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Abstract: Medical data refers to health-related information associated with regular patient care or as part of a clinical trial program.
There are many categories of such data, such as clinical imaging data, bio-signal data, electronic health records (EHR), and multi-mod-
ality medical data. With the development of deep neural networks in the last decade, the emerging pre-training paradigm has become
dominant in that it has significantly improved machine learning methods’ performance in a data-limited scenario. In recent years, stud-
ies of pre-training in the medical domain have achieved significant progress. To summarize these technology advancements, this work
provides a comprehensive survey of recent advances for pre-training on several major types of medical data. In this survey, we summar-
ize a large number of related publications and the existing benchmarking in the medical domain. Especially, the survey briefly describes
how some pre-training methods are applied to or developed for medical data. From a data-driven perspective, we examine the extensive
use of pre-training in many medical scenarios. Moreover, based on the summary of recent pre-training studies, we identify several chal-

lenges in this field to provide insights for future studies.
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1 Introduction

Artificial intelligence (AI) has become a tremendously
ubiquitous technique impacting our lives. Applications
based on artificial intelligence assist users in making de-
cisions and influencing their daily lives. Technological ad-
vances are not possible without the rapid development of
deep learning (DL), especially thanks to a much wider
adoption of convolutional neural network (CNN)[I 2l re-
current neural network (RNN)B 4 and attention neural
network[® 6. Those deep neural networks have been integ-
rated into a variety of research, including several sub-
fields such as computer vision (CV)[7 and natural lan-
guage processing (NLP)M®.

Medical data analysis is one of the most important
sub-filed in AI. The task mainly focuses on processing
and analysing the medical data from variant data modal-
ities to extract essential information which aims to help
physicians make precise decisions during the diagnosis
process. It is anticipated that computer-aided systems
will be influential tools in health monitoring and disease
diagnosis. A lot of efforts have been successful in current
studies, such as processing and analysing medical ima-
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gingl® 11 electronic health records (EHRs)[!2 13 bio-sig-
nals['4-16] and the data which consists of multiple modalit-
ies!720. Hou et al.2123] utilised CNN to diagnose tu-
mours in the early stages, allowing for early intervention
treatment planning to greatly improve the patient’s sur-
vival rate. A medicine recommendation(!2 24 was de-
veloped as a way to improve patient care by providing
personalized recommendations based on electronic health
records. Qiu et al.'4 supported caregivers in identifying
cardiac arrhythmias effectively and efficiently, saving
more lives. Wang et al.ll7 utilised chest X-rays and the
corresponding diagnosis reports training a model for dis-
ease diagnosis, similarity search, and image regeneration.

Although existing works have achieved remarkable
success, some works found that data-hungry is one of the
primary challenges of applying the DNN for processing
medical data. On the one hand, some kind of medical
data can be obtained easily, but annotating the collected
data requires a substantial amount of labour and money;
on another hand, in many rare or new disease diagnosis
tasks, the data is insufficient because they are too rare to
collect or there are issues in privacy. The insufficient data
have limited training for a satisfactory model because it
could cause overfitting and poor generalization. To ad-
dress this issue, some large-scale datasets are proposed to
make it possible to train satisfactory models. However,
the construction of large-scale annotated datasets is
labor-consuming and expensive. It is unpractical to devel-
op large-scale annotated datasets.

The researchers,

motivated by human learning
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strategy, proposed the pre-training to address the issue of
lack of annotated data. Considering the human learning
strategy, learners can learn a skill based on their prior
learning knowledge. For example, learning to play tennis
can help in learning badminton.

As summarized in [25], the pre-training technique is
specially related to transfer and self-supervised learning.
As one of the most critical milestones for solving data-
hungry issues, transfer learning techniques have explored
utilising labelled data and leveraging the unlabelled data
effectively. Transfer learning26l is a sub-field of machine
learning inspired by the process of human learning. It
learns the related knowledge in the target domain by
transferring information from the same or related
domainl27. The process of transfer learning consists of two
steps, pre-training and fine-tuning. Pre-training is a pro-
cess of learning universal feature representations and then
using the pre-trained model in the downstream tasks, as
Fig.1 shows. The recently emerging self-supervised learn-
ing is another pre-training paradigm which gets wide no-
tice by more and more researchers. This learning
paradigm is committed to extracting abundant know-
ledge from unlabelled data. Self-supervised learning en-
ables the production of the supervision information by it-
self instead of manual annotations. In the current study-
ing stage, transfer learning and self-supervised learning
are two mainstream pre-training approaches. In this pa-
per, we introduce these two approaches at a high-level
and explore pre-training in the medical domain.

1.1 Why pre-training?

However, the emergence of pre-training, mainly in-
cluding transfer learning and self-supervised learning,
provides the opportunity to use a small size of labelled
data to train an effective model in the efficient method.
In this section, we list the reasons why pre-training is es-
sential. Firstly, the pre-training method was invented
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from the lack of data information, which is generally di-
vided into the lack of labels and the lack of data
volumel8], The lack of data volume means that many
types of data cannot meet the needs of model training,
such as very scarce regional rare disease data. Pre-train-
ing can effectively compensate for the impact of this lack
of information[28]. Through pre-training, clusters or poten-
tial features in the data are extracted by the model so
that the model has more generalization ability for specif-
ic content.

Secondly, the utilization of pre-trained models can sig-
nificantly accelerate the convergence process on down-
stream tasks. This is particularly beneficial in scenarios
where computational resources are constrained.

Thirdly, in the past 20 years, with the rapid develop-
ment of various industries and the generation of high-per-
formance hardware, a large amount of data has been rap-
idly generated daily in different industries, such as the
medical industry?9. However, the cost of manual annota-
tion of datasets increases exponentially. Therefore, the su-
pervised pre-training methods have challenges on the lack
of data annotation. Self-supervised pre-training allows us
to leverage abundant non-labelled data, getting a good
initialization before the downstream tasks.

Also, with the recent advance in self-supervised learn-
ing, many studies® 31 have shown that self-supervised
pre-training can alleviate the effect of training on data
with imbalanced labels.

There are also many applications of pre-training in the
medical field. Pre-training technology was first implemen-
ted in the medical domain in 2014 by Schlegl et al.32, in
which they proposed a semi-supervised learning approach
to improve lung tissue classification. Specifically, they
train the pre-training model with the unsupervised
strategy injecting the information from the images
without annotation. There are three modalities of the
data that we mainly focus on that have been processed
with pre-training successfully: medical image data, bio-
signal, and EHR. Also, the multi-modality scenario has
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Fig. 1 TIllustration of pre-training. Pre-training is a part of transfer learning. If the pre-training model is fully supervised, the pre-
training objectives are required, while if the pre-training model is an unsupervised or self-supervised learning model, the pre-training

process does not need the objective.
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been considered. For example, the pre-trained BERT
model in semantic analysis can be applied to predict fu-
ture diagnoses using EHR datal33l. The self-supervised
pre-trained model can perform tasks such as classifica-
tion and segmentation on CT and MRI imagesi4. The
electrical bio-signals can be pre-trained to extract the fea-
tures, thereby helping to perform prediction or
diagnosis35. These pre-training applications in the medic-
al field improve the performance of many tasks. Com-
pared with conventional models, pre-training has signific-
antly improved efficiency and accuracy in medical field
applications.

1.2 Why is this survey necessary?

There are two reasons why we have organised this
survey. First, many works using pre-trained models have
achieved satisfactory results in the medical domain in the
past few years, but there are few systematic and compre-
hensive introductions to pre-training models. Second, [25]
is a comprehensive survey for pre-training, while there is
no such a survey about pre-training in the medical do-
main. The existing surveys36-39 in the medical field only
focus on investigating the pre-training models for the spe-
cific modality. Particularly, most surveys about pre-train-
ing in the medical domain are to review pre-training in
medical imaging36: 37, and few surveys are published for
reviewing processing biosignals“! and EHRs[B8l. There-
fore, it is significant that we systematically review pre-
training approaches in the medical domain.

To the best of our knowledge, this paper is the first
systematic and comprehensive summary of the recent pre-
training innovations in the medical field, consisting of
medical imaging analysis, electric bio-signal data (elec-
troencebhalograms (EEG), electrocardiograms (ECQG)
etc.), EHRs and multi-modality.

This survey presents the techniques and analysis in a
simple manner, which is suitable for a variety of audi-
ences. However, we emphasise the core target audience of
the survey mainly for two groups. One group has experts
from the medical field who are interested in developing a
computer-aided diagnosis system. An additional perspect-
ive reader is an expert in machine learning and deep
learning and wants to learn about the current develop-
ments in pre-training in medicine.

1.3 Collection of paper

We summarize the survey strategy from the biblio-
graphic dataset, keywords of searching conduction, and
the main focus on the papers that have been published in
conferences/journals.

In this survey, we retrieved papers purely related to
pre-training in the medical domain. The related papers
retrieving were executed on four well-known bibliography
websites, including Google scholar, DBLP, ACM digital
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library and Web of Science. To collect all the papers pos-
sible, we initially searched for the terms “transfer learn-
ing/pre-training/self-supervised /contrastive learning” +
“medical data/medical images/bio-signal data/EHR/
multi-modality /prognosis”. In particular, we pay close at-
tention to top-ranking conferences/journals, including
CVPR/ICCV, MICCAI, IJCAI, KDD, ICDM, AAAI,
WWW, NeurIPS, ICML, TPAMI, TMI, MIA, Nature,
Science, etc. Furthermore, we also screen the results of
other conferences, journal papers, and preprint versions
on arXiv to ensure that this survey is more comprehens-
ive. We also reviewed many surveys that investigated the
pre-training in image processing tasks and NLP-related
tasks. As among the collection papers and the former sur-
vey, most of them have introduced the basic models, like
CNN, RNN, Transformer, self-supervised learning, etc.,
we will not re-visit these basic techniques and not review
the specific papers that introduce the related techniques
theoretically. In a particular scenario, model pre-training
is usually inextricably linked to the downstream task, in-
cluding fine-tuning or training a classifier for a particular
task.

1.4 Our contributions

This survey aims to present a systematic introduction
to recent advances and new frontiers of pre-training-
based techniques in the medical domain. We summarized
more than 200 advanced contributions in this field using
pre-training technology, covering the time range from the
very beginning of the emergence of pre-training ap-
proaches. We list several main contributions of this sur-
vey.

1) We first systematically summarized the pre-train-
ing techniques that are used for medical and clinical scen-
arios.

2) We summarized the medical pre-training models
used on four main data types: medical images, bio-signal
data, EHR data, and multi-modality. To our best know-
ledge, we are the first to do a survey so comprehensively.

3) We summarized the benchmark dataset of medical
images, bio-signal and EHRs.

4) We discuss the challenges of the pre-training mod-
el in the medical domain and look to the topics for fu-
ture research.

