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Abstract Both real-time multimedia and mobile networks present challenges ripe for new 
analysis techniques. We examine the applicability of statistical design of experi­
ments and inductive learning theory in the prediction of delay for real-time audio 
transmissions over mobile ad hoc networks. Utilizing analysis of variance meth­
ods and simple decision tree agents, we find both significant factor interaction 
between traffic load and node mobility as well as a dramatic reduction in error 
percentage in prediction of end-to-end delay. 

1. Introduction 
Real-time multimedia transmissions and mobile ad hoc networks each pro­

vide distinct challenges. Jitter and end-to-end delay are significant factors of 
interest for multimedia transmissions. Likewise, end-to-end delay is often a 
primary concern within mobile ad hoc networks (MANETs). When these fields 
meet, the importance of better understanding the domains increases signifi-
canüy. 

The reliabihty and consistency required by real-time audio transmission be­
comes much harder to ensure when dealing with the constantly varying condi-
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tions of a mobile ad hoc network. Thus, there is a need to effectively under­
stand and predict end-to-end delay. 

In light of this need, we show the validity of techniques from outside the 
domain of conmion networking. Specifically, we examine statistical design of 
experiments (DoE) and analysis of variance (ANOVA) to isolate and quantify 
factor interactions among variables in a MANET. Additionally, we adapt ar­
tificial intelligence techniques from basic decision-tree learning to provide a 
mechanism for predicting delay within a mobile environment. By fusing these 
two techniques, we find significant measures of predictability for end-to-end 
delay for audio transmissions over MANETs. 

We first present a performance analysis of end-to-end delay for audio trans­
missions over MANETs followed by an ANOVA analysis for accurate predic­
tion of end-to-end delay. We begin with a discussion of related works and an 
introduction to the simulation methods used. From this, we present the simula­
tion results followed by an introduction to DoE and ANOVA analysis, learning 
theory and decision trees, and the results produced by these techniques. 

2. Simulation Analysis of Audio Packet Delays 
The results in this section are based on simulations using the network simu­

lator ns-2 , version 2.26 [6, 9]. This package includes extensions for mobile ad 
hoc network simulation, including a set of routing protocols, an IEEE 802.11 
MAC layer, a radio propagation model, and a node mobility model. However, 
we extended this package to generate voice traffic over the wireless environ­
ment. 

Technical Considerations 
All nodes communicate with a wireless radio based on the IEEE 802.11 

standard [7]. The radio propagation range for all nodes is 250 meters and the 
channel bandwidth is 11Mbps. The specific medium access control (MAC) 
scheme is CSMA/CA with acknowledgments. At the link layer, we leave most 
of the 802.11 parameters set to default values. Thus, the RTS threshold is set 
to 250, the short retry limit (SRL) is set to 7, and long retry limit (LRL) is set 
to 4. 

At the network layer, we use the Ad hoc On Demand Distance Vector (AODV) 
[13] protocol for routing. The choice of a reactive protocol such as AODV 
rather than a proactive protocol such as OLSR [11] is based on results from 
our earlier work [3]. Indeed, the proactive protocol consists of every node 
emitting h e l l o messages periodically in order to learn the network topology. 
On the other hand, reactive protocols invoke a route discovery procedure on an 
on-demand basis. 
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As mobile ad hoc networks are characterized by intermittent connectivity, 
the audio stream is interrupted when a route error causes the routing protocol 
to establish a new route to the destination. These interruptions are typical 
events that strongly disrupt the speech played on the receiver side. Benaissa 
et al. [3] have shown that such interruptions can be long, typically a number 
of seconds, regardless the routing protocol employed. However, OLSR causes 
more interruptions than AODV, thus AODV is better adapted to the deployment 
of audio applications over ad hoc networks. 

The AODV parameter values are set as recommended in [14] such that they 
minimize network congestion and allow the protocol to operate as quickly and 
accurately as possible. As such, the HELLO interval is set to 1.0, the route reply 
wait time is set to 1.0, the reverse route life is set to 3.0, and the active route 
timeout is set to 3.0. 

