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Abstract. This paper presents a new self-organizing model based on the 
generalized particle dynamics (GPD) for virtual enterprises.̂  Differing from 
traditional organizing model for virtual enterprises, the GPD-based self-
organizing model may provide the optimal organization for desired virtual 
enterprises according to historical organizations and current requirements. The 
GPD conception, algorithm and its properties are discussed. The GPD-based 
self-organizing modeling has advantages in terms of the real-time 
performance, adaptability, reliability and the learning ability over traditional 
organizing models for virtual enterprises 

1 Introduction 

Distributed virtual enterprises are featured by the geographically distributed 
resources and jobs, heterogeneous collection of autonomous systems, and 
collaboration based large-scale problem-solving. Recently, Grid technologies are 
being integrated with Web Services technologies to provide a framework for 
interoperable application-to-application interactions for virtual enterprises. The 
orchestration of virtual enterprises requires the optimal dynamic organization for 
systematic resources and services. 

Most of existing models usually not only regard concurrently occurring service 
approaches in virtual enterprises to be in dependent of each other, but also regard 
current service approaches to be independent of past and fiiture service approaches in 
virtual enterprises. Thus the traditional virtual enterprises take into consideration 
neither the impact of historical organizations on current organization of virtual 
enterprises, nor the uiterference among a great number of concurrently occurring 
services in virtual enterprises. 
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This paper proposes a generalized particle dynamics (GPD) for self-organizing 
virtual enterprises, which is based on a Markov-chain-type proliferation process and 
an automatic optimal selection process for service approaches in virtual enterprises 
differing from traditional organizing models, the GPD-based self-organizing model 
not only considers influences of historical organizations on current virtual 
enterprises, but also considers interference among concurrent services in virtual 
enterprises. As a result, the GPD-based self-organizing model may provide the 
optimal organization for virtual enterprises. The analysis and simulations have 
revealed many advantages of the self-organizing model in terms of the real-time 
performance, adaptability, reliability and the learning ability over traditional 
organizing models for virtual enterprises. 
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Fig. 1. The difference between the traditional model and the self-organizing model for 
virtual enterprises. The directed dash-lines represent the service approach in traditional 
virtual enterprises. The blocks that are framed by dot-lines represent the service approach 
in the self-organizing virtual enterprises. By the self-organizing virtual enterprises, the 
optimal service approaches may be realized. 

2 Self-Organizing Model for Virtual Enterprises 

The essential difference between the traditional model and self-organizing model for 
virtual enterprises is shown in Fig. 1. By the traditional model, any service user At 
in virtual enterprises should fully know and exactly specify service suppliers that 
may offer its service demands. On the other hand, however, by self-organizing 
virtual enterprises, service approaches for service demands of the user At are 
determined optimally by self-organizing service networks, rather than directly by 
service suppliers indicated by the user At. Current self-organizing service networks 
are established on the basis of the past service approaches through a proliferation 
process of service suppliers in virtual enterprises. 

As shown in Fig. 2(a), for example, by traditional virtual enterprises a user in 
virtual enterprises exactly specifies 6 distinct service suppliers to offer it 16 kinds o 
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service demands in a given time session r . Once the No. 5 service supplier fails to 
work, 4 kinds of service demands, denoted by d, e, f, g, could not be provided. 
However, by self-organizing virtual enterprises, a self-organizing service networks 
as shown in Fig. 2(b) have been built by using service approaches before the time 
session T , so that 16 kinds of service demands might be offered from as many as 15 
distinct service suppliers, and most of service demands can be provided from more 
than one service supplier. Even the No. 5 service supplier fails to work; there is no 
influence on offering the user*s demands. The comparison with respect to service 
robustness for two kinds of virtual enterprises is shown in Fig. 3, which gives the 
relation between the average number of lost services and the number of faulty 
service suppliers. 