The rest of this survey is structured as follows. Sec-
tion 2 briefly introduces the benchmark datasets in the
medical domain and the basic models and methods for
pre-training. Section 3 summarises pre-training on medic-
al imaging analysis for different datasets. Section 4 gives
an introduction to pre-training for bio-signal. Section 5
summarises the state-of-the-art pre-training methods for
EHRs. In Section 6, we discuss the challenges and future
directions. Finally, Section 8 gives the conclusion of the
survey.
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2 Background

This section will summarise the publicly available
benchmark dataset in the medical domain. Moreover,
some basic pre-train methods are briefly introduced.

2.1 Benchmark datasets

In this section, we extensively explore the benchmark
datasets which can be used in machine learning (ML) and
DL-based tasks in the medical domain.

2.1.1 Medical imaging benchmarking datasets

Computer vision has been a popular topic in medical
imaging processing. There are hundreds of datasets in
this field. As listed in Table 1, this study presents a com-
prehensive overview of 16 frequently utilised publicly ac-
cessible medical imaging datasets. Table 1 includes the
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name of each dataset, the modalities they encompass,
their potential applications, and benchmarking results.
2.1.2 Bio-signal medical benchmark datasets

As listed in Table 2, we summarize 22 bio-signal
benchmark datasets that are publicly available or have
access restrictions. We present the modalities in the data-
set, the number of subjects (# Subjects), the number of
records (# Records), the sampling rate, the related task,
and the comparison of the results.
2.1.3 EHRs benchmark datasets

Based on the survey, we only found four publicly
available benchmark datasets are reusable for EHRs re-
lated tasks, such as the eICU Collaborative Research
Database (eICU)41, the Medical Information Mart for In-
tensive Care III (MIMIC IIT)42 TIQVIA!, and PhisoNet
Challenge 2012243], In some works, they use their private
dataset to execute the experiments. In the following, we

Table 1 Statistics of the medical imaging benchmark datasets. Here, SEG is the abbreviation of “Segment”, and CLS denotes
“Classification”. In the column “# of images”, the number shows the ratio of number of the training set to number of the testing set.

Dataset name Modality # of images # of classes Tasks Benchmarking results (%)
CHAOS-MRI[44] MRI 992 5 SGE Dice-socre: 86.75; MSD: 66.00[45]
CHAOS-CTI] CT 2874 2 SEG ﬁ‘scggc‘gf é%lig.ﬁ[ﬁ? ;
NIH-CT-824¢] CT 7141 2 SEG Dice: 71.804-10.7046]
MICCAI 2017 LiTS[47) cT 131/70 2 SEG Ef:;i“D?égeggiggg]
3Dircadb” CT 20 venous phase 2 SEG Tumour: Dice: 93.70 + 0.20148]
OCT2017149] CT 207 130 4 CLS Acc.: 92.80; Sen: 93.20; Spe: 90.10[49]
The original tumour image (ROI):
Acc: 88.46; F1: 83.33; AUC:90.52
The segmented tumour image:
BUSII0 Ultrasound 780 3 CLS ?flf; 310&17;; rF slﬁiéfilr;lﬁg[i((j&?s%i !
Acc: 85.38; F1: 75.95; AUC:86.60
The fused image:
Acc: 94.62; F1: 91.14; AUC:97.11[51]
CheXpert[52] X-ray 224 316 14 CLS Avg. Acc on 14 categories: 90.70052]
ChestXray 14[18] X-ray 112120 14 CLS AUROC: 84.40052
EyePACST Fundoscopic 35126 5 CLS Acc: 91.10; AUC: 95.70053]
AUC: MEL: 92.80; NV: 96.00;
ISIC2019/54 Dermoscopy 25 331 9 cLs ggcwg g;ggigléz 3;:381 o 3:(3).';1(;);
UNK: 77.5059]
TCGA-GBMI WSI 255 - SA C-index: 64.52[57]
TCGA-LGGI56] WSI 1061 - SA C-index: 74.10058]
TCGA-LUSCPS] WSI 485 - SA C-index: 62.87[57]
NLSTI59] WSI 1104 - SA C-index: 64.76; AUC: 66.93[60]
PatchCamelyon} WSI 262 144/32 768 - SA Acc: 89.80; AUC: 96.30; NLL: 26.0061

* https://www.ircad.fr /research/data-sets/liver-segmentation-3d-ircadb-01/

T https://www.kaggle.com/c/diabetic-retinopathy-detection/
thttps://github.com/basveeling/pcam

1 https://www.iqvia.com/insights/the-igvia-institute
2 https://physionet.org/content/challenge-2012/1.0.0/
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Table 2 Statistics of the bio-signal benchmark datasets. Here, AD is the abbreviation of arrhythmia diagnosis, SSD denotes sleep-state
detection, SD denotes seizure detection, ED means emotion detection.

Name Modalities # Records # of subjects Task  Sampling rate Benchmarking results (%)
MIT-BIH arrhythmia ECG 48 1 AD 360Hz  CNN: Acc: 92.56; F1: 92.54; AUC: 99.20014]
dataset[62]
AUC: 92.90
PTB-XLI63] ECG 21837 71 AD 500Hz Deep learning for ECG analysis: benchmarks
and insights from PTB-XL
MIT'BItI:STt’[‘;;]Se stress ECG 15 1 Denoise 360Hz CNN: Acc: 96.19; F1: 96.18; AUC: 99.64/14
European ST-T ECG 90 2 AD 250 Hz CNN: Acc: 92.53; F1: 91.06; AUC: 99.20014)
databasel65]
AF classification "
. [67]
challonge 201715 ECG 8 528 4 AD 300Hz  F1:72.00
PTB diagnostic ECGI68] ECG 549 9 AD N/A QZZ:S%E]'OO; Pre: 99.00; Re: 93.00 using 12
AHALI] ECG 154 8 AD 250Hz CNN: ACC: 99.70; F1: 99.71; AUC: 99.98[14]
CPSC2018[71 ECG 6877 8 AD 500Hz Overall F1: 84.00(72
AMIGOSI™] ECG, GSR N/A 40 ED 128 Hz Arounsal(Acc: 76.00); Valence(Acc: 75.00)(74
ASCERTAIN[] EEG, ECG, EDA N/A 58 ED N/A [75]
BIO-VID-EMO DBl ECG, EMG, SC N/A 86 ED N/A Ace: 79.51(77]
EEG, EDA, EMG Arousal(Acc: 77.19, F1:69.01); Valence(Acc:
[78] ) ) ) ) 3
DEAP PPG, EOG, RSP N/A 32 ED S12Hz 26 17, 72.43)i7)
DREAMER/#0] EEG, ECG N/A 23 ED ECG:256 Hz Vale{lce(Acc: 86.23); Arousal(Acc: 84.54);
Dominance(85.02)[81
EEG. ECG. EDA M(SD.): -3.30(6.88) bpm; RMSE:
MAHNOB-HCI#2 RSP.SKT N/A 27 ED N/A 7.62 bpm;
’ M_cRate: 6.87183]
EEG, ECG, EDA
[84] 3 5 3
MPED RSP, BEG N/A 23 ED N/A [84]
SEEDI85] EEG N/A 15 ED 200Hz Acc: 85.65085]
Temple University EEG N/A 315 sD 200H Classificati te: 20.66
Hospital (TUH)[%] VA assirication error rate: .
Sleep-EDF: EEC, EOG,EMG  N/A 22 SSD 100Hz  Acc: 82.00; MF1: 76.90; : 76.00(8]
Telemetryl87
MASS-1* EEG, EOG, EMG N/A 53 SSD 256 Hz Acc 86.20; MF1: 81.70; x:80.00[88]
SHHSI89 90] EEG, EOG, EMG N/A 5804 SSD 12 550Hz Pre: 86.00%; Rec: 87.00; Spe: 95.00091]

Note: The benchmark results of datasets, ASCERTAIN and MPED, are hard to show in the table. Check them in the original paper.

“ https://ceams-carsm.ca/en/MASS/

briefly introduce these four datasets.

1) MIMIC-III contains all patients admitted to the in-
tensive care unit (ICU) at Beth Israel Deaconess Medical
Center from 2001 to 2012 and includes over 60 000 unique
ICU admissions with millions of observations.

2) eICU is a multi-center database comprised of iden-
tified health data that contains over 200 000 ICU admis-
sions across the United States between 2014 and 2015.

3) IQVIA is a real-world patient and clinical trial
database that can be requested from the website3. This
dataset contains 2 609 clinical trials formed between 2014
and 2019, and includes 25 894 doctors across 28 countries.

4) Physionet Challenge 2012 contains 11 records and
988 adult ICU admissions. The dataset is used to predict

3 https://www.igvia.com/insights/the-iqvia-institute

in-hospital mortality given the first 48 hours of data for
each ICU admissions.

2.2 Pre-training

From a historical perspective, the term pre-training
was first introduced in 2007 in the works of Bengio et
al.[92, 93] They proposed a model which consisted of greedy
layer-wise unsupervised pre-training followed by super-
vised fine-tuning. The pre-training techniques have been
widely used after deep neural networks achieved
success(29].

The research on deep neural networks (DNN) has en-
countered the bottleneck of a lack of training data (gener-

ally lack of annotated data). The problem comes from the
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fact that it is easy to encounter overfitting and poor gen-
eralization issues by training a DNN network with many
parameters without sufficient training datal?®l. To solve
this issue, in the early stage, some researchers attempted
to construct massive annotation datasets for AI tasks
from the data level. However, data annotation is a time
and cost-consuming task. Moreover, few Al-related tasks
have a related large-scale annotated dataset for training,
e.g., tasks in the medical domain. How to train a general-
ized and robust model for specific tasks with few annot-
ated samples has attracted more attention for a long
time.

Pre-trained models have achieved significant success
in the AI community. We employ those pre-trained mod-
els as a backbone to get representative embeddings for
downstream tasks. Generally, we adopt the pre-training
technique in the following situations.

1) The training and pre-training datasets are related
tasks(25 94, 95|, If the source and target datasets are simil-
ar tasks or in the same domain, we can use the pre-
trained model instead of training a model from scratch,
which significantly improves efficiency.

2) Training datasets have an extremely small size of
the annotated samples25: 94, The small size of the data-
sets cannot be sufficient to satisfy the training of a high-
performance model. A pre-trained model can be intro-
duced under this circumstance to improve the quality of
the feature representation, thus getting a satisfactory per-
formance in the downstream tasks.

3) The computation resource is limited®4. The pre-
trained models can speed up convergence on the target
task, which allows models to converge sufficiently within
fewer iterations. That is friendly for situations where the
computation is limited.

4) The data samples are sufficient, but the labelling
budget is small29. In the current era of explosive digital
data growth, it is easy to collect massive unlabelled data,
while annotating them is expensive. In this situation, a
self-supervised learning paradigm will help with learning
a generalized representation of the unlabelled data and
then use such a model to process the downstream tasks.