The network layer maintains a send buffer of 64 packets. This buffer con­
tains (only) data packets waiting for a route. All packets (both data and control) 
sent by the routing layer are queued at the interface queue until MAC layer 
transmission. We set the maximum size of the interface queue to 50 pack­
ets and maintain it as a priority queue with two priorities, each served FIFO. 
Control packets receive higher priority than data packets. 

Network Environment and Methodology 
Our network model consists of 50 nodes in a 1000 x 1000 meter square flat 

area. Our results are based on the average packet delay of 20 scenarios, or 
patterns. Patterns are randomly generated by different seeds. Each simulation 
executes for 2505. Input parameters for the simulation are speed s in m/s and 
the network load ^ in kbps. 

In order to avoid large variation in successive patterns, some seed number 
effects are cancelled. We make the following assumptions: 

• We define the same initial position and heading of nodes for all patterns. 
Thus, when the seed changes, the initial network topology and traffic 
peers remain identical. All movements are different (see Figure 1). 

• For different patterns at a given network load £, enabled traffic peers are 
identical. When t is increased, additional traffic peers are set. 

• During the simulation, the effective speed of nodes and the network load 
are constant and equal to the input parameters s and I. 

Mobility 
Nodes move according to the random waypoint mobility model. In this 

model, each node x chooses a random destination within the simulation area 
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Figure 1. The initial MANET topology. 

and travels toward its destination in a straight line at a given speed. Upon node 
x's arrival at its destination, it pauses, chooses a new random destination, and 
continues its motion. Node speed 5 varies from Im/s to 10m/s and we use a 
pause time of 10 seconds. 

Traffic Pattern 

We develop a traffic generator to simulate unicast voice traffic as well as 
background traffic. 

Voice traffic is generated between a source node (0) and a destination node 
(49) (see Figure 1). A voice flow is typically divided into talkspurts (peri­
ods of audio activity) and silent periods (periods of audio inactivity, during 
which no audio packets are generated). We consider an average talkspurt of 
30.83% and an average silent period of 61.47% as recommended by the ITU-
T specification for conversational speech [10]. Alternating periods of activity 
and silence are exponentially distributed with an average duration of 1.0045 
and 1.5875, respectively. We consider the PCM codec (Pulse Codec Modula­
tion — see Reconmiendation G.711 in [8]) at ̂ Akbps as audio traffic. Then, 
320 byte voice packets are generated periodically during activity periods, each 
voice packet representing a sample of 40m5. 

Background traffic is generated by constant bit rate (CBR) data sessions 
with selected sources and destinations. One CBR session transmits packets of 
2048 bytes payload every 0.35 (i.e., 57.28kbps load per session). To increase 
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the load in the network, the number of active sessions is increased. In our 
simulation, network load i varies from 1 x b7.28kbps to 10 x 57,2Skbps. 

Simulation Results 
Figure 2 illustrates average end-to-end delay as a function of the number of 

active sessions for three different node speeds: 2m/s, bm/s and 7m/s. We 
find that from 1 to 5 active sessions, delays are nearly equal (less than AOms), 
regardless of the speed. For higher numbers of active sources, the increases 
in delay are stronger when node speed is higher. Delay increases from bOms 
to 200m5 for node speed 2m/s, while it reaches 450m5 at node speed 7m/s 
under the same load level. 
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Figure 2. End-to-end delay as a function of load for different node speeds. 

Our results illustrate that node speed does not have a significant impact on 
end-to-end delay under light load traffic. However, when load traffic increases, 
end-to-end delay increases rapidly when node speed is high. 

3. Designed Experiments and ANOVA Analysis 
Though often treated as isolated, the factors affecting a transmission in any 

network interact in ways that are often imperceptible when considered by sys­
tem and protocol designers. Factor interaction is not a new consideration in 
other engineering domains and techniques have long been in place to effec­
tively unearth and analyze them. Designed experiments, a technique originat­
ing from agricultural engineering in the early part of the 20th century, allows 
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the otherwise vast number of experimental runs necessary to detect and quan­
tify factor interactions to be done in a limited number of trials. As defined by 
Montgomery [12], di factor (e.g., load) is an experiment variable taken to have 
some effect on the response variable of interest (e.g., end-to-end delay). A 
factor interaction is the failure of a factor to produce the same resultant value 
for the response variable when another factor is at a different level. 

