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Abstract: Audio-visual learning, aimed at exploiting the relationship between audio and visual modalities, has drawn considerable at-
tention since deep learning started to be used successfully. Researchers tend to leverage these two modalities to improve the perform-
ance of previously considered single-modality tasks or address new challenging problems. In this paper, we provide a comprehensive sur-
vey of recent audio-visual learning development. We divide the current audio-visual learning tasks into four different subfields: audio-
visual separation and localization, audio-visual correspondence learning, audio-visual generation, and audio-visual representation learn-
ing. State-of-the-art methods, as well as the remaining challenges of each subfield, are further discussed. Finally, we summarize the com-
monly used datasets and challenges.
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1 Introduction

Human perception is multidimensional and includes
vision, hearing, touch, taste, and smell. In recent years,
along with the vigorous development of artificial intelli-
gence technology, the trend from single-modality learn-
ing to multimodality learning has become crucial to bet-
ter machine perception. Analyses of audio and visual in-
formation, representing the two most important perceptu-
al modalities in our daily life, have been widely de-
veloped in both academia and industry in the past
decades. Prominent achievements include speech recogni-
tion(l: 2], facial recognition3-3, fine-grained visual classific-
ationl68l, etc. Audio-visual learning (AVL) using both
modalities has been introduced to overcome the limita-
tion of perception tasks in each modality. In addition, ex-
ploring the relationship between audio and visual inform-
ation leads to more interesting and important research
topics and ultimately better perspectives on machine

learning.
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The purpose of this article is to provide an overview
of the key methodologies in audio-visual learning, which
aims to discover the relationship between audio and visu-
al data for many challenging tasks. In this paper, we
mainly divide these efforts into four categories: 1) audio-
visual separation and localization, 2) audio-visual corres-
ponding learning, 3) audio and visual generation, and 4)
audio-visual representation.

Audio-visual separation and localization aim to
separate specific sounds emanating from the correspond-
ing objects and localize each sound in the visual context,
as illustrated in Fig.1(a). Audio separation has been in-
vestigated extensively in the signal processing com-
munity during the past two decades. With the addition of
the visual modality, audio separation can be transformed
into audio-visual separation, which has proven to be more
effective in noisy scenesl®1l. Furthermore, introducing
the visual modality allows for audio localization, i.e., the
localization of a sound in the visual modality according to
the audio input. The tasks of audio-visual separation and
localization themselves not only lead to valuable applica-
tions but also provide the foundation for other audio-
visual tasks, e.g., generating spatial audio for 360°
videol!2l. Most studies in this area focus on unsupervised
learning due to the lack of training labels.

Audio-visual correspondence learning focuses on
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discovering the global semantic relation between audio
and visual modalities, as shown in Fig.1(b). It consists of
audio-visual retrieval and audio-visual speech recognition
tasks. The former uses audio or an image to search for its
counterpart in another modality, while the latter derives
from the conventional speech recognition task that lever-
ages visual information to provide a more semantic prior
to improve recognition performance. Although both of
these two tasks have been extensively studied, they still
entail major challenges, especially for fine-grained cross-
modality retrieval and homonyms in speech recognition.
Audio-visual generation tries to synthesize the oth-
er modality based on one of them, which is different from
the above two tasks leveraging both audio and visual
modalities as inputs. Trying to make a machine that is
creative is always challenging, and many generative mod-
els have been proposed(!3; 14, Audio-visual cross-modality
generation has recently drawn considerable attention. It
aims to generate audio from visual signals, or vice versa.
Although it is easy for a human to perceive the natural
correlation between sounds and appearance, this task is
challenging for machines due to heterogeneity across
modalities. As shown in Fig.1(c), vision to audio genera-
tion mainly focuses on recovering speech from lip se-
quences or predicting the sounds that may occur in the
given scenes. In contrast, audio to vision generation can

be classified into three categories: audio-driven image

(a) Separation & Localization

generation, body motion generation, and talking face gen-
eration.