We list four essential scenarios in which a pre-trained
model will be considered to introduce. Though they are
mentioned separately, they have overlapped parts, mean-
ing there are no explicit application situations of pre-
training. Pre-training can be widely used in multiple cir-
cumstances where the rich knowledge benefits various
downstream tasks[?®l. As [25] mentioned, pre-training is
highly related to transfer learning and self-supervised
learning. In the following sections, we will mainly focus
on introducing these two paradigms in detail.

The different supervision levels can impact two phases
in the pre-training: the pre-training itself and the down-
stream tasks using the pre-training results. In the pre-
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training phase, both supervised and unsupervised cases
exist. For example, transfer learning could be either su-
pervised or unsupervised, while self-supervised learning
can be unsupervised. Whether pre-training methods
should be adopted depends on the source data and target
data’s relationship and the supervision level given in the
target data. Generally speaking, the more similarity
between the target domain and source domain, the more
benefit of the pre-training methods; the less supervision
information provided in the downstream task (such as
semi-supervised learning), the more benefit will be
provided by the pre-training methods.

2.2.1 Transfer learning

Transfer learning is the primary strategy for early pre-
training. It is a significant paradigm motivated by the
human study process that learners study new knowledge
based on previous knowledge. It mainly focuses on solv-
ing new problems through the influence of experience and
knowledge in pre-training on the target tasks[25 9. This
process enables us to use the already learned knowledge
from the source domain freely and learn a new skill by ac-
cepting little knowledge and speeding up learning. Thus,
reflecting the AI task, this process can be generalised to
two learning steps: pre-training prior knowledge from the
source task and fine-tuning to learn more specific know-
ledge from the target sourcel2”l. In transfer learning, pre-
training can be categorised into supervised and unsuper-
vised pre-training based on the source data with supervi-
sion information or not. Whether the target data is la-
belled or not, the supervised pre-training can be divided
into inductive and transduction transfer learning?”, as
shown in Fig. 2. For transductive transfer learning, a clas-
sifier is trained with labelled data, using the pre-trained
classifier to produce pseudo labels for the target domain
dataset. The data with the produced pseudo labels would
be added to the training set. An example of this training
fashion is self-trainingl®7l, which is considered a specific
semi-supervised learning technique.

Generally, feature transfer and parameter transfer are
the two main goals in transfer learning pre-trainingl27.
For example, after pre-training a computer vision model
on a large labelled dataset “ImageNet”, a small amount
of data can be fine-tuned to achieve reliable results be-
cause the features and parameters of the target task have
been learned by the model in the pre-training of the large
dataset. In addition, instance transfer and relational
knowledge are two other pre-training approaches in trans-
fer learning. Many feasible large-scale models were de-
veloped for pre-training, such as AlexNetll, VGGNet2],
ResNetl®], GoogleNet®], DenseNetl10, etc. In the same
way, inspired by transfer learning in the CV domain, pre-
training also is widely used in the NLP domain. The pre-
trained word representation models extract word embed-
dings as an input of NLP tasks. There have been many
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Fig. 2 Ilustration of the relationship between pre-training and other methods (unsupervised, supervised, semi-supervised)

well-known pre-training models proposed in recent years,
e.g., embeddings from language models (ELMo)[%1 and
the well-known pre-trained model BERT®! that is trained
on a large-scale dataset.

Transfer learning has been so influential in deep learn-
ing in recent years that it has become an integral ap-
proach to processing medical data. There have been a
considerable number of works using transfer learning to
improve the performance in medical imaging analysis,
such as in radiology!8: 521, pathology!l92l, dermatology!l03],
ophthalmologyl104 105 etc. Most of these previous works
were proposed based on a standard pipeline that intro-
duces pre-trained ImageNet models to extract universal
representations for various medical imaging modalities.
For example, Wang et al.l!8: 52 106] ipitialized the weights
of backbones from ImageNet pre-trained models. Esteva
et al.103] demonstrated a DNN-based diagnosis of skin le-
sions approach using the ImageNet pre-trained model as a
feature extractor, getting a competitive performance with
dermatologists. Treder et al.l105 utilised ImageNet pre-
trained model to extract features for 1112 spectral do-
main optical coherence tomography images, and Han et
al.[102] ytilised the same feature extraction method in the
histopathology image classification and segmentation
tasks.

Apart from the imaging modality, transfer learning
has been successful in other data modalities, but there is
no dataset as large as ImageNet for non-image medical
data. Some works convert the one-dimensional vector in-
to images with Fourier or Wavelet transformation and
then use the ImageNet pre-trained models in feature ex-
tractionll07, 108]  Moreover, other works transfer the fea-
ture extractor between different but related tasks[6 109],
In addition to these strategies, some researchers pre-
trained feature extractor on one dataset, which contains
relatively large samples, and then transferred the model
to process other datasets that could be sparse and
smallll6; 110, Clinical text data is an NLP-related task.
Most currently proposed methods use the BERT model to

extract word embeddings(111].

Although transfer learning has successfully processed
many tasks, the conventional transfer learning paradigm
still has controversial issues in the medical domain. A
standard formulation for imaging data is using ImageNet
pre-trained models. Matsoukas et al.l12] pointed out that
transfer learning works by increasing the reuse of learned
representations. However, there are many remarkable dif-
ferences in data (including size, distribution, categories,
etc.), features, and the final tasks between the natural
classification task on ImageNet and the target specifica-
tion medical datal®l. He et al.%4 refered to the fact that
the ImageNet pre-trained model can help to speed up
convergence but does not contribute to performance im-
provement. Especially in relatively large-scale medical
datasets, the ImageNet pre-trained model has no obvious
advantages compared to a simple modell®l. In addition,
the systematical experiments show that the ImageNet
pre-trained model is over-parameterized for medical im-
age tasks instead of extracting more sophisticated fea-
turesl®.

2.2.2 Self-supervised pre-training

Considering that there are a large number of data pro-
duced in the real world that are not annotated, to lever-
age such data, self-supervised learning has become one of
the most promising ways of processing unlabelled data in
deep learning(113-115], It attempts to gain the supervisory
signal from the data pool rather than human annotation,
then exploits the underlying semantic information to
learn general data representations for downstream tasks.

The typical workflow of self-supervised learning, simil-
ar to transfer learning, consists of representation and
downstream task learning. The actual self-supervised
learning happens in the first stage, where the model
learns the knowledge of the unstructured dataset to rep-
resent the feature embeddings, which is the exact differ-
ence between self-supervised learning and conventional
transfer learning. In the downstream learning process, the
framework could be the same as in supervised fashion: a
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feature extractor followed by a classifier. The top feature
extractor will be initialized using the weights transferred
from the first stage, and the transferred weights will be
fine-tuned as the particular task, training the following
modules meanwhile. Another setting is after self-super-
vised learning without fine-tuning. The extracted fea-
tures of the unlabelled training dataset will classify using
clustering methods, like the k-nearest neighbours al-
gorithm (KNN).

Based on the aforementioned, from the data-driven
perspective, the self-supervised learning fashion is similar
to the transfer learning settings with unsupervised pre-
training: they are all trained on unlabelled data. The self-
supervised learning can be regarded as a branch of trans-
fer learning as a consequence. However, they are trained
in different ways: unsupervised pre-training is generally
trained on the model without supervision, e.g., cluster-
ingl16l; instead, self-supervised learning typically is
trained through an end-to-end framework using the self-
produced supervision information. Furthermore, the self-
supervised learning approach can also be considered semi-
supervised when the embeddings are fine-tuned with su-
pervision[!17l. The relationship is shown in Fig. 2.

Nowadays, various self-supervised learning frame-
works have been developed and succeeded in many do-
mains for applications, such as in the communities of CV

and NLP, etc. For instance, many advanced frameworks

L] L] L=
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firstly were developed for CV tasks, like CPCI8] mo-
mentum contrast (MoCo)l9, SimCLR[!3], BYOLM4,
SwAVI[20 MAE[I21] Additionally,
BERT still performs poorly in processing NLP-related

Siamesell22],  etc.
tasks. For extended applications, self-supervised learning
has become one of the best choices for processing medical
data. The reason is that the amount of annotated data is
relatively small, while the unlabelled data is considerably
large in real-world medical datasets. Therefore, the re-
mainder of this section will delve into the exploration of
state-of-the-art self-supervised learning techniques.

To achieve better understanding, we will introduce
readers to the state-of-the-art self-supervised learning
methods in the upcoming sections.

Contrastive predictive coding (CPC) is an unsuper-
vised contrastive learning approach to learning high-di-
mensional data representation, which can be used in
many data modalities, such as text, speech and image
datall’8], CPC aims to learn useful and informative rep-
resentations that keep more information on the raw data
and can precisely predict the future state latent vector.
The architecture of the CPC model has two main com-
ponents, including a non-linear encoder and an auto-re-
gressive model. The illustrations of CPC frameworks are
shown in Figs.3 and 4, representing the architecture of
processing time-series data and images respectively. The
non-linear encoder (genc) maps the raw sequence to a lat-
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ent representation (zt = gem(:rt)). The auto-regressive
model, like GRU, as a predictor enables the prediction of
the context latent representation (c: = gar(2¢)), which
condenses the information before the ¢ state. To evaluate
the prediction, here, ¢; is used to predict the latent vec-
tor of the after-k states. In practice, a linear transforma-
tion is used to obtain the predicted latent representation
(2 = Wier), where W is a learnable linear matrix. A
score here defines the relativeness between the predictive
representation and the real future sequence. The scoring
function can be expressed as the following equation:

fk(It+k,Ct) = eXp(ZE+kaCt)~ (1)

The non-linear encoder and auto-regressive model are
optimised jointly based on the noise-contrastive estima-
tion (NCE) loss, namely, InfoNCE, in this work. The loss
function is shown as follows:

Jr(@eyn, )
£ = —Bflog Eum) )
ZacjeX fk(mjv Ci)

where the sequence set X = x1,x2, - ,zn in which has
one positive sample, the other N — 1 samples are
regarded as negative samples/!23],

MoColl19 is a mechanism of contrastive learning intu-
ited by dictionary look-up via a dynamic dictionary with
a queue and moving-averaged encoder, as Fig.5 shows.
MoCo learns the robust representation via performing
dictionary look-up by making the query embeddings
closed and its matching key embedding far away. There
are two necessities to build such a reasonable dictionary:
1) The dictionary should be large enough; 2) The repres-
entation should be consistent (the key requires to be en-
coded using a similar or identical encoder to be meaning-
ful of the similarity metric between query and key in the
dictionary). The proposed MoCo mechanism achieves the
first necessity through a dynamic memory bank, where
the oldest mini-batch will be progressively replaced by a
new one. At the same time, a momentum update method
is introduced to address the key representations’ consist-
ency, as defined in (4) defined. The model will be optim-
ized in MoCo with the InfoNCE loss, which is defined as
the following equation:

Augmentation V — Query q
encoder

Input sample

Memory bank

key ke ke
Xo%, X7, X%, e
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exp(fa(2) fi, (&) /7)

Ly=—log =5
2 im0 exp(fq(x) fie; (%) /7)