Key to DoE's ability to effectively analyze factor interactions is analysis 
of variance (ANOVA). In the simplest case, ANOVA examines the effect of a 
single factor on a response variable. ANOVA is defined by a sum of squares 
identity [12]. Using these sums of squares, ANOVA allows calculation of main 
effects for all factors as well as interactions. Our aim is to utilize DoE and 
the underlying foundation provided by ANOVA to significantly improve the 
predictability of end-to-end delay for audio-transmissions over MANETs. 

Related Work — DoE and ANOVA 
Designed experiments and ANOVA have rarely been applied to mobile net­

working. Vadde and Syrotiuk [17], inspired by the work of Barrett et al. [1,2], 
used ANOVA analysis to identify main effects and factor interactions on ser­
vice delivery in MANETs. Along similar lines, Perkins et al. [15] examined 2̂  
factor interaction particularly among node speed, network size, and number of 
traffic sources. 

4. Learning Theory and Decision Trees 
Machine learning theory aims to develop agents and algorithms that are able 

to effectively improve future action by learning from both its environment and 
its own decision-making processes. Among the simplest learning algorithms 
to implement is that oi decision tree learning. Decision tree learning examines 
a set of properties and returns a decision. Typically decisions are boolean, 
but are easily extended to numerical results. Thus, decision trees are naturally 
suited to learning parameter optimization. 

In functionality, the inductive learning provided by a decision tree begins 
with a heuristic from which an initial decision tree structure is extrapolated. 
The branching conditions of this tree are then tuned via the inductive process 
to produce better optimized results. Thus, for the purpose of optimizing the 
predictability of end-to-end delay, decision trees allow us to quickly produce a 
proof-of-concept argument for inductive learning theory for MANETs as well 
to evaluate the potential benefit of integrating a decision mechanism into our 
simulation model. 
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Related Work - Learning Theory and Decision Trees 
Within artificial intelligence and other fields, learning theory has evolved 

into a sophisticated and rich field in its own right. However, much in the same 
manner as ANOVA analysis, learning theory methodologies have not been sig­
nificantly explored within mobile ad hoc networks. Faragp et al. [5] developed 
a meta-MAC protocol utilizing computational learning theory. We take our 
direction in learning agent construction from Russell and Norvig [16]. 

5. DoE and Learning Methodologies 
DoE and ANOVA Methodologies 

In order to validate the effectiveness of DoE and ANOVA techniques within 
our chosen application domain, we choose those variables from Benaissa et 
al. [3] that provide both the most sound basis for factor interactions as well 
as reasonable extension into a decision tree learning mechanism. We choose 
CBR traffic load and node mobility as our factors of interest and end-to-end 
delay as our response variable. We then use Design Expert [4], a software 
suite designed to aid in the construction and processing of DoE, to develop an 
appropriate model to fit our data set. 

We design our statistical experiment as a 2? response surface populated by 
our data points, where 2^ is indicative of a two-level (high and low) model 
with k variables of interest or main effects. From this, we generate two models 
for ANOVA analysis. The first, an untransformed model of the data, is used to 
develop certain of our decision tree agents. The second, a model transformed 
such that any factor interactions present are effectively quantified, is used to 
verify the ANOVA validity. 

Decision Tree Methodologies 
To leverage learning theory techniques, we choose decision tree inductive 

learning for a number of reasons: ease of implementation, small spatial re­
quirements and a solid modeling of a top-down traversal of protocol stacks. 
For our proof-of-concept, we examine multiple means of constructing the in­
ductive learning aspects of the tree, both with and without statistical influ­
ence. As is standard for decision tree tests, average-guessing or strawman al­
gorithms are constructed to provide a baseline for judgment of improvements 
via the learning mechanism. Given our implementations of both statistically-
influenced and standard inductive learning, we implement both statistically-
influenced and standard mean-guessing strawman algorithms. 

