
ARCHITECTURAL DESIGN
AND PERFORMANCE ASPECTS
OF DEVELOPING APPLICATIONS
BASED ON MIDDLEWARE

Alexander Schill, Olaf Neumann, Christoph Pohl, Thomas Müller
TU Dresden, Fakultät Informatik, 01062 Dresden
{schill| neumann|pohl|muellet} @ rn. inf. tu-dresden. de

Abstract For quite some time now, applications have been designed and developed in
various projects of our research group by using middleware. In addition, various
middleware products have been evaluated. An existing client/server system has
been converted to EJB. The subject of this paper will be the results of these
studies, along with the characteristics of the analyzed servers other concepts and
related work.

Keywords: Enterprise JavaBeans, EJB, Performance

1. PERFORMANCE RESULTS
In the course of the performance analyses, the use of single servers and

clustered application servers has been tested. Three commercial servers have
been considered: Inprise Application Server [4], BEA WebLogic Server, and
IBM Websphere.

As testing environment, the NT-Lab at the Chair of Computer Networks at
the University of Science and Technology, Dresden, was used. This consists of
several Dual-Pentium computers 766Mhz, 512MB that are interconnected via a
switched 100Mbit LAN. The operating system used was Windows NT 4.0SP6a.
On all application servers, an IBM Universal Database 7.0, powered by the
jdbc.db2.net.Driver an XA-capable JDBC2.0 driver was used for efficient data
access.

Special attention was given to providing as identical conditions as possible
for testing the individual servers [1, 2, 3]. Therefore, the same test data and
configurations were used.

Prior to a discussion of the performance comparison, some special aspects
of the application servers shall be mentioned.

http://dx.doi.org/10.1007/978-0-306-47005-9_29

128 SHORT PAPERS I

1.1. Deployment

All of the tested servers provided a graphical tool for creating deployment
descriptors and supporting the actual deployment. In most cases, these tools are
easy to use. However, they are not very efficient in the developing process of
EJBs as the beans used in this process have to be re-deployed occasionally. In
such cases it proved to be more helpful to perform script-controlled deployment,
if that is supported by the server.

1.1.1 BEA Weblogic Server. To control the deployment, either a graph-
ical tool or the command line can be used. The graphical tool should be used
for the first configuration because it allows for an easy creation of the deploy-
ment descriptors. However, occasional crashs of this tool complicated routine
work. Once the descriptors have been created, performing the deployment us-
ing the command-line can save a lot of time. To deploy the beans the next
time the server is started, these have to be added to the file weblogic.properties.
One could actually use the console for hot-deployment, or re-deploy already
deployed beans at runtime, but these changes would only be valid while the
server is running. Thus, it is always necessary to write the changes to the file
weblogic.properties.

1.1.2 Inprise Application Server. Deployment is also performed with
the help of the graphical console. The user can decide whether to comply more
or less strongly with the J2EE standards. After deployment has been performed,
it is possible to create a client-Jar containing the stubs needed. If a bean has
been deployed, it exists even after the server has been restarted; it can only be
removed if it is explicitly deleted from the server via the console.

1.1.3 IBM Websphere Application Server. Deployment in Websphere
is rather slowly, both in regard to the steps necessary prior to deploying and the
actual deployment process. The server allows deployment of several beans in
one JAR simultaneously. In our tests, this simplification failed every time, so
that each bean had to be deployed individually. After successful deployment,
the beans are anchored in the server even after a restart. Websphere makes use
of the serialized deployment-descriptors of EJB-version 1.0. As the descriptors
have to be newly created, this interferes with one major objective of the J2EE
standard: the reusability of the individual components. The internal deployment
tool has been used to cope with this problem. This tool, however, is rather
unstable and produces arbitrary errors. Moreover, changing the configuration
requires a restart of the container, or the web-engine, which is rather time-
consuming.

Architectural Design and Performance Aspects of Developing Applications... 129

1.2. Clustering
All of the tested servers offer clustering to support fail-over and load-balancing.

Even though these features have been differently realized on the respective
servers, the basic concepts are very similar. Clustering can be performed on at
least two levels. For one thing, it can be realized by distributing the requests
of the servlets, i.e. on the web-level, for another, directly on the level of the
EnterpriseBeans.

1.2.1 BEA Weblogic Server. Using replica-aware stubs, EJB’s are au-
tomatically clustered on the Weblogic server. This can be easily configured.
All one has to do is to start several servers so that they can be clustered. These
servers must deploy the same beans under the same JNDI-names. It is important
to remember that the ability to cluster is made possible by setting a property
of the beans. For load-balancing, different procedures such as round-robin
(standard), weight-based round robin, random, and parameter-based routing
can be used. Parameter-based clustering requires the creation of a call-router
that forwards the different calls to the corresponding server-instances.