3)

where 7 is a temperature hyper-parameter that is used to
smooth the loss, fy(z?) denotes the query that is the
encoded features and a set of embeddings {ko, k1, k2, -}
encoded with f(-). The encoded samples ks are the keys
of a dictionary in which a single key k4 matches ¢, and
the k; is considered as the negative sample for ¢q. Another
important technique, the momentum update, is defined as

O ~ mby + (1 — m)eq (4)

where 0 is the weight of the encoder fi(-) and 6, is
regarded as fq(-). m € [0,1) is a momentum coefficient. A
larger m yields better performance, as the experiments
show in [119]; when m = 0.999, the performance is best.
In further research, the authors of MoCo proposed MoCo-
v2[124] and MoCo-v3[125 to improve the performance.
Swapping assignments between multiple views
(SWAV)[120] is a cluster assignment-based contrastive
learning paradigm. The illustration of SwAV is shown in
Fig.6. Compared to the previous contrastive learning
methods, SwWAV does not calculate view-pair comparison,
instead comparing the cluster assignments of the differ-
ent views, thus not requiring huge computation resources.
Apart from introducing a clustering mechanism, SwAV
proposes a multi-crop augmentation strategy aiming to
increase the number of image views while not burdening
with extra memory and computation cost. Piratically,
SwAV introduces online clustering, which maps the fea-
tures (Z = z1,22, - ,2zB) to a set of vectors (Q = qi,
g2, - ,qB) by the prototype (C = ci,c2, - ,ck). Then,
the newly defined loss is to minimize the similarity with a
setup of swapped prediction. The loss shows as the fol-

lowing equation:

L(zt,25) = U(zt,qs) + 1(zs, qr) (5)

where the [(-) is described as the following equation. Here,
we give an example with [(z¢, gs).

(z1,95) = —>_ q{" logp{"
k

where

Contrastive
loss

Momentum

ko ke K
encoder ?

15 1y

Fig. 5 Illustration of MoCo
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1
exp (;Z;Ck)
p" = : : (6)
2 : T
exp (*Zt Ck/)
k' T

Simple framework for contrastive learning of visual
representations (SimCLR)[!M3] is a straightforward imple-
mented framework for contrastive learning, which was
first proposed to process image data, yielding state-of-the-
art performance. The framework of SimCLR is shown in
Fig.7. It learns representation on an unlabelled dataset
by maximizing agreement between random conducting
augmentation methods for the same data sample via a
contrastive loss. Similarly, the same data was augmented
with two randomly selected methods producing two
views. These two views are treated as a cheerful pair,
while considering all other samples in the same batch as
the negative samples. The augmented views pass through
the backbone, typically a large-scale neural network, pro-
ducing the embeddings that are the features of the data
we want to get via the pre-training settings. The dimen-
sionality of trained embeddings is reduced through a
multi-layer non-linear projection head. The losses are cal-
culated by conducting the loss function for a cheerful pair
and its corresponding negative samples in a mini-batch.

Machine Intelligence Research 20(2), April 2023
The contrastive loss function is defined as

exp(s;;/7)
exp(s;fj/r) + > Qrisztrl exp(sgk/r)

Lcor,; = —log

(7)

T is the matrix of the similarity between one

where s
positive pair (z;,z;), s~ is the matrix of the similarity
between the negative pairs (z;,z2k), T represents the
temperature parameter used to smooth the labels, and @
means the distribution of the mini-batch in the current
state. The similarity matrix could be calculated with
sim(u,v) = u"v/||u][[v]}

Bootstrap your own latent (BYOL)[!4l is another pop-
ular approach to self-supervised representation learning.
The framework of BYOL is shown in Fig.8. Unlike the
SimCLR, and MoColl19 BYOL can learn high-quality
representations relying on only one augmented view of an
image, which means that it does not require negative
samples. Particularly, the framework consists of two
neural networks to learn the representation, where an on-
line network is trained to predict the representations pro-
duced by the target network. In this way, the additional
predictor module in the online network can prevent the
model’s collapse. The loss function can be defined as the
following mean square error (MSE) between the predic-
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tion from the predictor of the online network and the out-
put of the target network projection:

o lanz0),7E)
s Gzo) 21122

(8)

Loe 2 || qa(ze) — 2¢|I5 = 2

where the 2y is a representation (y9 = fo(v), where v is
the augmented sample, and f denotes the encoder)
passing through the projection, zo = go(yo); qo(2¢) is the
prediction in the online network; z; is the projection of
[l ll2 the [
normalization. When the parameters 0, £ are updated,

the target network; and denotes as
the stochastic optimization step will minimize the total
loss of BYOL, ££?OL =Ly + Zg’g where Eg’g represents
the augmented sample v feeding into the target network
while the other augmented sample v’ enters the online
network.

Simple Siamese networks (SimSiam)122 proposed a
hypothesis on the implication of the stop-gradient, which
plays an indispensable role in preventing collapsing effect-
ively, as shown in Fig.9. Practically, it is the same as
SimCLR, BYOL, SwAV, etc., which all utilise the Sia-
mese network, that a single sample is augmented to two
views and then processed by the same encoder network.
The difference is that on one side, the encoder is fol-

lowed by a predicted MLP, while the other side has no

—| Augmentation

Input sample

Augmentation

Fig. 9

Encoder

Fig. 10

Encoder

Jo
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MLP but with a stop-gradient operation. The model is
optimized by maximizing the similarity between the out-
puts of the predictor and the encoder. Concretely, we can
formulate the process to the outputs of p1 = h(fo(A(z1)))
and z2 = fo(A(z2)); minimizing their negative cosine sim-
ilarity with the following equation:

D1 22
D(p1,22) = — 9)
[p1ll2 [[22]2
where || - || represents the lo-norm. The final loss can be

defined as a symmetrical loss with a stop-gradient
operation (sg) as

1 1
L= 5D(p1,59(22)) + 5D(p2, 59(21)) (10)
where pa = h(f(A(z2))) and z1 = f(A(z1)).
Masked autoencoders (MAE) are self-supervised

learners that randomly mask patches of images and pre-
dict the missing pixels[2ll. The architecture of MAE is
shown in Fig.10. MAE employs the random masking
strategy. Specifically, MAE randomly samples and masks
a portion of patches from the images based on a uniform
distribution. Each masked patch is replaced by a token, a
shared and learnable vector. In the MAE, the encoder is a
ViT model that is only used to process visible patches to
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Encoder
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Illustration of SimSiam
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Illustration of MAE architecturel!2!]
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obtain its embeddings; the decoder is a light model built
with several transformer blocks, and the last layer of the
decoder is an MLP. The dimension of the MLP module's
output is the same as the patches, which is used to pre-
dict the pixels of the masked patches. The encoder in-
puts are masked tokens and encoded visible patches com-
bined with positional embeddings. Finally, a simple MSE
loss will be introduced to calculate the value of the loss
between the predicted and original pixels.

BERTIE stands for bidirectional encoder representa-
tions from Transformers, the illustration shown in Fig.11.
Based on the investigation, BERT profoundly affects the
processing and generation of EHRs data and textual med-
ical data in the medical field[!26l, The BERT model ad-
opts the main structure of the bidirectional deep Trans-
former, which will be introduced next.

The Transformer is an attention mechanism that uses
the structure of the encoder and decoder to calculate the
relationship between input informationl'27. After the in-
put is passed through the encoder, the contribution of an
input element to the total input can be calculated(!27. In
natural language processing (NLP), this attention score is
used as the weight of other words for that word to com-
pute a weighted representation of a given word[28l. The
influence representation of a given word can be obtained
by feeding a weighted average of all word representations
into a fully connected network. When passing through
the decoder, only a one-word representation can be de-
coded in one direction at a time, and each decoding step
will consider the previous decoding results[!27]. After the
birth of Transformer, the development of large-scale self-
supervised language generation in the field of NLP is im-
proved remarkably.

After pre-training, BERT can obtain robust paramet-
ers for downstream tasks. By modifying inputs and out-
puts with data from downstream tasks, BERT can be
fine-tuned for any NLP task[!28l. BERT can handle these
applications efficiently by inputting a single sentence or
sentence pair. For input, its pattern is two sentences con-
nected by a particular token [SEP], which can repre-

ﬁp Mask LM Mask LM \
_ & o @
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sent128]:

1) Sentence pairs in paraphrasing;

2) Hypothesis-premise pairs in implication;

3) Questions in question answering-paragraph pairs;

4) Single sentences for text classification or sequence
tagging.

For output, BERT will generate a token-level repres-
entation for each token, which can be used to process se-
quence labelling or question answering, and unique tokens
[CLS] can be fed into an additional layer for classific-
ation[128],

In this section, we provide a high-level introduction to
benchmark datasets in the medical domain and represent-
ative pre-training strategies, as this paper focuses on pre-
training in the medical domain, which will make the read-
ers who are not specialised in pre-training techniques
quickly and clearly learn about the developments of the
related methods and the latest techniques.

3 Medical images in pre-training

The CV technique has been widely used in medical
imaging, providing excellent technical support for clinical
tasks(129], In the fold of medical imaging, three main
tracks are receiving more attention, such as diagnosis,
segmentation, and survival prediction. The image data
modalities include CT[30 MRII3U, X-ray[132, Ultras-
ound[!33], Dermoscopy!33, Ophthalmology!!34, whole slide
tissue images (WSI)[60 etc. In recent years, learning in
medical images has changed from traditional heuristic
learning to learning-based learning, which means that
new learning methods can obtain essential information
from a large number of unlabelled medical images['35).
The information in medical pictures can either be marked
manually or extracted by the mechanism of a deep learn-
ing network. The manual annotation of datasets with
over millions of samples is very expensive, and the pri-
vacy of medical information is also essential because the
information of many medical image data is not shared, es-
pecially some particular disease images(!36l. In terms of
that, the concept of transfer learning has been considered
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with a smaller number of labelled images. Some ImageN-
et pre-trained models are used in processing medical ima-
ging tasks. However, in practice, ImageNet pre-trained
models are not compatible with the downstream task of
medical images, so self-supervised learning is also devel-
oping rapidly in the field of medical images[3]. Theoretic-
ally, a pre-trained model used in medical tasks not only
significantly reduces the labour cost of data processing
but also improves the efficiency of the model learning
process. The investigation of current pre-trained models
in medical images will be classified by diverse medical
tasks.

3.1 Diagnosis

In discussing pre-training of medical images for the
diagnosis, the classification characteristics of brain tu-
mours are mainly investigated because of the large num-
ber of studies on this type of data set.