Our first step in developing decision tree agents is to create a heuristic that 
serves as the basis for construction of the initial tree. For purposes of concep­
tual proof, we do not consider factor interactions in the construction of this 
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heuristic, though such interactions are responsible for much of the power of 
this manner of inductive learning. Instead, we consider the simplest case, in 
which we assume end-to-end delay is primarily dependent on traffic load. Ex­
amination of the data set yields a decision tree with three distinctly different 
relations to end-to-end delay. As illustrated in Figure 3, we choose a simple, 
one-level tree branching at what initial observation indicates are significant 
differences in the load vs. end-to-end delay relationship. 

Figure 3. A simple one-level decision tree estimates delays based on noticeable variances 
of load vs. mobility. More refined decision trees take into account multiple factors and their 
interaction. 

Estimated Traffic Load 

I 
Toelay = 200msl 

Load < 400kbps 400 <= Load <= 515[<bps Load > 515kbps 

Having constructed an initial tree, we implement the inductive learning pro­
cess as a number of agents, each utilizing different means of hypothesis cor­
rection during the learning and testing phases. These agents can be broken 
into two sets — those that do not use statistical influence in their correction, 
and those that do. For each of these categories, we create agents which employ 
incremental correction techniques and agents that employ averaging. Addition­
ally, we design an agent that uses no correction following its learning phase, as 
well as one that employs only statistical means of self-correction. 

Agent correction in both learning and testing phases is structured such that 
those agents without statistical influence utilize their particular means of cor­
rection, be it incremental or average-based, from the point of the value of the 
initial heuristic. Statistically-influenced agents utilize averaging based on the 
ANOVA-generating equation during the learning phase and their particular cor­
rection method during the testing phase to further refine the agent's accuracy. 
The agent with no testing-phase adaptation employs averaging in its learning-
phase correction, and the completely statistically-driven agent averages against 
the ANOVA-generated equation during both phases. 
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6. DoE and Learning Theory Results and Discussion 
DoE Results and Discussion 

As described in section 5, we create a pair of designed experiments. One 
uses no data transformation so as to yield equations suitable for adaptation into 
our decision tree agents and the other transformed to most accurately assess 
any factor interaction present. In each case, we utilize Design Expert to pro­
cess our data sets. We specify our factors as L for traffic load, and M for node 
mobility, with respective low and high levels (b7.28kbps, b72.80kbps) and 
( Im/s , 8m/s). We then choose as our response variable for end-to-end delay 
for the real time audio flow with low and high levels (4.10m5, 1663.96ms). 

From initial sum of squares analysis, we choose to design the experiments 
as a cubic model analyzing factors L, M, L^, M^, LM, L^, M^, L^M, and 
LM^ where, e.g., LM denotes the interaction effect between traffic load and 
node mobility. In keeping with standard practice, we choose the cubic model 
because it yields the lowest F-value and P{X > F-value). On this cubic model 
we then use Design Expert to perform ANOVA analysis of the data. 

As expected, the initial untransformed model uncovers significant factor in­
teraction. We find significant factors to be L, M, Ü, LM, L^, and L^M. 
Thus, consistent with our hypothesis, the interaction between traffic load and 
node mobility within MANETs is significant with respect to end-to-end delay 
on real-time audio transmissions. Likewise, in this case the square and cube 
of traffic load holds some significant relationship to end-to-end delay. For the 
purposes of enhancing our decision tree agents, ANOVA yields the relationship 
for the delay, D: 