Audio-visual representation learning aims to
automatically discover the representation from raw data.
A human can easily recognize audio or video based on
long-term brain cognition. However, machine learning al-
gorithms such as deep learning models are heavily de-
pendent on data representation. Therefore, learning suit-
able data

gorithms may improve performance.

representations for machine learning  al-

Unfortunately, real-world data such as images, videos,
and audio do not possess specific algorithmically defined
features[!®. Therefore, an effective representation of data
determines the success of machine learning algorithms.
Recent studies seeking better representation have de-
signed various tasks, such as audio-visual correspondence
(AVC)Q]
(AVTS)I7. By leveraging such a learned representation,

and audio-visual temporal synchronization
one can more easily solve audio-visual tasks mentioned in
the very beginning.

In this paper, we present a comprehensive survey of
the above four directions of audio-visual learning. The
rest of this paper is organized as follows. We introduce
the four directions in Sections 2—5. Section 6 summarizes
the commonly used public audio-visual datasets. Finally,
Section 8 concludes the paper.

(b) Correspondence learning
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2 Audio-visual separation and localiza-
tion

The objective of audio-visual separation is to separate
different sounds from the corresponding objects, while au-
dio-visual localization mainly focuses on localizing a
sound in a visual context. As shown in Fig. 2, we classify
types of this task by different identities: speakers
(Fig.2(a)) and objects (Fig.2(b)). The former concen-
trates on a person's speech that can be used for televi-
sion programs to enhance the target speakers’ voice, while
the latter is a more general and challenging task that sep-
arates arbitrary objects rather than speakers only. In this
section, we provide an overview of these two tasks, ex-
amining the motivations, network architectures, advant-
ages, and disadvantages as shown in Tables 1 and 2.

2.1 Speaker separation

The speaker separation task is a challenging task and
is also known as the cocktail party problem. It aims to
isolate a single speech signal in a noisy scene. Some stud-
ies tried to solve the problem of audio separation with
only the audio modality and achieved exciting results[: 191,
Advanced approachesl® 11 tried to utilize visual informa-
tion to aid the speaker separation task and significantly
surpassed single modality-based methods. The early at-
tempts leveraged mutual information to learn the joint
distribution between the audio and the videol20: 21, Sub-
sequently, several methods focused on analyzing videos
containing salient motion signals and the corresponding
audio events (e.g., a mouth starting to move or a hand on
piano suddenly accelerating)(22 23],

Gabbay et al.l¥! proposed isolating the voice of a spe-
cific speaker and eliminating other sounds in an audio-
visual manner. Instead of directly extracting the target
speaker’s voice from the noisy sound, which may bias the

Fig. 2 Illustration of audio-visual separation and localization
task. Paths 1 and 2 denote separation and localization tasks,
respectively.
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training model, the researchers first fed the video frames
into a video-to-speech model and then predicted the
speaker’s voice by the facial movements captured in the
video. Afterwards, the predicted voice was used to filter
the mixtures of sounds, as shown in Fig.3. Although
Gabbay et al.l¥ improved the quality of separated voice
by adding the visual modality, their approach was only
applicable in controlled environments.

In contrast to previous approaches that require train-
ing a separate model for each speaker of interest (speaker-
dependent models), recent researches focus on obtaining
intelligible speech in an unconstrained environment.
Afouras et al.[19 proposed a deep audio-visual speech en-
hancement network to separate the speaker’s voice of the
given lip region by predicting both the magnitude and
phase of the target signal. They treated the spectrograms
as temporal signals rather than images for a network. Ad-
ditionally, instead of directly predicting clean signal mag-
nitudes, they also tried to generate a more effective soft
mask for filtering. Ephrat et al.l'!] proposed a speaker-in-
dependent model that was only trained once and was
then applicable to any speaker. This approach even out-
performed the state-of-the-art speaker-dependent audio-
visual speech separation methods. The relevant model
consists of multiple visual streams and one audio stream,
concatenating the features from different streams into a
joint audio-visual representation. This feature is further
processed by a bidirectional long short-term memory
(LSTM)24 and three fully connected layers. Finally, an
elaborate spectrogram mask is learned for each speaker to
be multiplied by the noisy input. Finally, the researchers
converted it back to waveforms to obtain an isolated
speech signal for each speaker. Lu et al.[?] designed a net-
work similar to that of [11]. The difference is that Lu et
al.[2% enforced an audio-visual matching network to dis-
tinguish the correspondence between speech and human
lip movements. Therefore, they could obtain clear speech.

Instead of directly utilizing video as a condition, Mor-
rone et al.l20] further introduced landmarks as a fine-
grained feature to generate time-frequency masks to fil-
ter mixed-speech spectrogram.