3.1.1 CT/MRI

Early diagnosis is crucial for treating brain tumours;
however, separating the MR effects of the brain into the
tumour and normal processes is a time-consuming task.
Reference [137] is an early transfer learning method us-
ing pre-trained brain tumour recognition, using the large
natural image dataset ImageNet, and achieved 81% ac-
curacy in the leave one out cross-validation method. Ref-
erence [130] is an early article on extracting lung tumour
data features through CT slice pre-training. It investig-
ates using pre-training methods to improve models that
predict long-term and short-term survival probability.
Prakash and Kumarill38] proposed a method for transfer
learning. Using VGG16 and ResNet pre-trained on Im-
ageNet, combined with magnetic resonance brain images
from the Harvard Medical School database, the final res-
ult can reach 100% classification accuracy. Compared
with the previous classification results of ordinary CNN,
the pre-training of transfer learning combined with the
downstream task technology of image enhancement im-
proves the classification accuracy. Khan et al.l39 pro-
posed a data-augmented pre-training method, compared
to previous VGG16 and ResNet, the designed CNN mod-
el is applied on a small MRI brain slice dataset for brain
tumour detection, and this method is faster and more ac-
curate. Based on the previous augmented data treatment,
Sajjad et al.l40] used a CNN model to segment the tu-
mour region, used the data augmentation mode to ex-
pand the segmented data for pre-training and then fine-
tunes the pre-trained CNN model. The article uses many
brain tumour data sets to compare the model results.
Compared with the tumour grading results before data
augmentation, the transfer learning pre-trained model
after data augmentation has higher accuracy.

Deepak et al.[141, 142] extract the features of brain tu-
mours in the data set in the pre-training of transfer learn-
ing and simulate the size of different pre-training data in
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the experiment. The data set is taken from [143] on brain
tumours. In [141], the authors employed Support Vector
Machine (SVM) and KNN classifiers in the downstream
tasks. The results indicate the exceptional capability of
the pre-trained model to extract valuable features from
brain MRI images. The integration of the pre-trained
model enhances robustness and yields superior perform-
ance with a small amount of training data. The data set
will have relatively good results after testing, but the re-
cognition of brain tumours type meningioma is not as
good as the other two.

Small-scale tumour image datasets are common, so
there are some investigations on the pre-trained methods
to mitigate the influences of the insufficient scale of im-
age data. Swati et al.'¥4 used transfer learning to per-
form brain tumour classification studies on brain magnet-
ic resonance images, pre-training on small-scale data, and
the dataset is [145]. The experimental results on this
dataset are state-of-the-art on a small scale of data.
Wang et al.[16] discussed the use of ResNet to pre-train
on the public Lunal6 dataset and then fine-tune it on the
lung cancer data of Shandong Provincial Hospital, with
an accuracy rate of 85.71%, which is better than the ex-
isting AlexNet, VGG16 and DenseNet on lung cancer.
Also, in small (100 sample lung CT images) training, a
high level of performance can still be maintained.

Moreover, many novel pre-trained structures in medic-
al image diagnosis appeared with reliable performance.
Marentakis et al.[147 investigated the classification of CT
images of non-small cell lung cancer (including adenocar-
cinoma and squamous cell carcinoma) and compares it to
four types of technical models. It is found that the struc-
ture of long short-term memory (LSTM) + Inception per-
forms the best, which is better than experts’ classifica-
tion accuracy, which is 7%25% higher. Because of
LSTM, this model is not allowed to perform segmenta-
tion on the image, so the technique is not affected by dif-
ferences in the edges of the image. Kutlu and Avcil!48 es-
tablished a new model to classify liver and brain tumours.
First, the pre-trained model of the AlexNet architecture
is used to extract features from the input data, and then
the features of wavelet transform can be used to extract
essential factors to improve the classifier's performance.
Finally, LSTM has the function of the signal classifica-
tion.

3.1.2 Ultrasound

Given that current radiologists’ professional skills and
knowledge are not very reliable, many abnormal ultra-
sound images of fatty liver cannot be well diagnosed,
leading to the development of fatty liver into a fatal
chronic disease. In order to improve the accuracy of ultra-
sound image classification, Reddy et al.[133: 149 proposed
the convolutional neural network combined with transfer
learning (VGG16 pre-train) to analyse and identify
whether there is fatty liver. At the same time, these two
articles compare the ordinary CNN without pre-training
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and other non-deep learning methods. The results show
that the pre-training and fine-tuning of transfer learning
have significantly improved the recognition rate, both of
which remain above 95%.
3.1.3 X-ray

Benign and malignant breast tumours are difficult to
distinguish under X-rays. In the recent popular transfer
learning, most pre-trained models are trained on the
mainstream ImageNet benchmark datasets. Since these
datasets do not contain breast-related images, the recog-
nition results are not ideal. Alkhaleefah et al.l'50 pro-
posed a double-shot transfer learning model. The pre-
training uses the image enhancement mode to reduce the
problem of over-fitting and insufficient data. Compared
with other mainstream pre-training models, the recogni-
tion accuracy is greatly improved. In [132], two models
are designed to improve the recognition of lung diseases
by X-ray and CT, respectively: one is an improved
AlexNet, and the other is a combination of human opera-
tion and pre-trained learned features to improve the clas-
sification accuracy. The improved pre-training method
improves the accuracy by about 10% compared to the ori-
ginal training method. The two training datasets are [151]
and [152].

3.2 Segmentation

3.2.1 Abdominal organ segmentation

The abdomen is a vital part of the area in the human
body, referring to the region between the thorax and pel-
vis(27l. Abdominal organ segmentation has significance for
reducing patients’ mortality. In the task of abdominal or-
gan segmentation, single or multiple abdominal organs
are segmented into semantic segments of pixels identified
with homogeneous features, such as colour and texture27.
Automatic segmentation of lesions on liver images is an
essential step for correct decision-making in clinical dia-
gnosis. In [153], a cascade fully convolutional neural net-
work is proposed to automatically segment the liver and
lesions in CT and MRI abdominal images. The first con-
volutional network was used to identify the location of
the liver in the abdominal picture, and the second net-
work was used to identify the lesion site. Both convolu-
tional neural networks are pre-trained using U-Net[l54],
The accuracy of the experimental results of Dice has
reached the current best level, and the model can be fine-
tuned to adapt to different situations. Conze et al.[l5]
designd a multi-organ segmenter for CT and MRI images
of the abdomen and extends standard conditional gener-
ative adversarial networks. At the same time, Cascade's
pre-trained encoder-decoder structure extracts the fea-
tures of organs and identifies abdominal organs through
contextual information. The adversarial generative net-
work in the paper achieves better segmentation than the
encoder-decoder structure. In addition, Kavur et al.[*4 in-
troduced a medical image segmentation competition held
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at CHAOS dataset, in which players use the prestained
encoder-decoder model for training for single or multiple
organ segmentation tasks. In unimodal and multi-modal
tasks, pre-trained deep learning models show comparat-
ive advantage results compared to other methods.

The training of 3D images is not efficient. There-
fore, Li et al.48] proposed a method using a 2D UNet (H-
DenseUNet) and a corresponding 3D DenseUNet for liver
cancer segmentation computation. The convergence speed
of the pre-trained transfer learning is significantly higher
than that of the ordinary model. This method was evalu-
ated on the MICCAI 2017 liver tumour challengel4”l and
the 3DIRCADbL datasetl!56], respectively, and also
achieved state-of-the-art results. The application of 2D
and 3D image models has merged algorithms with time
advantage and memory space advantage.

3.2.2 Ultrasound

Convolutional neural networks have shown promising
results in breast tumour segmentation in ultrasound.
Generally, these CNN-based methods modify the archi-
tecture model or use the CNN ensemble to design new
models. Gémez-Flores and Pereiral!5” evaluate the seg-
mentation of breast tumour ultrasound images using four
transfer learning models, including AlexNet, U-Net,
VGG16 and VGG19's SegNet, and ResNet representa-
tions. These pre-trained models are fine-tuned on normal
and tumour breast images, where the datasets come from
[50, 158]. In these ultrasound breast-specific datasets, the
F1 value of the test after pre-training on ResNet18 is the
highest, which indicates it has more potential capability.
Similarly, in [159-161], investigations of the segmenta-
tion of ultrasound breast cancer with transfer learning are
included, and [162] also made the comparison of kidney
image segmentation with pre-trained methods. In con-
trast, these investigations prove that pre-training can be
efficiently and precisely used for ultrasound image fea-
ture extraction.

3.2.3 Comprehensive

The application of self-supervised learning in segment-
ation is also pervasive. Based on many basic computer
vision models, especially the method of exchanging seg-
mentation positions, the pre-trained encoder can accur-
ately learn the features of the picture. Bai et al.[63] used
U-Net to pre-train and test the accuracy of the training
set of tiny hearts, and the experimental result improves
the accuracy by about 0.04 compared with the ordinary
U-Net. Li et al.l'64 conducted a pre-training experiment
on image rotation, which is also a popular model for self-
supervised learning. The method is similar to SimCLR's
image enhancement, derived from the model relative posi-
tions of image patchesl65 166, This method performs
pseudo-label classification for clusters in the results of
self-supervised learning. Experiments show that this
pseudo-label pre-training method reduces labour costs by
80% and achieves the same level of segmentation accur-
acy. The pre-training of self-supervised learning mainly
does not have annotated requirements for the input in-
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formation, and the data characteristics of the pictures
learned under the encoders of different pre-training meth-
ods are more similar to the intrinsic data features. Chen
et al.l!67] proposed a method to learn semantic features of
medical images using self-supervised learning while in-
vestigating the effect of unlabelled pre-training applica-
tions for classification, localization, and segmentation. Se-
mantic features can be appropriately learned by the con-
text restoration method, and the results of various pre-
train scenarios prove that self-supervised learning has re-
liable performance on medical image tasks.

3.3 Survival prediction

As well as classification and segmentation tasks have
received much attention, survival analysis also plays a
critical role in current clinical practice as a part of com-
puter-aided medical image analysis. Survival prediction
(survival analysis or prognosis) is a medical task to pre-
dict the expected duration of time until events happen
(e.g., death), which is frequently used for cancer
patients(6%. Some works have utilised deep learning meth-
ods to achieve state-of-the-art survival prediction
resultsl168, 169,  However, the requirement for large
amounts of well-phenotyped training data has still been
one of the significant challenges for introducing deep
learning into survival prediction!”). There are very few
large, labelled, and public datasets. It may be possible to
overcome the challenge of limited data by pre-training on
a large dataset from another domainl70. Therefore, some
works introduce pre-trained models or pre-trained
strategies. Li et al.l7l] considered in the survival predic-
tion that the interesting event may not be observed dur-
ing the study period, and collecting sufficient annotated
training samples for robust prediction is extremely diffi-
cult in real practice. A transfer learning-based Cox meth-
od, namely Transfer-Cox, was proposed to use auxiliary
data in a situation where the training data is insufficient.
This method aims to extract valuable knowledge from the
source domain and transfer it to the target domain with
the Li2-norm penalty for learning a shared representa-
tion across the source and target domain. Agravat and
Ravalll™ demonstrated a CNN architecture for glioma
segmentation and feature extraction, and the extracted
features are used to predict the survival of patients with
random forest regression. To reduce the impact of high
imbalance in the brain tumour segmentation task, in the
initial stage, the network is trained for the whole tumour,
which provides tumour localization in the brain, and in
the next stage, the parameter of the network in the first
stage will transfer to process sub-component (e.g., oed-
ema, enhancing tumour and necrotic core). Yao et al.[60
developed the deep attention multiple instance survival
learning (DeepAttnMISL) model to predict cancer surviv-
al accurately. For the feature extraction process, they
used an ImageNet pre-trained VggNet to extract features
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from image patches, and Setio et al.l!73 found that using
medical pre-trained models positively impacts survival
tests for two survival prediction approaches, DeepAttn-
MISL and WSISA69. Chen et al.l!7 proposed the hier-
archical image pyramid transformer (HIPT), two stages
self-supervised pre-training framework to leverage the
natural hierarchical structure inherent in WSIs to learn
high-resolution image representation for cancer sub-typ-
ing and survival prediction. The self-supervision part of
this work wuses student-teacher knowledge distillation
(DINO), where one of the paths in Siamese is the teacher
network and another is the student network.

