause net-
work degradation, are likely to be simply ignored.



236 DATA AND APPLICATIONS SECURITY XVII

As far as manageability is concerned, some functional requirements may
be identified. Namely, firewall rules’ evaluation should exploit:

Grouping of requestors by common properties like affiliation and
business role;

Classifications of Web service interfaces in a descriptive structure
based on the functions they offfer or on their location.

This way, a perimeter protection component could firstly parse some
requestor’s general properties, like the organization, the business role
or network parameters, which are not application-specific. This lets
a network or security administrator to fully define the perimetral pol-
icy with a little knowledge of application details and manage it in a
(semi)independend fashion with respect to most modifications that ap-
plication managers will make.

Then, the Web services requested, or the functional class of services to
which the one requested belongs to, should be taken into account. Using
a superset of the actual requested service, according to a classification to
be specified, may help in terms of ease of both definition of the policy by
the security administrator (i.e. he/she does not need to know the actual
service names and meanings) and management (i.e. the administration
task is (semi)independent from changes in service names or creations).

We shall develop on this descrition in the next section.

4. Design and implementation guidelines

4.1. Model
The solution proposed here is based on the results of the work by

Damiani et al. [7] that presents a solution for an Authorization Filter
for SOAP messages. Our architecture of the semantic-aware perimeter
protection component has three main logical parts: a set of filtering rules
representing the security policy and a mechanism to enforce it; a classi-
fication of requestors based either on groups or roles; and a functional
classification of Web services.

The data structure that maintains the rules is stored persistently in
XML and it offers an interface that permits to get a decision about
allowing or dropping a SOAP message. It also provides other admin-
istration interfaces, for modifying the rules and for synchronizing the
requestors and Web services classifications according to a common on-
tology that should be corporate-wide shared, between semantic-aware
perimeter level filters and service level authorization filters.

Requestors Classification. Requestors, as said, should be grouped ac-



Semantics-aware Perimeter Protection 237

Figure 1. An example of requestor/organizational role classification

cording to some general and application-independent properties, based
on business roles, affliations, etc. Figure 1 shows an example of requestor
classification based on their organizational roles, such as Customers or
Subsidiaries, Individual customers or Corporate customers and so on.
Requestors classification represents the subject part of our authorization
rules. Intuitively, more general groups (e.g. Customers) can be used for
specifying broader rules (e.g. within an Internet banking context, “all
customers could enjoy some services from the financial department”).
More specific groups (e.g. Company1), instead, could be used for finer
rules (e.g. “Company1 subscribed a trading on-line option, so Com-
pany1’s requestors could enjoy the trading services of the financial de-
partment”). Individual requestors not falling in any group are treated
as singleton groups.

Web services Classification. Web services, according to our pro-
posal, should be classified into functional homogeneous categories and
these categories, instead of single services, are used as authorization ob-
jects. This way, perimeter access control performs a filtering that is
(semi)independent from specific services and based on corporate-wide
criteria. In the example just mentioned describing the requestors classi-
fication (i.e. “Company1 subscribed a trading on-line option, so Com-
pany1’s requestors could enjoy the trading services of the financial de-
partment”), we are ruling the access to a family of services called Trad-
ing, possibly grouping many actual services, like PurchaseStock and
ShowQuote. Figure 2 gives an example of this Web services functional
categorization.

4.2. Authorization syntax and semantics

Figure 3 presents the structure of authorization rules proposed by our
model. Each rule is characterized by five attributes:



238 DATA AND APPLICATIONS SECURITY XVII

Figure 2. An example of service/functional category classification

Figure 3. Filtering Rules structure

requestor, the subject part of the rule, is a singleton or a
pair where could be a group or a role defined
within a requestor classification, and location could be a range of
IP addresses or a symbolic name. For convenience, the value ANY
should be specified when each requestor’s must be matched;

service, the object part of the rule, takes values from the Web
services classification. For convenience, the value ANY should be
specified when each service must be matched;



Semantics-aware Perimeter Protection 239

direction has the value IN for rules applied to incoming messages
and the value OUT for rules applied to outgoing messages. Incom-
ing SOAP messages could be requests from an external requestor
towards an internal, protected Web service, or responses of an ex-
ternal Web service to an internal requestor, the opposite holds for
outgoing messages. If the rule must be applied in both directions,
for convenience the value BOTH can be set;

response takes the value YES when the rule applies to a SOAP
response only; it takes the value NO when the rule applies to a
SOAP request only; and it is left undeclared when the rule does
not depend on this information;

permit_deny has the value PERMIT for positive authorization and
value DENY for negative authorization. A positive authorization
states that, for requestors described by requestor, the categories to
which the requested services specified in the SOAP Body belongs
to, described by service, are available and the message can pass
through. A negative authorization, instead, states that requestor
is not authorized to require any Web service belonging to service,
then the SOAP message must be dropped.