D = 70.40-hO.17L-52.54M-3.3e-^L2-h 1 3 . 8 2 M 2 H -

0.024LM + 9.85e"^i:^ - 1.17M^ - 2.40e"^L^M + O.OILM^ 

By using a Box Cox test [12], we determine that by applying an inverse 
square root transform (y' = / ) with A = —0.5. we achieve a more precise 

measurement of the principal factor interaction, that between traffic load and 
node mobility. As shown in Figure 4, we find that the two factors interact 
with one another in at least two key points. From the generated interaction 
plots as well as the lack of fitting error, there exists a definite factor interaction 
between traffic load and node mobility for audio transmission over MANETs. 
Specifically, we notice significant interactions when traffic load is in the ranges 
114.56 < L < 171.84 and 458.4 < L < 515.52. Thus, we say load-mobility 
interaction displays its most prominent effects when traffic load is in the more 
extreme regions of its possible values. 

http://-hO.17L-52.54M-
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Figure 4. A factor interaction graph for traffic load and node mobility. Path intersections 
indicate levels at which interaction is most significant. 
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Decision Tree Results and Discussion 
For testing of both the validity of decision tree agents in reducing uncer­

tainty in end-to-end delay in MANETs, as well as the integration of the tech­
nique with statistically-influenced heuristics, we measure the testing-phase 
performance of our previously designed agents in three categories over n esti­
mates: 

• Correct guess percentage: ^Q r̂ect estimates ^̂ QQ^O/̂  

• Mean error percentage: '^^^^^estimated-^^^^yactuall (loo)% 

In order to establish a baseline for evaluating our agents, we run trials with 
both a "dead" strawman, which simply guesses the mean delay found in the 
learning phase for all testing-phase estimates, and a statistical strawman, which 
guesses the result of our ANOVA equation for each testing-phase estimate. The 
"dead" strawman produces correct guess percentage of 4.25%, and a mean er­
ror of 572.10%. With similar inaccuracy, our statistical strawman reports a cor­
rect guess percentage of 2.38% and mean error percentage of 1010.78%. Ad­
ditionally, we consider our non-adapting decision tree agent, which produces 
results: correct guess percentage of 4.40%, and a mean error of 140.25%. 

These baselines established, we find that both categories of decision-tree 
agents perform well, with certain techniques outshining others. The decision 
tree agents that adapt incrementally both perform with correct percentages of 
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15.14% in the statistical case and 19.65% for the standard model. In our normal 
and statistically-influenced agents, we find that those that employ testing-phase 
heuristic refinement via averaging produce correct percentages of 33.04% and 
32.69% while maintaining mean error percentages less than 100%. Specif­
ically, the statistically-influenced agent with difference-based testing phase 
adaptation produces a correct percentage of 32.69% while lowering mean error 
percentage to 42.00%. In similar fashion, our non-statistical model produces a 
correct percentage of 33.04% and mean error percentage of 39.84%. 

In consideration of these results, we find that decision tree agents that utilize 
difference-based averaging perform with dramatic improvement over simple 
averaging means. Additionally, the lack of adverse effects produced when 
utilizing ANOVA-based heuristics leads us to beheve that ANOVA-produced 
equations provide just as sound if not more sound a basis for decision heuristics 
as currently exist. That said, given the significance of the factor interaction 
detected by the DoE phase of our work, we believe that this interaction can be 
exploited to produce far more accurate decision trees than our current one-level 
model. In such a case, we expect the learning to be far richer and the results 
even more promising. 

7. Conclusions and Future Work 
Our results in examination of real-time audio transmission over mobile ad 

hoc networks serve as an initial proof-of-concept for the validity of both DoE 
as a means of effectively verifying the results of the simulation, and detecting 
factor interaction among network parameters as well as decision tree learning 
as a method of increasing the predictability of end-to-end delay. The work 
is currently in a preliminary state. Further investigation of the interaction 
between traffic load and mobility is certainly required. Likewise, we expect 
deeper consideration and refinement of the decision tree model, based on the 
results of our ANOVA analysis of the data, will improve even present levels 
of predictabiUty and error percentage. In the same vein, consideration of other 
factors involved in real-time audio transmission, particularly routing and MAC 
protocol configurations (e.g., RTS threshold, short and long retry length) may 
yield yet more information about the complex interactions between these com­
ponents. We plan to embed such a learning mechanism within an application, 
such that delay may be minimized on the fly. As such, we have begun consid­
eration of these directions and expanding our research as the domain demands. 