(a) 

Fig. 2. The comparison of service approaches between the traditional model and the self-
organizing model for virtual enterprises, where each service supplier is denoted by a solid 
line labeled in a digit number; each kind of service demands is denoted by a node labeled 
in an English letter; and if a kind of service demands can be provided by a service 
suppUer, then the corresponding node lies on the corresponding solid line, (a) The service 
approaches in traditional virtual enterprises, where 6 service suppliers need to be rigidly 
specified to offer 16 kinds of service demands, (b) The possible service approaches in self-
organizing virtual enterprises, where optimal service suppliers to offer 16 kinds of service 
demands may be selected from as many as 15 service suppHers. 

3 Generalized Particle Dynamics 

We make use of a generalized particle dynamics (GPD) to implement the 
proliferation process of service suppliers and service demands, and accordingly to 
construct powerfiil self-organizing service networks for self-organizing virtual 
enterprises. The GPD method is based on stochastic Markov processes over the 
space of service supplies and the space of service demands, so that current 
organization of virtual enterprises may be related both to past organizations and to 
current service demands. 

Two two-dimensional N x N particle arrays, GPA-I and GPA-II, as shown in Fig. 
3, are used to perform GPD's for service demands and service suppliers, 
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respectively. In the time session T , initially all the kinds of service demands and all 
the service suppliers are randomly mapped onto particles on the array GPA-I and 
GPA-II, respectively. Let the data object carried by a service demand particle 
represent a service supplier that can provide the service demand; and the data object 
carried by a service supplier particle represent a kind of service demands that can be 
provided by the service supplier. Arrays, GPA-I and GPA- II, are motion fields for 
service demand particles and service supplier particles, respectively. The state 

SI J \tj of the particle C- that is located at the coordinate point {ij) on GPA-I 

(GPA-II, resp.) at a time t in the time session T is equal to the data object carried by 

the particle. If there is no particle at the coordinate point {ij) on GPA-I (GPA-II, 

resp.) at time t, then denote s^j (^) = 0. A special distribution of particles on a GPA 

array is called a configuration, with all the possible configurations forming a 
configuration space. 

By the same local transitive rule, particles on GPA-I (GPA-II, resp.) randomly 
and concurrently move back and forth, with a motion probability being determined 
by a harmony function. We thus obtain a Markov stochastic process over the 
configuration space on GPA-I (GPA-II, resp.), which can give rise to stationary 
probability distributions with the maximal entropy over the corresponding 
configuration space. By maximal stationary probability distributions of service 
demand particles on GPA-I and service supplier particles on GPA-II, we may easily 
establish self-organizing service networks to offer optimal service approaches and to 
organize virtual enterprises in time session T . For simplicity, in what follows we 
will discuss particle dynamics only for one of GPA-I and GPA-II. 

The similarity dr^ i"){f) hetween two particles ĉ  and C^.., at time^in time 

session r is defined by 

(1) 

The harmony h. .,.,. {t) between two particles c^j and c^.j. at time t is defmed 

by 

{ U if d^^^,.f^i€)>Bij; 

0, if d î̂ ^ .̂̂ .)(t) = - 1 ; (2) 

The harmony h.j {t^ of the particle c^- at time t is defmed by 

hij (/;) = Yl ^ (*i,*'i') (̂ •) * 

where Oy is a previously given threshold, 0 < 6>/; < 1; and N/y is the neighbor of the 

coordinate (/,y) that is defmed by Ny = {(i-i,j),{i+ij),(ij-i),(i,j+i)]. 
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The matrix r{t)=[s^j [t)] [_s^j {t)\^^ represents a configuration, that is, a 

special distribution of particles on GPA-I or GPA-II at time /; For descriptive con­
venience, a possible configuration is indicated by an index within a positive integer 

set /a. For j{t) =u2 h, the aggregate harmony of F{tj is defined by 

li{r{t)) = n(u)= E w,,{r)}M^{t), (3) 

where co^j ( r ) is a weight coefficient which can be obtained by a learning algorithm 

according to a priori probability distribution of past organizations of virtual 
enterprises. 