3.4 Longitudinal images data

The images captured from the same area at different
times can be considered time-series data. For instance,
the CT images of the same body area scan at 1, 3 and 6
months, respectivelyl!l. The set of images can be re-
garded as time-series images data that contain abundant
temporal relevant diagnostic information. Integrating
temporal information into medical imaging learning has
significance for enhancing the diagnosis, prognosis, and
disease progression analysis[l7177]. Some previous works
used the CNN and recurrent neural network to mine the
temporal and spatial information simultaneouslyl[176; 178],
However, with our investigation, only a few works are in-
volved in employing a pre-training approach in this field.
Xu et al.ll75 demonstrated using the deep learning meth-
od to predict prognostic endpoints of patients treated
with radiation on longitudinal CT imaging obtained fol-
low-up. In this work, they use ImageNet pre-trained mod-
el to extract CT image features. Ouyang et al.l7 pro-
posed a longitudinal neighborhood embedding (LNE) to
capture the gradual deterioration of brain structure and
function caused by ageing. They construct a smooth tra-
jectory field that is built by graph construction in each
training iteration in the latent space to capture the glob-
al morphology while maintaining the local continuity.
The extensive experiments demonstrate that the LNE is
positive for exploiting the association of information tem-
poral and spatial to reveal the impact of neurodegenerat-
ive disorders. Ren et al.['31] presented a local and multi-
scale spatial-temporal representation learning method for
pre-training on longitudinal MRI imaging datasets, while
they proposed various regularisations for avoiding col-
lapsing when extending to multi-scale spatial-temporal
representations. They evaluated the improvement in lon-
gitudinal neurodegenerative adult MRI and developing in-
fant’s brain MRI for segmentation tasks. Konwer et al.[177]
proposed a framework to improve clinical prediction tasks
using limited temporal medical images. The proposed
framework consists of two modules: temporal progression
learning and snapshot learning. The temporal progres-
sion learning extracts temporal image sequences using a
temporal ConvNet and a self-attention module. Snapshot
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learning includes self-supervised learning on unlabelled
data and then using the target data to fine-tune the net-
work. A re-calibration network is utilised to align these
two contextual representations. The experiments demon-
strate that this framework outperforms other advanced
clinical prediction methods.

3.5 Section conclusion

In all, the main progress of medical images comes
from the new field proposed by computer vision, and the
impact of pre-training on traditional machine learning
and deep learning is huge. Table 3 illustrates the major
papers discussed in this section. Transfer learning and
self-supervised learning solve the problem of image la-
belling and the problem of fewer data in pre-training, and
the accuracy of pre-training segmentation and diagnosis
can generally achieve more accurate results than tradi-
tional supervised learning. The application of pre-train-
ing on pictures greatly improves the function of auxiliary
medical detection, reduces the workload of doctors, and
improves the reliability of diagnosis.

4 Bio-signal data in pre-training

It is known that there are several different types of
bio-signal data in the medical domain, such as electroen-
cephalograms (EEG), electrocardiograms (ECG), heart
rate variability (HRV), electromyograms (EMG), electro-
dermal activity (EDA) and photoplethysmography
(PPQG), of which contain a large volume of physiological
information. DL-based advances in bio-signals enable the
processing of signals (signal segmentation, wave detec-
tion, and noise removal) and the creation of high-quality
feature representations to be used in clinical applications,
such as signal de-noising, disease diagnosis, emotion re-
cognition, genetic mutation detection, etc. EEG and ECG
are representative bio-signal data, and there are many
publicly available datasets, most of which are generally
annotated. Therefore, we collect many pre-trained re-
lated papers based on EEG and ECG signals, not to say
that the other medical time-series data is unimportant.

Despite a massive breakthrough in algorithms and the
increasing availability of publicly available datasets, the
lack of annotated data continues to pose one of the most
significant challenges to developing bio-signal processing
in artificial intelligence. Some researchers have been us-
ing pre-training model techniques on many different tasks
to address the data scarcity issue. In the remainder of
this section, we summarise the current state-of-the-art re-
search on using pre-training methods to process bio-sig-
nal datasets based on tasks of all kinds based on bio-sig-
nal datasets.

4.1 Pre-processing
Pre-processing the raw signals is one of the essential
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Table 3 Summary of pre-training related publications with
diverse image types in the medical field

Tasks Image type Papers
CT/MR [130, 137-142, 144, 146-148]
Diagnose .
(Crosait) X-ray [133, 149]
Ultrasound [132, 150]
Abdnomial [44, 48, 153, 155]
Segmentation Ultrasound [157,159-161]
Comprehensive [163, 164, 167]
Survival wsl (58, 60, 171, 172, 174]

prediction

steps for bio-signal-related research. The raw data con-
tain multiple noises that are probably caused by differ-
ent factors. Antczak(180, 181] proposed an approach that
uses the pre-trained model to remove the noise from the
raw ECG data; notably, they pre-trained the model with
the synthetic data and fine-tuned the real data to create
a state-of-the-art noise-removing neural network. In addi-
tion, QRS wave detection is an essential task for ECG
prepossessing. Rodrigues and Coutol'82] utilised transfer
learning to detect the QRS wave and predict the next
QRS wave and the shape of the next ECG segment.

4.2 Disease diagnosis

Disease diagnosis with bio-signal data has a vast range
of applications since it has been well-studied in various
scenarios. Specifically, tasks include arrhythmia diagnosis,
atrial fibrillation diagnosis, epileptic seizures detection,
etc. Pathak et al.[166, 183] attempted to use the pre-train-
ing method to develop an automatic arrhythmia diagnos-
is system on one dataset and fine-tuning it on another
dataset to evaluate the effectiveness of the pre-training
model for ECG data, in which the data used in the tasks
were all labelled by cardiovascular experts and the data-
set used for pre-training and the fine-tuning under the
same tasks. The works[16; 184, 185] employed the same meth-
od to detect atrial fibrillation (AF), but they trained the
model on a general ECG dataset and fine-tuned it on an
AF dataset. In addition, this type of transfer learning can
be applied to EEG datasets to diagnose epileptic seizures
in a similar way(200: 201] which all utilise the CNN net-
work, and Raghu et al.2%] converted the EEG signals in-
to images using short-time Fourier transforms (STFT),
while Nogay and Adelil201 processed the raw EEG with
1D-CNN. However, the data are usually not annotated in
the real world; therefore, Weimann and Conrad[¢l evalu-
ated the performance of the unsupervised pre-training
model, and, as reported in the study, unsupervised or
self-supervised pre-training yielded a lower performance
than supervised pre-training, but they will become more
relevant because they rely on fewer annotations.

To leverage the unlabelled bio-signals, like [16], Thin-
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sungnoen et al.3% designed auto-encoder networks train-
ing bio-signal representations and then clustering fea-
tures. In recent years, the emerging family of self-super-
vised (contrastive) learning methods has been applied to
bio-signals datall86-192, 199, 202-204]  Mehari and Strod-
tholt[!88] assessed self-supervised representation learning
from 12-lead ECG data using SimCLR, BYOL, and CPC,
from which CPC got the best results that only fell be-
hind 0.5% supervised performance. Liu et al.['89 also ex-
plored using the self-supervised learning approaches to
detect arrhythmia; unlike [188], they converted ECG sig-
nals into grey-scale bitmap; additionally, they emphas-
ised that the self-supervised learning can alleviate the
problem of label imbalance and significantly reduce the
quantity of requirement for annotated data. For EEG
data, Mohsenvand et al.[19)] presented sequential contrast-
ive learning of representation (SeqSLR) to diagnose epi-
lepsy, which is based on the channel-wise feature extract-
or based on SimCLR, demonstrating that it outperforms
conventional contrastive learning frameworks. A self-su-
pervised pre-training framework, contrastive learning of
cardiac signs (CLOCS), specifically designed for cardiac
signals, is used to exploit the cardiac data across space,
time, and patients(!86]. Zhang et al.191 proposed a gener-
al bio-signal framework referred to as time-frequency con-
sistency (TF-C) by contrasting the samples in the time
domain and the frequency domain, evaluating it in dia-
gnosing the arrhythmia using ECG, epilepsy using EEG,
and muscular diseases using EMG data. The latest work
from Tang et al.202 proposed a self-supervised graph
neural network to diagnose seizures on EEG, demonstrat-
ing that the self-supervised pre-training has consistently
improved. It represents the spatial-temporal dependen-
cies in EEGs using GNN and the self-supervised pre-
training strategy to improve performance.

4.3 Emotion detection

Emotion detection has become an emerging field of
study in computer-aided learning to equip machines with
the ability to recognise the emotional states of individu-
alsl219, An emotion can be considered a physiological and
psychological expression that can be detected by many
types of bio-signals, such as electrocardiograms (ECG),
electrooculograms (EOG), galvanic skin responses (GSR),
etc.19] The emotion computation analysis with DL and
ML has achieved success, like stress or anxiety level de-
tection(194 211 personality analysis(2!2], emotion recogni-
tion[193], etc. However, aside from the lack of data and an-
notations, emotion detection systems expect generalised
models that can take into account the state of the emo-
tion from a global perspective, and these generalised mod-
els can transfer to other tasks. Taking a multi-task gener-
alised model, for example, can be transferred to a specific
emotion task(19] where the process of training this gener-
alised model takes into account the pre-training tech-
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niques. To investigate if the pre-trained models enable
enhanced performance in emotion detection, Radhika et
al.[193, 197, 198] pre-trained CNNs with annotated data and
fine-tuning on target source data. Among them, Cimtay
and Ekmekcioglul197 stated that they applied the pre-
trained model to cross-subject and cross-dataset EEG sig-
nals and reported promising results. In our survey, we
have found that some recent emotion detection tasks
learn the generalised pre-training feature representation
through self-supervised learning methods. For instance,
Sarkar and Etemad[% proposed a self-supervised net-
work to pre-train the feature embeddings on an aggrega-
tion of four publicly available datasets to overcome the
challenge of having different types of output labels for
each dataset. In comparison to training on individual
datasets, the framework with a pre-trained model per-
formed better in emotion recognition. Furthermore, they
proposed a self-supervised representation learning frame-
work to detect maternal and fetal stress on ECG data
and applied it in real-world practicel!%d. From EEG data,
Mohsenvand et al.19 evaluated their proposed SecCLR
framework in emotion recognition on the SEED dataset.