4.3. Example of semantic-aware firewalling

Following the classification examples of Figure 1 and Figure 2, Table 1
presents an example of semantic-aware firewalling. The policy we want
to enforce is: All customers have a home banking account providing for
some basic services like the account balance. Debit operations and on-line
trading need specific banking accounts. Only Company1 has an on-line
trading subscription for its personnel connecting from subnet 140.121.5.
For this example, we assume that the message exchange pattern is in
the request/response form. Accordingly, the policy defined in Table 1
is composed by the following rules, to be evaluated sequentially from
Rule 1 to Rule 6:

Rule 1 specifies that incoming SOAP requests (direction value = "IN";
response value = "NO") from personnel of Company1 (group-id Company1),
or sub-groups of, connecting from subnet 140.121.5 (netaddr 140.121.5.*),
and requested services of the Trading category (category Trading),
or super-sets of, are permitted to pass through (permit_deny value =
"PERMIT").

Rule 2 Specifies that Outgoing responses (direction value = "OUT:; response

value = "YES") to incoming requests ruled by Rule 1 are permitted.



240 DATA AND APPLICATIONS SECURITY XVII

Rule 3 says that generic Customers, or super-groups of, cannot access
services in the Debit Account category or sub-sets of. Both requests
or responses, either incoming or outgoing (direction value = "ANY"),
are denied and hence dropped (permit_deny value = "DENY").

Rule 4 says that incoming requests from generic Customers or sub-
groups of, requesting services of the Home_Banking category, or
super-sets of, are permitted to pass through;



Semantics-aware Perimeter Protection 241

Rule 5 specifies that outgoing responses to incoming requests ruled by
Rule 4 are permitted.

Rule 6 is a default rule stating that if any of the previous does not
applies, then we want to drop the messages.

5. Conclusion and Future Work

In this paper we gave a functional description of a semantics-aware
firewall, a perimeter protection component matching a requestor’s gen-
eral properties and the functional class of requested Web services against
a locally stored access control list.

The benefits of our approach are several

the solution is scalable by designing filtering rules of increasing
complexity (i.e. simpler and faster controls for direct Internet traf-
fic for a first layer of filtering, possibly followed by more detailed
controls for messages already screened);

the solution can be customized according to the needs of specific
businesses;

untrusted requestors do not interact in an unfiltered fashion with
Web services, which are highly critical components;

Moreover, the perimeter protection solution described can be smoothly
integrated with the solution for fine-grained access control for SOAP
Web services developed in [7] by some of the authors, composing this
way an overall comprehensive approach to SOAP Web services security
issues.

However, the solution proposed is not complete and many issues are
still open. Other more complex message exchange patterns should be
considered. Considering filtering techniques, we plan to extend our pro-
posal to stateful semantic-aware firewalls by correlating messages ex-
changed according to HTTP and SOAP protocol semantics. Another
important issue for our work is the full integration between this semantic-
aware perimeter level and the fine-grained access control level, and the
development of solutions for coordinating the two levels of security poli-
cies.

References
[1]

[2]

Atkinson, B. and et al. Web services security (ws-security), April 2002.
http://msdn.microsoft.com/ws/2002/04/Security.

Box, D. and et al. Simple Object Access Protocol (SOAP) 1.1. World Wide Web
Consortium (W3C), May 2000. http://www.w3.org/TR/SOAP.



242 DATA AND APPLICATIONS SECURITY XVII

[3]

[4]

[5]

[61

[7]

[8]

[9]

[10]

[11]

[12]

Bray, T.,Paoli, J., Sperberg-McQueen, C.M., and Maler, E. Extensible Markup
Language (XML) 1.0 (Second Edition). World Wide Web Consortium (W3C),
October 2000. http://www.w3.org/TR/REC-xml.

Brenton, C. and Hunt, C. Active Defense: A Comprehensive guide to network
security. Sybex, 2001.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P. Con-
trolling access to XML documents. IEEE Internet Computing, 5(6):18–28, Novem-
ber/December 2001.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P. A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security, 5(2):169–202, May 2002.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P. Se-
curing SOAP e-services. International Journal of Information Security (IJIS),
1(2):100–115, February 2002.

Damiani, E., De Capitani di Vimercati and Samarati, P. Towards Securing XML
Web Services. In Proc. of the 2002 ACM Workshop on XML Security, Washing-
ton, DC, USA, November 2002.

Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and
Berners-Lee, T. Hypertext Transfer Protocol – HTTP/1.1, June 1999.
http://www.ietf.org/rfc/rfc2616.txt.

Graham, S. and et. al. Building Web Services with Java: Making Sense of XML,
SOAP, WSDL, and UDDI. Sams Publishing, 2002.

Kudo, M.and Hada, S. XML Document Security and e-Business applications.
In Proc. of the 7th ACM Conference on Computer and Communication Security,
Athens, Greece, November 2000.

Mitra, N. SOAP Version 1.2 Part 0: Primer. World Wide Web Consortium
(W3C), May 2002. http://www.w3.org/TR/soap12-part0/.