GPA-I 

GPA-II 

Fig. 3. Particle dynamics on two particle arrays, GPA-I and GPA-II, for self- organizing 
virtual enterprises. The array GPA-I is the motion field for service demand particles 
illustrated by shadowed squares, with a particle carrying a data object that represents a 
service supplier in Fig. 2(b). The array GPA-II is the motion field for service supplier 
particles illustrated by shadowed squares, with a particle carrying a data object that 
represents kind of service demands in Fig. 2(b). 

If the particle Ĉ  randomly chooses the coordinate (i\j') as its motion 

destination at time {t+ 1), then the probability with which the particle c^j moves to 

the position (/',y') at time {t + 1), that is, the data object being carried by C-j is 

successfiilly transited to the coordinate {i'j') at time /+1, is determined by 

1 
f{^n) (4) (1 4. eAniT) ' 

where AH = H ( r ( ^ ) ) - H ( r ( ^ + l ) ) is the aggregate harmony increment if the 

chosen transition happens. The thermodynamic temperature parameter T is used to 
speed up the transient to a stationary probability distribution, and to avoid stagnating 
into local minima. 
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4 Particle Dynamics Algorithms and Their Properties 

For GPA-I or GPA-II, we use two exactly same duality lattices, Lattice A and Lattice 
B, to prepare two randomly generated configurations, u and v. 

Parallel Particle Dynamics Algorithm GPDA : 

Costep 1. The states of all the coordinates in Lattice A and Lattice B are set to ^ , 
which indicates that no particle lies on the GPA array. 

Costep 2. At the initial time t^ , all the particles are concurrently and randomly 

mapped on Lattice A and Lattice B, with each particle carrying a data object that 
represents a service supplier for particles on GPA-I and a kind of service demands 
for particles on GPA-IL 

Costep 3. At the current time t, every particle C^j on Lattice A and Lattice B 

concurrently compute its harmony h.j (^) by Eqs. (1) and (2). 

Costep 4. At the current time t, Lattice A and Lattice B concurrently compute their 
aggregate harmonies by Eq. (3). 
Costep 5. At the current time t, compute the transitive probability by Eq. (4), and 
then, using the transitive probability, randomly choose one from the two 
configurations on Lattice A and Lattice B as a candidate configuration for the next 
timet+ \ processing. 
Costep 6. The configuration not chosen in Costep 5 is updated by a new randomly 
generated configuration for the next time ̂  + 1 processing. 
Costep 7. Repeat Costep 3 through Costep 6 until a stationary probability 
distribution over configuration space is obtained, where that with the maximal 
probability corresponds to the optimal service organization for virtual enterprises in 
the time session r . 
Given a priori probability distribution^^ with respect to the configuration w, the 
weight coefficients of Eq. (3) can be obtained by using the parallel learning 
algorithm GPD-WLA. 

Parallel Learning Algorithm GPD-WLA: 

Costep 1. In parallel, initiate the value cŷ  (r^), A: G {1, • • •, /i} , where k is the number 

of service supplier. 

Costep 2. In parallel, compute the local harmonic function h, x̂ / x̂ for the 

configuration u and the k-th service supplier. 

Costep 3. Using h.^ x̂ / x̂ and the priori probability q^, in parallel compute the 

average value /̂ ,̂ ̂  E {1, •••,/?}. 

Costep 4. Using wk{t) and the algorithm GPDA, obtain a stationary probability 

distribution p^; and then using hi{u;k):j{u;k) compute the average value \ under the 

probability distributionp^; for k e{l,'",n} . 
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Costep 5. LetA6}^(^) = /2^-fl^ . In parallel, update the weights wk, such that 

Costep 6. Once ^cOj^ (^) « 0 holds true, then M/k(t) is just the required weight 

coefficient; Otherwise, go to Costep 4. 

limQ-O time~2 

Q 0 0 0 0 0 

Fig. 4. The state evolution of particles on GPA-I during executing the parallel algorithm 
GPDA. The number of kinds of service demands: 100; The number of service suppliers: 
56; The number of service requests: 4000; The number of service suppliers specified by 
service users: 5; The number of particles on GPA-I: 10000. 