4.4 Sleep stage detection and other tasks

Sleep stage detection aims to determine the sleep
stage from polysomnography (PSG), EEG, EOG, and
EMG. Phan et all207 proposed SeqSleepNet+ and
DeepSleepNet+ frameworks with pre-trained models to
classify sleep stages. They conducted pre-training on one
type of signal and fine-tuning on another type. For ex-
ample, they pre-trained the model on ECG and EOG
source set and fine-tuned it on EEG and EOG target set.
Pre-trained SeqSleepNet+ and DeepSleepNet+ models
resulted in a significant improvement in sleep staging per-
formance. Banville et al.204 investigated and explored us-
ing self-supervised learning to pre-train feature represent-
ations on EEG-based sleep staging detection. Jiang et
al.[2%8] proposed a self-supervised contrastive pre-training
method to conduct representation learning of EEG sig-
nals applied to sleep stage tasks. With more unlabelled
data available for the network, the proposed method
reached 88.16% accuracy on the Sleep-EDF dataset. The
model TF-C[91 evaluated the performance on the sleep
staging classification task.

Other bio-signal data tasks also employ the pre-train-
ing model approach to learn their feature representation.
Aston et al.19] extracted features from the two-dimen-
sional attractor generated from the ECG signal by the
novel symmetric projection attractor reconstruction
(SPAR) method used to detect a mouse’s genetic muta-
tion using pre-trained models that were trained on the
ImageNet dataset. Identifying motor and mental imagery
is a vital topic in brain-computer interface (BCI) re-
search that recognises the subject’s intention to such as
implement prosthesis control?!3. Amin et al.lfl and
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Sadiq et al.205 utilised the fully-supervised pre-trained
models to enhance the performance on the small EEG
BCI datasets. Cheng et al.l%] and Jiang et. al.208] pro-
posed the self-supervised learning-based model to over-
come challenge of performance degradation under a small
number of labelled training samples.

4.5 Section conclusion

This section summarizes recent studies that pre-train
feature representations and use the pre-trained model on
downstream tasks on bio-signal data. Table 4 lists the re-
lated tasks and the corresponding citations. These stud-
ies have all shown the pre-training techniques to succeed
in specific scenarios. However, many limitations exist in
current studies. First, some studies have shown that pre-
training does not lead to any notable improvements in
the tasks. However, it can significantly reduce the train-
ing time and speed up the convergence process. Addition-
ally, no large-scale dataset supports pre-training a gener-
alized and high-quality representation of features. There-
fore, for bio-signals, a specific pre-training framework is
required to explore to get further improvements in the
performance, such as CLOCS[86 SeqSLR[I9], and TF-
Cl91. Furthermore, although Liu et al.89 showed that
self-supervised learning can alleviate the class imbalance
problem, the class imbalance has remained a standard is-
sue for the bio-signal dataset, yet only a few works have
attempted to address the issue.

5 EHRs in pre-training

In comparison with pre-training in other areas, there
are fewer exploration opportunities for EHR data. In this
section, we summarize the latest research for EHRs based
on pre-training. As listed in Table 5, this table presents a
compilation of various tasks related to Electronic Health
Records (EHRs) along with relevant studies conducted in
each of the tasks. Pre-training has been extremely suc-
cessful in many areas. EHRs data-related tasks are one of
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the areas where pre-training has had a significant impact.
In conditions where there is a lack of data, it is possible
to enhance the performance of the modell24, The EHRs-
related tasks include predictionl33, 126, 214-222] " jpformation
extraction from clinic notes[223-226] the international clas-
sification of disease (ICD) coding??”: 228 medication re-
commendation[229; 230] etc.

5.1 Prediction

Al-aided prediction is critical in clinical practice, auto-
matically analysing patients’ conditions and providing
suggestions to doctors for saving more lives. The primary
purpose of prediction in EHRs is to predict the progres-
sion of the disease, such as mortality, the next visit, etc.
For example, Rasmy et al.l'26l utilised the pre-trained
model referred to as Med-BERT to predict heart failure
among patients with diabetes and the onset of pancreatic
cancer on the Truven and Cerner EHR datasets. They
developed a domain-specific cross-visit pre-training mod-
el based on the BERT model. Med-BERT achieved prom-
ising performance on disease prediction tasks with small
fine-tuning datasets and enabled to boost the AUC by
more than 20%. However, if the pre-trained model con-
sists of abundant auxiliary tasks and has a complex rela-
tionship to the target task, using the pre-trained model
becomes inefficient and subnormall!7l, Xue et al.2!7 pro-
posed a method to automatically select from a large set of
auxiliary tasks to address the challenge. They employed
the self-supervised pre-training and the pre-trained mod-
el to predict clinical outcomes. Tipirneni and Reddy(2!8]
proposed a self-supervised transformer for the time-series
model (STraT$S) to predict clinical outcomes, which over-
comes the challenges of sparsity and irregular time inter-
vals in EHRs-related works; meanwhile, STraTS leverage
unlabelled data for tackling the issue of limited availabil-
ity of labelled data. McDermott et al.2!4 established a
pre-training benchmark dataset for EHR time-series data
to which various fine-tuning tasks are conducted, filling
an essential hole and providing a baseline for pre-train-

Table4 Summary of bio-signal data in the medical domain based on pre-training. PT w labels: pre-training with labels; PT wt labels:
pre-training without labels; Semi PT: pre-training using semi-supervised learning.

Datasets Tasks PT wlabels PT wt labels Semi PT
De-noise [180] [181]
QRS detection [182]
Diagnosis/Classification [15, 16,107, 183-185] [16, 35, 186-192]
pee Emotion detection [193] [194, 195]
Detection of genetic [196]
Emotion detection [197, 198] [199]
Disease detection [200, 201] [191, 199, 202-204]
Identify motor mental imaginary [5, 205] [190, 206]
BRG Sleep stage detection [207] [191, 204, 208]
Multi-task [209]

@ Springer



Y. Qiu et al. / Pre-training in Medical Data: A Survey

Table 5 Summary of EHRs-related tasks
based on pre-training

Tasks Related papers

Prediction [33, 126, 214-222, 231, 232]

Information

extraction [223-226]
ICD coding [227, 228]
Medication (220, 230]

recommendation

ing on EHR data. They evaluated the benchmarking with
self-supervised pre-training and weakly-supervised multi-
task. Xu et al.2!] introduced the medical knowledge
graph combined with self-supervised pre-training to deal
with the sparsity and high-dimensional issue of EHR
data. Lu et al.221] utilised a pre-trained model to detect
disease complications and compute the contributions of
particular diseases and admissions. Using the self-super-
vised learning method, the pre-trained model was trained
based on the hidden disease representation. Meng et al.[33]
proposed a model that can process five heterogeneous and
high-dimensional datasets in a temporal manner in order
to predict chronic diseases, such as depression. Aken et
al.220] conducted clinical outcome pre-training to integ-
rate knowledge about patient outcomes from multiple
public sources. The model learns a representation for clin-
ical outcomes, in which the model learns a relation
between symptoms, risk factors, and clinical outcomes.
Chen et al.215 proposed the physiological signal embed-
dings (PHASE) framework to forecast adverse surgical
outcomes accurately. PHASE is a self-supervised-based
model that learns the representations of the physiological
signal and then uses the other prediction method to fore-
cast the outcome. In addition, considering privacy issues,
they attempted to simulate transferring the pre-trained
model between organisations. The conventional sequen-
tial models are difficult to reuse for the early diagnosis of
pregnancy complications; therefore, Ren et al.2%9 pro-
posed the representation by pre-training time-aware
transformer, particularly for the early diagnosis of preg-
nancy complications. In this task, they designed three
pre-training tasks to handle data insufficiency, incom-
pleteness, and short sequence problems. Hur et al.222] de-
signed description-based embedding (December), a code-
agnostic description-based representation learning frame-
work for predictive tasks. They evaluated the perform-
ance of the proposed model on prediction tasks, transfer
learning, and pooled learning. No uniform standard in
EHRs is limited to applying the trained prediction mod-
els well to other EHR datasets from different organiza-
tions. To this end, Sun et al.23!] proposed a generic trans-
fer learning strategy that first pre-trains the model on
source datasets then transfers the best-performing pre-
trained model to target datasets for fine-tuning the net-
work. Ma et al.[232] proposed a distil transfer learning
framework, DistCare, for prognosis. DistCare leverages
the existing EHR data, thus reducing the impact of the
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available data limited to the rarity of cases and privacy
issues. Specifically, they pre-trained models on the pub-
licly available COVID-19-related EHRs, regarded as the
teacher model based on distillation to obtain more com-
prehensive representations of source datasets. A series of
extensive experiments on different clinical tasks and data-
sets show that DisCare benefits the prognosis with lim-
ited data.

5.2 Information extraction

EHR data contains valuable information which can as-
sist doctors in diagnosing and making the treatment
scheme. Recent studies have introduced pre-training in
processing EHR data. For example, Chen et al.224] util-
ised the BERT pre-training EHR data embeddings to ex-
tract features with the structural data. The extracted fea-
tures are then used to train with SimCLR and Deep In-
foMax (DIM) under an unsupervised learning strategy to
embed the disease concept. The pre-trained model fur-
ther fine-tunes to adapt to the target outcome prediction
task. Zhang et al.226] proposed the DeepEnroll model,
which combines enrollment criteria and patient records
into a shared latent space using a cross-modal inference
learning approach. DeepEnroll encodes the patient’'s EHR
data using the pre-trained BERT model. A real-world
dataset was applied to this approach, and impressive res-
ults were achieved. Most existing studies do not consider
capturing the time doctor experience and expertise with
time-evolving in EHR data and learning static doctor rep-
resentation. Biswal et al.223] proposed the Doctor2Vec
model, which simultaneously enables learning the doctor
representation and trial representation. The model
achieved an 8.1% relative improvement in PR-AUC com-
pared with the baseline model relying on dynamic doctor
representation learning and pre-training a BERT model
to understand trail descriptions. As the survey shows,
some of the models on EHR data utilised the transformer-
based model as the pre-train model, like BERT. However,
in real-world clinical practice, there is an amount of pri-
vacy and sensitive information in the EHR data. In order
to investigate whether the pre-trained embedding can be
converted into the original information, thus causing pri-
vacy leakage, Lehman et al.[225] executed experiments at-
tempting to recover the personal healthcare information
from the feature embeddings. They stated that a simple
attack could not recover sensitive information, but more
sophisticated methods could do this.