References 
[1] Barrett, C.L, A. Marathe, M.V. Marathe, and M. Drozda (2002). "Characterizing the Inter­

action Between Routing and MAC Protocols in Ad-Hoc Networks," Proceedings of the 
Third ACM International Symposium on Mobile Ad Hoc Networking and Computing 
(MobiHoc'02), pp. 92-103. 



154 Benaissa, Lecuire, McClary, and Syrotiuk 

[2] Barrett, C.L., M. Drozda, A. Marathe, and M.V. Marathe (2003). "Analyzing Interaction 
Between Network Protocols, Topology and Traffic in Wireless Radio Networks," Proceed­
ings of the IEEE Wireless Communications Networking Conference (WCNC'03)", pp. 
1760-1766. 

[3] Benaissa M., V. Lecuire, F. LePage, and A. Schaff (2003). "Analysing End-to-End Packet 
Delay and Loss in Mobile Ad hoc Networks for Interactive Audio Applications," Proceed­
ings of the Workshop on Mobile Ad Hoc Networking and Computing (MADNET'03), pp. 
27-33. 

[4] "Design Expert Software," Stat Ease Inc. 
lOnlinel. Available: http://www.statease.com 

[5] Farago A., A.D. Myers, V.R. Syrotiuk, and G.V. Zaruba (2000). "Meta-MAC Protocols: 
Automatic Combinations of MAC Protocols to Optimize Performance for Unknown Con­
ditions," IEEE Journal on Selected Areas in Communications, Vol. 18, No. 9, Sept. 2000, 
pp. 1670-1681. 

[6] Greis, M. (2001). "Tutorial for the Network Simulator ns," 
lOnlinel Available: http://www.isi.edu/nsnam/ns/tutorial 

[7] IEEE Standards Department (1999). "Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Exten­
sion in the 2.4 GHz Band," Technical Report, European Telecommunications Standards 
Institute. 

[8] International Telecommunication Union ITU-T (2001). "Pulse Code Modulation (PCM) of 
Voice Frequencies," Recommendation G.711, Telecommunication Standardization Sector 
of ITU. 

[9] ISI (2001). "The Network Simulator ns," 
lOnlinel Available: www.isi.edu/nsnam/ns/ 

[10] ITU-T (2004). "List of ITU-T Recommendations," 
lOnlinel Available: http://www.itu.int/publications/itu-t/itutrec.htm 

[11] Jaquet, P., P. Muhletaler, A. Quayyum, A. Laouiti, T. Clausen, L. Viennot, and P. Minet 
(2002). "Optimized Link State Routing Protocol," Internet Draft draft-ietf-manet-olsr-
06.tx, Internet Engineering Task Force. 

[12] Montgomery, D. (2001). Design and Analysis of Experiments, John Wiley & Sons, Inc. 

[13] Perkins, C.E. (2001). Ad hoc Networking, Addison Wesley Longman, Inc. 

[14] Perkins, C.E. and E. Royer (1999). "Ad hoc On-demand Distance Vector AODV Routing," 
Proceedings of the IEEE Workshop on Mobile Computing System and Applications, pp. 
90-100. 

[15] Perkins, D.P, H.D. Hughes, and C.B. Owen (2002). "Factors Affecting the Performance 
of Ad Hoc Networks," Proceedings of IEEE International Conference on Communications 
(ICC'02), Vol. 4, pp. 2048-2052. 

[16] Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern Approach, Prentice 
Hall, Inc. 

[17] Vadde, K.K and V.R. Syrotiuk (2004). "Factor Interaction on Service Delivery in Mobile 
Ad Hoc Networks," to appear in IEEE Journal on Selected Areas in Communications, 
(accepted March 2004). 

http://www.statease.com
http://www.isi.edu/nsnam/ns/tutorial
http://www.isi.edu/nsnam/ns/
http://www.itu.int/publications/itu-t/itutrec.htm