We derive properties of GPDA and GPD-WLA as follows, proofs omitted for 
page limitation. 

Lemma 1. The stochastic process \^r\t)J = 0 , 1 , " - | generated by the algorithm 

GPDA is a finite homogeneous Markov chain. 

Lemma 2. The stochastic process | / " ( r ) , ^ = O,!,---} generated by the algorithm 

GPDA is an irreducible homogeneous Markov chain, where all the configurations 
are positive recurrent, that is, any configuration may return to itself in a finite time 
period with the probability 1. 

Lemma 3. The stochastic process [FytfJ = 0 ,1 , - - - | generated by the algorithm 

GPDA must reach a stationary probability distribution over the configuration space, 
that is, any configuration may occur with a fixed probability. Moreover the 
stationary distribution is independent of the initial configuration. 
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Fig. 5. The efficiency of the GPD-based self-organizing virtual enterprises 
increases almost monotonically with the number of service requests. The 
number of particles: 10000; The number of kinds of service demands: 100. 

Theorem 1. The stationary probability distribution obtained by executing the 
algorithm GPDA is the maximal entropy distribution over the configuration space. 
Moreover the stochastic configuration with the maximal probability has the maximal 
(^Sg^^g<^t^ harmony. 
Theorem 2. A configuration with the maximal probability in a stationary probability 
distribution produced by the algorithm GPDA has the minimal number of connected 
regions on GPA-I and GPA-II, with each region having the same service supplier for 
GPA-I and same kind of service demands for GPA-II. 
Theorem 3. The parallel learning algorithm GPD-WLA can converge and gives rise 

to lim Q)j^ (f) that is equal to the Lagrange multipliers for maximizing the aggregate 

harmony subject to the priori probability distribution q^^. 

5 Simulations 

Through a large number of simulations, we can see that the GPD-based self-
organizing virtual enterprises not only greatly reduce the aggregate cost of service 
approaches, but also greatly increase the service reliability. The state evolution of 
particles during executing the parallel algorithm GPDA is shown in Fig. 5. The 
efficiency of GPD-based self-organizing virtual enterprises is illustrated in Fig. 6. 
Comparisons between different strategies for service approaches in virtual 
enterprises are shown in Fig. 7 

6 Conclusions 

We draw conclusions as follows: 
• In comparison with traditional virtual enterprises, proposed GPD-based self-

organizing virtual enterprises not only greatly reduce the average overhead for 
service approaches, but also significantly improve their real-time performance, 
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adaptability, and reliability. 
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Fig. 6. Performance comparisons among different strategies of service approaches in 
virtual enterprises, where SE is for the traditional virtual enterprises; SI, S2 and S3 
are for the GPD-based self-organizing virtual enterprises; SI is for the Closest 
Selection Strategy; S2 is for the Maximal-Load Selection Strategy; S3 is for the First-
Fitting Selection Strategy. R1-R3 corresponds to the number of service requests: 
1000,800,600, respectively. The number of particles: 2500; The number of kinds of 
service demands: 50; The number of service suppliers specified by service users: 5. 

• Since all the particles evolve independently and simultaneously by the same 
local dynamic rule, the GPD-based self-organizing virtual enterprises have higher 
parallelism, Moreover GPD is based on a stochastic process, it is insensitive to many 
emergent and random events, such as the perturbation, noise, failure and congestion 
in virtual enterprises. 

• The model, architecture and algorithms of GPD are all independent of the 
problem scale under consideration, so that it is suitable for VLSI hardware 
implementation. 

• The GPD-based self-organizing virtual enterprises can be implemented for 
different granularity of services. It also has advantages in terms of the ability to learn 
different service envh*onment, such as different probability distribution over the 
service demands space and service supplier's space. 
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