2.2 Separating and
sounds

localizing objects’

Instead of matching a specific lip movement from a
noisy environment, as in the speaker separation task, hu-
mans focus more on objects while dealing with sound sep-
aration and localization. It is difficult to find a clear cor-
respondence between audio and visual modalities due to
the challenge of exploring the prior sounds from different
objects.

2.2.1 Separation

The early attempt to solve this localization problem
can be traced back to 200027 and a study that synchron-
ized low-level features of sounds and videos. Fisher et
al.2ll later proposed using a nonparametric approach to
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Table 1 Summary of recent audio-visual separation and localization approaches

Category Method

Ideas & strengths

Weaknesses

Gabbay et al.l%

Predict speaker’s voice based on faces in video
used as a filter

Can only be used in controlled environments

Afouras et al.[10]

Generate a soft mask for filtering in the wild

Lu et al.[29]

Distinguish the correspondence between speech
and human speech lip movements

Two speakers only; Hardly applied for
background noise

Speaker separation Ephrat ct al.l1]

Predict a complex spectrogram mask for each
speaker; Trained once, applicable to any
speaker

The model is too complicated and lacks
explanation

Gu et al.[31]

All information of speakers; Robustness

Complex network; Plenty of preparation

Zhu and Rahtul32]

Strong capacity of sub-network; Single image

Small scope of application

Morrone et al.[26]

Use landmarks to generate time-frequency
masks

Additional landmark detection required

Gao et al.[30]

Disentangle audio frequencies related to visual
objects

Separated audio only

Senocak et al.[34

Focus on the primary area by using attention

Localized sound source only

Tian et al.[37

Joint modeling of auditory and visual
modalities

Localized sound source only

Pu et al.[23]

Use low rank to extract the sparsely correlated
components

Not for the in-the-wild environment

39
Separate and Zhao et al.l*]

Mix and separate a given audio; Without
traditional supervision

Motion information is not considered

localize objects’
sounds

Introduce motion trajectory and curriculum

Only suitable for synchronized video and audio

Zhao et al.[40] . .
learning input
Sharma et al.13s] State-of-the-art for detection unconstrained Additional audio visual detection localize
’ videos entertainment media sound source only
Sun et al.[43] 3D space; Low computational complexity -
. 41 Separation and localization use only one . . .
Rouditchenko et al.[41] L Does not fully utilize temporal information
modality input
Parekh et al.[42] Weakly super\.nsed learning via multiple- Only a bounding box proposed on the image
instance learning
Table 2 A quantitative study on audio-visual separation and localization
Category Method Dataset Result

Gabbay et al.l%

GRID2] and TCD TIMIT!43]

SAR: 9.49 (on GRID)

Afouras et al.[10]

LRS2[#4 and VoxCeleb2156]

Speaker separation

Lu et al.[25]

WSJO0 and GRIDI#2]

SAR: 10.11 (on GRID)

Morrone et al.[26]

GRIDB2l and TCD TIMIT!43]

PESQ: 2.45 (on TCD TIMIT)

Gao et al.[30]

AudioSet[165]

SDR: 2.53

Separate and localize

Senocak et al.[34]

Base on filckr-SoundNet[!38]

objects' sounds

Tian et al.l37]

Subset of AudioSet/165]

Prediction accuracy: 0.727

Sharma et al.[38]

Movies

Recall: 0.512 9

learn a joint distribution of visual and audio signals and
then project both of them to a learned subspace. Further-
more, several acoustic-based methods2829 were de-
scribed that required specific devices for surveillance and
instrument engineering, such as microphone arrays used
to capture the differences in the arrival of sounds.

To learn audio source separation from large-scale in-

the-wild videos containing multiple audio sources per

@ Springer

video, Gao et al.B% suggested learning an audio-visual
localization model from unlabeled videos and then ex-
ploiting the visual context for audio source separation.
Researchers' approach relied on a multi-instance multila-
bel learning framework to disentangle the audio frequen-
cies related to individual visual objects even without ob-
serving or hearing them in isolation. The multilabel learn-
ing framework was fed by a bag of audio basis vectors for
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Fig. 3 Basic pipeline of a noisy audio filter

each video, and then, the bag-level prediction of the ob-
jects presented in the audio was obtained.