5.3 ICD classification

ICD coding is the task of predicting and coding all
doctors’ diagnoses with clinical test notes containing pa-
tients’ symptoms and diagnostic procedures in an un-
structured text format(233. Recent studies have provided
evidence suggesting that DL and ML can classify the ICD
coding. Data annotation is a time-consuming task, while
for clinical text notes, annotation requires professional ex-
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pertise. To solve the lack of annotation issue, some re-
searchers focus on using pre-training methods[227, 228],
Hlynsson et al.227 proposed a semi-self-supervised ICD
coding framework. They attempted to train pre-trained
models with four existing transformer-based models for
clinical feature extraction and then use the data with the
label to train a logistic regression ICD classifier. Zhang et
al.228] qytilised the BERT model to pre-train on a large-
scale dataset. Unlike Hlynsson’s work, they introduced a
multi-label attention method to train the classifier.

5.4 Medication recommendation

Medication recommendation is a hot topic in health-
care. It aims to recommend a set of medicines according
to the patient’s symptoms, which would play a critical
role in assisting doctors in making decisions(?34. Mean-
while, it could be a potential strategy to mitigate the doc-
tor shortage problem in some countries. Technically,
medication recommendation systems are trained on EHR
data. Existing methods only utilise longitudinal EHRs
with multiple visits while ignoring a large number of pa-
tients with a single visit. Shang et al.[230 proposed the
graph BERT (G-BERT) for medical code representation
and medication recommendations to overcome this issue.
G-BERT is the first model that introduced a language
model pre-training strategy to the medical domain. Con-
sidering capturing local and global dependency informa-
tion from records of patients, Su et al.[229] proposed a dy-
namic time-aware hierarchical dependency network
(TAHDNet) for medication recommendation tasks. The
performance of the proposed method is superior to that of
G-BERT.

5.5 Section conclusion

In this section, we summarised the recent advanced
studies in pre-training on EHR data. These studies were
based on four tasks: prediction, information extraction
from EHRs, ICD coding, and medication recommenda-
tion. There is no doubt that the transformer-based mod-
el is the mainstream for EHR data pre-training-related
works. Some recent studies utilised GNN as pre-training
to improve performance and interpretability. The devel-
opment of a privacy-related pre-training framework seems
to be a promising topic in EHR studies, as discussed in
[229].

6 Multi-modality in pre-training

Most publicly available healthcare datasets consist of
multiple modalities. It is a part of nature, since the in-
formation that people are exposed to is always multi-
modal. People see the colour, hear the sound, feel the tex-
ture and smell the odour. Humans leverage different
senses to better understand the information they receive.
A significant reason to learn from multi-modal data is the
assumption that the complementary nature of the differ-
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ent modalities can effectively improve performance. This
assumption also applies to the medical domain. For in-
stance, to write a comprehensive clinical report, clini-
cians need to review the patient’s medical images and as-
sess their medical history and vital signs. Cross-modal in-
formation could potentially improve the clinicians’ under-
standing of patients’ conditions.

Advances in uni-modal representation learning provide
a firm foundation for improving performance in down-
stream tasks. The most common modalities in uni-modal
pre-training are vision and language. In 2018, the advent
of BERTI28 significantly boosted representation learning
in the area of NLP. Inspired by the success of uni-modal
representation learning and BERT, researchers have star-
ted to look for methods to extract joint representations
from multiple modalities. To date, most multi-modal pre-
trained models are based on visual and textual modalit-
ies. Li et al.235] adopted four transformer-based[!27 vision-
and-language (V+L) pre-trained models for medical
downstream task, namely, VisualBERT[236], Uniter[237),
Lxmert238], and PixelBERTI239, Moreover, they com-
pared the performance of these models using AUC. Ac-
cording to the experimental results, Li et al.235] demon-
strated that these four pre-trained V+L models outper-
formed the traditional CNN4+RNN approach in the radi-
ological classification task. Furthermore, Li et al.[235] also
showed the advantages of multi-modal pre-training over
text-only embedding.

6.1 Multi-modal pre-training tasks in the
medical domain

Almost all the multi-modal pre-training in the medic-
al domain is based on V+L modalities. Therefore, most
downstream tasks focus on medical images and clinical re-
ports, such as radiology image interpretation and medic-
al visual question answering (VQA). Radiological examin-
ation is one of the most common diagnostic procedures in
medicine. Radiologists need to read a large number of ra-
diology images daily. Introducing AI technology to gener-
ate diagnosis reports is crucial for radiology examinations,
where a model is used to describe a medical image. Re-
cent research has mainly focused on disease diagnosis and
the generation of preliminary diagnosis reports. Most
multi-modal studies in the medical field currently focus
on this scenario. Generally, the multi-modality models in
radiology are used for disease diagnosis and report gener-
ation. Wang et al.l7 introduced an image-text pre-train-
ing approach that enables learning from raw data with
mixed modality data, such as images and text. Most im-
portantly, the data come from different institutions. In
specific, the core structure of this method is a trans-
former-based self-supervised framework for simultan-
eously learning chest X-rays and corresponding text re-
ports. They evaluated their model on three real-life ap-
plication tasks: disease classification, similarity search
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and image regeneration. Wang et al.l8 also proposed a
large-scale chest X-ray dataset used to process images
and corresponding reports, which provides a prominent
expectation in this field. Similar to [17], Moon et al.l9] ex-
plored the representation of learning tasks in the medical
domain and proposed a transformer-based pre-training ar-
chitecture with the multi-model attention masking
scheme, namely medical vision language learner (Med-
ViLL) for image-text understanding (e.g., diagnosis, med-
ical image-text retrieval, and medical visual question an-
swering) and version-language generation tasks (radi-
ology report generation). In the extended experiments,
MedViLL demonstrated the generalization ability under
the transfer learning scenario on two chest X-ray data-
sets. Yan and Peil20 proposed a pre-training model, clinic-
al-BERT, for three specific tasks, such as clinical diagnos-
is, masked medical subject headings (MeSH) words mod-
elling and image-MeSH matching, through which the
Clinical-BERT pre-train the model with the medical do-
main knowledge, rather than regarding the medical do-
main words and other words treated equally as MedViLL.
They demonstrate that their proposed pre-training mod-
el is effective in downstream radiograph diagnosis and re-
port generation tasks. Radiologists are always located in a
small area with the most valuable information when they
read medical images. In addition, many similar sentences
describe generic image areas in the reports that are re-
dundant and can be considered non-relevant noises/'%6].
Most works ignored these issues. To address these issues
and mimic radiology experts, Li et al.!5¢l proposed an
auxiliary signal-guided knowledge encoder-decoder (AS-
GK) in which they pre-train a medical language model
using the medical textual information they collected.

Since annotations of medical images require the parti-
cipation of experts in corresponding domains, it is hard to
obtain accurate labels of large-size datasets, and the cost
is high. Therefore, only a small number of existing data-
sets can be used in the research of VQA on medical im-
ages. Thus, inspired by the success of self-supervised pre-
training methods in NLP, vision, and language space, a
multi-modal medical BERT (MMBERT)2% was pro-
posed, which uses existing large multi-modal medical
datasets to learn better image and text presentations.
Compared to other state-of-the-art (SOTA) methods on
VQA tasks on medical images, MMBERT achieves super-
ior performance and provides attention maps to improve
model interpretability.

7 Challenges and future directions

In Sections 3-6, we comprehensively reviewed and
summarised the current state-of-the-art approaches using
pre-training in the medical domain. For basic pre-train-
ing techniques, there are further development directions
in the future study, such as improvement of computation
efficiency both in the model pre-training and down-
stream tasks and the research for developing a none spe-
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cific task models. Future research directions could be ex-
plored to maximise pre-training benefits in the medical
domain. While many efforts have been devoted to this
field, some challenges still need to be fully explored. In
this section, we focus on discussing the challenges based
on an analysis of the works mentioned above, which may
stimulate a more profound study in the future. We out-
line several key research directions that were found when
we summarised those works.

Data scarcity remains one of the most significant bar-
riers to training a high-performance model for medical
tasks. Although hospitals and other institutions can pro-
duce much healthcare data daily, those data cannot be
available due to the increasingly strict data privacy
clauses. Many datasets have been published for research,
as we summarised in Section 2. However, the quantity of
the data is still short for pre-training a general-purpose
model, especially for bio-signal, EHR and multi-modality-
related tasks. Therefore, it is a future direction to pre-
train a general-purpose model on limited data.

Privacy concerns about healthcare data require ur-
gent attention due to the strict data privacy clauses. Spe-
cifically, the question of whether personal healthcare in-
formation can be recovered via malicious attacks from the
pre-trained feature representation has yet to be thor-
oughly investigated. This problem would influence wheth-
er or not pre-training techniques could be widely applied
in real-world applications. Many privacy-related tasks in
ML and DL have become hot topics, such as federated
learning(?4l] and differential privacy learning242. It is ex-
pected that pre-training techniques combined with ma-
chine learning research relating to privacy will be a prom-
ising field for future research in the upcoming years.
Many recent works have started to research this medical
data privacy field, and this topic would be well worth
studying.

Class imbalance is a common challenge in machine
learning and deep learning. Especially in the medical do-
main, disease examples are always less than non-disease
examples. For some rare diseases, the class imbalance is-
sue will be extreme. If a deep learning model has been
trained on a class-imbalanced dataset, the model will bi-
as toward the majority category. Therefore, this problem
is considered when we use a class-imbalanced dataset.
However, we found only a few papers considering this
problem in model pre-training after our investigation. Al-
though most of the works train the model on an unla-
belled dataset with unsupervised learning or self-super-
vised learning strategy, we could know a rough data dis-
tribution of the dataset. The imbalance issue will be con-
sidered in the training process.

In Section 6, we have introduced the multi-modality
in pre-training in the medical domain. Many researchers
have tried to introduce pre-training to process the multi-
modality data. However, most of the current research
only focuses on generating clinical reports and tries to use
the model to interpret the radiological examination, and
the main reason is that there are many large datasets for

@ Springer



168

this task. In contrast, the lack of task-related datasets
limits the progress of research on multi-modality pre-
training. Furthermore, there are currently few works on
applying pre-training for bio-signal data to make survival
predictions. Since bio-signal alone may not provide suffi-
cient information for survival prediction, we see the po-
tential of combining multi-modality data for this critical
task and have included a discussion on this interesting fu-
ture research direction.

8 Conclusions

Pre-training techniques are hot research topics in ML
and DL. It has attracted much attention in medical do-
main due to the challenges posed by medical data, such
as the data scarcity and lack of annotation. We review in
detail the recent advances in pre-training-based frame-
works for healthcare areas. This work proposes sugges-
tions for physicians and researchers in AI who want to
learn about the latest pre-training techniques in the med-
ical domain. We briefly introduced the publicly available
medical benchmark datasets and general pre-training
strategies. Sections 3-6 investigate the extensive use of
pre-training in different scenarios in the medical domain
from four perspectives: images, bio-signal data, EHR
data, and multi-modality data. At the end of this survey,
we discuss the challenges and their possible solutions.
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