1.2.2 Inprise Application Server. Clustering is realized via the JNDI-
service. Only one instance of the name server is started in the cluster that is
to be created. In order to achieve a fail-over of the name servers, these can
also be started in a master-slave procedure. This distributes client requests
among server instances according to the round-robin method. It is required
that beans on the individual servers are addressable by identical JNDI-names
and that the property vbroker.naming.propBindOn has been set to 1. Inprise
supports clustering of Stateless Session Beans and claims to provide clustering
of Statefull Session Beans via an additional Session State Service. However,
the latter could not be verified in the current test, as no Stateful Session Beans
were used.

1.2.3 IBM Websphere Application Server. The server supports clus-
tering by means of an administrative database. All administration servers used
in the cluster must use the same administrative database. Clones can be created
based on a pre-configured application server. These clones can then be installed
either on the same physical machine, or on other machines. In addition to the
server clones, the EJBs must be WLM-enabled, i.e. so-called smart stubs for
addressing the different servers must be installed on the client to allow load-
balancing or fail-over, respectively. The methods round-robin and random can
be used to distribute requests. These methods can be set to additionally include
the option of preferring the local clone. Currently, IBM supports clustering of
Stateless Session beans and servlets, or JSPs, while Statefull Session Beans are
always assigned to a certain container.

130 SHORT PAPERS I

1.3. Comparison

Figure 1. Measuring Points

For enabling a better evaluation of the various components’ behavior, differ-
ent measuring points have been implemented (see Figure 1).

Measuring point A determines the complete round trip time needed after
an operation has been read from the database until the server has processed the
request – including the time until to be displayed data has been received.

Measuring point B has been implemented in the servlets to determine pro-
cessing times in the beans. This is actually not one single measuring point but
rather several points where beans are called in the servlets.

Measuring point C determines the time needed for the internal processing
in the database.

The figures of BEA and Inprise are about the same level. Inprise takes only
slightly more time, and also shows leveling. Websphere consumes considerably
more time. More precisely, IBM’s round trip is longer especially for logic
processing in the beans.

Figure 2. Results of Measure Point B. Figure 3. Average Values of Point C.

Architectural Design and Performance Aspects of Developing Applications... 131

The diagram shown in Figure 3 summarizes the average measured results of
the test in measuring point A. While Websphere needs about four times longer
than BEA, Inprise’s results are very similar to those of BEA. Even if the leveling
behavior of Inprise is taken into account, it shows a slightly worse performance
compared to BEA. In this example, measurings have been performed for 100
users. Unfortunately, even with such a small number server errors still occured.
Inprise regularly stopped with an OutOfMemoryException that could not be
corrected by increasing the memory assigned to the JVM, thus suggesting a
server-internal memory problem. IBM could not complete some transactions
because of internal, incomprehensible OSE problems. Both on IBM and BEA
servers, tests have been run with 1,000 users. However, due to the errors results
are not comparable.

2. RELATED WORK
This paper describes different aspects in the design process of applications

with EJB. Furthermore, it gives details about the performance of a complex
application. The comparison [11] and [12] as well as other benchmarks such
as [10] give mostly an overview of server properties. Exact performance re-
sults can be found in [10]. Nevertheless, there are few publicly available facts
about complex systems. A major problem about complex system evaluation
is the mutual dependency of results, i.e. resources and components depend
not only on equal component types. Although there are some good sources
about patterns like [9], it is often not evident how to apply these concepts to
real world applications based on EJB. A goal of this paper was to provide some
contributions towards these aspects.

References
[1] Auswahl eines EJB-Applikations-Servers - Java-Spektrum 2/2000 S.12

[2] Special Interest Group - Enterprise JavaBeans -
http://www.mgm-edv.de/ejbsig/

[3] Application Server Comparison Matrix -
http://www.flashline.com/components/appservermatrix.jsp

[4] Inprise Applikation Server - Java Magazin 2/1999 S.71

[5] Read all about EJB 2.0
http://www.javaworld.com/javaworld/jw-06-2000/jw-0609-ejb.html

[6] Enterprise JavaBean Persistence 101 -
http://www.sdmagazine.com/articles/2000/0004/0004b/0004b.htm

[7] Enterprise JavaBean Persistence 201 -
http://www.sdmagazine.com/articles/2000/0004/0004c/0004c.htm

[8] Eberhard Wolff: EJB und das Java-Typsystem – Java Spektrum 6/2000 S. 62

[9] EJB DesignPatterns http://www.c2.com/cgi/wiki?EjbDesignPatterns

132 SHORT PAPERS I

[10] http://nenya.ms.mff.cuni.cz/thegroup/EJBCOMP/ejb-public.pdf

[11] http://www.networkcomputing.com/1022/1022f2.html

[12] http://www.informationweek.com/759/java.htm

	ARCHITECTURAL DESIGNAND PERFORMANCE ASPECTSOF DEVELOPING APPLICATIONSBASED ON MIDDLEWARE
	1. PERFORMANCE RESULTS
	1.1. Deployment
	1.2. Clustering
	1.3. Comparison

	2. RELATED WORK
	References