The information of the target speaker is helpful for
sound separation tasks such as lip movement, tone, and
spatial location etc. Therefore, Gu et al.Bl exploited all
this information by obtaining semantic information of
each modal via a fusion method based on factorized at-
tention. Similarly, Zhu and RahtuB? attempted to add
extra information (appearance) by introducing an appear-
ance attention module to separate the different semantic
representations.

2.2.2 Localization

Instead of only separating audio, can machines local-
ize the sound source merely by observing sound and visu-
al scene pairs as a human can? There is evidence both in
physiology and psychology that sound localization of
acoustic signals is strongly influenced by the synchron-
icity of their visual signalsi?7l. The past efforts in this do-
main were limited to requiring specific devices or addi-
tional features. Izadinia et al.33 proposed utilizing the ve-
locity and acceleration of moving objects as visual fea-
tures to assign sounds to them. Zunino et al.29 presen-
ted a new hybrid device for sound and optical imaging
that was primarily suitable for automatic monitoring.

As the number of unlabeled videos on the Internet has
been increasing dramatically, recent methods mainly fo-
cus on unsupervised learning. Additionally, modeling au-
dio and visual modalities simultaneously tend to outper-
form independent modeling. Senocak et al.34 learned to
localize sound sources by merely watching and listening
to videos. The relevant model mainly consisted of three
networks, namely, sound and visual networks and an at-
tention network trained via the distance ratiol3’ unsuper-
vised loss.

Attention mechanisms cause the model to focus on the
primary areal36l. They provide prior knowledge in a semi-
supervised setting. As a result, the network can be con-
verted into a unified one that can learn better from data
without additional annotations. To enable cross-modality
localization, Tian et al.B7 proposed capturing the se-
mantics of sound-emitting objects via the learned atten-
tion and leveraging temporal alignment to discover the
correlations between the two modalities.

To make full use of media content in multiple modal-
ities, Sharma et al.38 proposed a novel network consist-
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ing of 3D convolution neural networks (3D CNNs) and
bidirectional long short term memory (BiLSTMs) to fuse
the complementary information of two modalities in a
weaker-than-full supervision fashion.

2.2.3 Simultaneous separation and localization

Sound source separation and localization can be
strongly associated with each other by assigning one mod-
ality’s information to another. Therefore, several research-
ers attempted to perform localization and separation sim-
ultaneously. Pu et al.28l used a low-rank and sparse
framework to model the background. The researchers ex-
tracted components with sparse correlations between the
audio and visual modalities. However, the scenario of this
method had a major limitation: It could only be applied
to videos with a few sound-generating objects. Therefore,
Zhao et al.139 introduced a system called PixelPlayer that
used a two-stream network and presented a mix-and-sep-
arate framework to train the entire network. In this
framework, audio signals from two different videos were
added to produce a mixed signal as input. The input was
then fed into the network that was trained to separate
the audio source signals based on the corresponding video
frames. The two separated sound signals were treated as
outputs. The system thus learned to separate individual
sources without traditional supervision.

Instead of merely relying on image semantics while ig-
noring the temporal motion information in the video,
Zhao et al.l*9 subsequently proposed an end-to-end net-
work called deep dense trajectory to learn the motion in-
formation for audio-visual sound separation. Furthermore,
due to the lack of training samples, directly separating
sound for a single class of instruments tend to lead to
overfitting. Therefore, Zhao et al.[ 0 further proposed a
curriculum strategy, starting by separating sounds from
different instruments and proceeding to sounds from the
same instrument. This gradual approach provided a good
start for the network to converge better on the separa-
tion and localization tasks.

The methods of previous studies(23 3% 40] could only be
applied to videos with synchronized audio. Hence, Roud-
itchenko et al.[4l] tried to perform localization and separa-
tion tasks using only video frames or sound by disen-
tangling concepts learned by neural networks. The re-
searchers proposed an approach to produce sparse activa-
tions that could correspond to semantic categories in the
input using the sigmoid activation function during the
training stage and softmax activation during the fine-tun-
ing stage. Afterwards, the researchers assigned these se-
mantic categories to intermediate network feature chan-
nels using labels available in the training dataset. In oth-
er words, given a video frame or a sound, the approach
used the category-to-feature-channel correspondence to
select a specific type of source or object for separation or
localization. Aiming to introduce weak labels to improve
performance, Parekh et al.[42] designed an approach based
on multiple-instance learning, a well-known strategy for
weakly supervised learning.
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Inspired by the human auditory system, which ac-
cepts information selectively, Sun et al.43l proposed a
metamaterial-based single-microphone listening system
(MSLS) to localize and separate the fixed sound signal in
3D space. The core part of the system is metamaterial en-
closure which consisted of multiple second-order acoustic
filters to decide the frequency response of different direc-
tions.

2.3 Discussions

Speaker voice separation has achieved great progress
in various specific fields in the past decades, especially in
audio-only modality. Introducing visual modality has in-
creased both the performance and applications scenarios.
Due to the explicit pattern between the voice and video,
for example, the lip movement of the target speaker is
highly related to the voice, recent efforts tend to leverage
this pattern in sound separation tasksBl. However, it
hard to capture an explicit pattern between audio and
visual in the more general tasks, such as object’s sound
separation and localization. Therefore, researchers intro-
duced effective strategies (such as sparse correlation, tem-
poral motion information, multiple-instance learning, etc.)
and more powerful networks for this task.

3 Audio-visual correspondence learning

In this section, we introduce several studies that ex-
plored the global semantic relation between audio and
visual modalities. We name this branch of research audio-
visual correspondence learning; it consists of 1) the audio-
visual matching task and 2) the audio-visual speech re-
cognition task. We summarize the advantages and disad-
vantages in Tables 3 and 4.

3.1 Audio-visual matching

Biometric authentication, ranging from facial recogni-
tion to fingerprint and iris authentication is a popular
topic that has been researched over many years, while
evidence shows that this system can be attacked mali-
ciously. To detect such attacks, recent studies particu-
larly focus on speech antispoofing measures.

Sriskandaraja et al.[*4 proposed a network based on a
Siamese architecture to evaluate the similarities between
pairs of speech samples. Biatobrzeski et al.45 presented a
two-stream network, where the first network was a
Bayesian neural network assumed to be overfitting, and
the second network was a CNN used to improve general-
ization. Gomez-Alanis et al.[#6l further incorporated
Light CNNU7 and a gated recurrent unit (GRU)M as a
robust feature extractor to represent speech signals in ut-
terance-level analysis to improve performance.

We note that cross-modality matching is a special
form of such authentication that has recently been ex-

@ Springer

tensively studied. It attempts to learn the similarity
between pairs. We divide this matching task into fine-
grained voice-face matching and coarse-grained audio-im-
age retrieval.
3.1.1 voice-face matching

Given facial images of different identities and the cor-
responding audio sequences, voice-face matching aims to
identify the face that the audio belongs to (the V2F task)
or vice versa (the F2V task), as shown in Fig.4. The key
point is finding the embedding between audio and visual
modalities. Nagrani et al.49 proposed using three net-
works to address the audio-visual matching problem: a
static network, a dynamic network, and an N-way net-
work. The static network and the dynamic network could
only handle the problem with a specific number of im-
ages and audio tracks. The difference was that the dy-
namic network added to each image temporal informa-
tion such as the optical flow or a 3D convolution[50 51,
Based on the static network, Nagrani et al.[*9 increased
the number of samples to form an N-way network that
was able to solve the N : 1 identification problem.

However, the correlation between the two modalities
was not fully utilized in the above method. Therefore,
Wen et al.[52 proposed a disjoint mapping network (DIM-
Nets) to fully use the covariates (e.g., gender and nation-
ality)[53. 54 to bridge the relation between voice and face
information. The intuitive assumption was that for a giv-
en voice and face pair, the more covariates were shared
between the two modalities, the higher the probability of
being a match. The main drawback of this framework
was that a large number of covariates led to high data
costs. Therefore, Hoover et al.l’] suggested a low-cost but
robust approach of detection and clustering on audio clips
and facial images. For the audio stream, the researchers
applied a neural network model to detect speech for clus-
tering and subsequently assigned a frame cluster to the
given audio cluster according to the majority principle.
Doing so required a small amount of data for pretraining.

To further enhance the robustness of the network,
Chung et al.[5% proposed an improved two-stream train-
ing method that increased the number of negative
samples to improve the error-tolerance rate of the net-
work. The cross-modality matching task, which is essen-
tially a classification task, allows for wide-ranging applic-
ations of the triplet loss. However, it is fragile in the case
of multiple samples. To overcome this defect, Wang et
al.’"l proposed a novel loss function to expand the triplet
loss for multiple samples and a new elastic network
(called EmNet) based on a two-stream architecture that
can tolerate a variable number of inputs to increase the
flexibility of the network. Most recently, Zheng et al.l5]
proposed a novel adversarial-metric learning model that
generates a modality-independent representation for each
individual in each modality by adversarial learning while
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Table 3 Summary of audio-visual correspondence learning

Category Method

Ideas & strengths

Weaknesses

Nagrani et al.[49]

The method is novel and incorporates
dynamic information

As the sample size increases, the accuracy
decreases excessively

Wen et al.l52]

The correlation between modes is utilized

Dataset acquisition is difficult

Wang et al.[57]
Voice-face matching

Can deal with multiple samples;
Can change the size of input

Static image only;
Low robustness

Hoover et al.[55]

Easy to implement;
Robust and Efficient

Cannot handle large-scale data

Zheng et al.[58]

Adversarial learning and metric learning is
leveraged to explore the better feature
representation

No high level semantic information is
taken into account

Hong et al.[64]

Preserve modality- specific characteristics;
Soft intra-modality structure loss

Complex network

Sanguineti et al.[67]

Acoustic images contain more information;
Simple and efficient;
Multimodal dataset

Three branches complex network;
Lack of details in some places

Takashima et al.[69]

Using CCA instead of distance

Unclear details

i [63]
Audio-visual retrieval Suris et al.

Zeng et al.[66]

Metric learning;
Using fewer parameters;

Static images

Consider mismatching pairs;
Exploit negative examples

Complex network

Chen et al.[68]

Deal with remote sensing data;
Low memory and fast retrieval properties

Lack of remote sensing data

Arsha et al.[63]

Curriculum learning;
Applied value;
Low data cost

Low accuracy for multiple samples

Petridis et al.[77]

Simultaneously obtain feature and
classification

Lack of audio information

Wand et al.[78]

LSTM;
Simple method

Word-level

Chung et al.[84

Audio and visual information;
LRS dataset

The dataset is not guaranteed to be clean

Zhang et al.[87]

Novel FBP; State-of-the-art

The experimental part is too simple

Shillingford et al.[79]
Audio-visual speech

Sentence-level;
LipNet;
CTC loss

No audio information

recognition

Zhou et al.[88]

Anti-noise;
Simple and effective

Insufficient innovation

Tao et al.[89]

Novel idea;
Good performance

Insufficient contributions

Makino et al.[81]

Large audio-visual dataset

Lead to low practical value

Trigeorgis et al.[83]

Audio information;
The algorithm is robust;

Noise is not considered

Afouras et al.[86]

Study noise in audio;
LRS2-BBC Dataset

Complex network

learning a robust similarity measure for cross-modality
matching by metric learning.
3.1.2 Audio-image retrieval

The cross-modality retrieval task aims to discover the
relationship between different modalities. Given one
sample in the source modality, the proposed model can
retrieve the corresponding sample with the same identity
in the target modality. For audio-image retrieval as an
example, the aim is to return a relevant piano sound, giv-

en a picture of a girl playing the piano. Compared with
the previously considered voice and face matching, this
task is more coarse-grained.

Unlike other retrieval tasks such as the text-image
task(59-61 or the sound-text taskl6?], the audio-visual re-
trieval task mainly focuses on subspace learning. Suris et
al.[63]

mapped two modalities into a joint embedding space and

proposed a new joint embedding model that
then directly calculated the Euclidean distance between
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Table 4 A quantitative study on correspondence learning

Category

Method Dataset Result
Nagrani et al.[49] VGGFacel!68 and Voxcelebl15] V-F:0.81
Wen et al.l52] VGGFacell%8 and Voxcelebl155] V-F:0.84

Voice-face matching

Hoover et al.[55]

LibriVox

Accuracy: 0.71

Suris et al.l63]

Subset of YouTube-8M[166]

Audio-video recall: 0.631

Audio-visual retrieval
Nagrani et al.[65]

Voxcelebl!55] -

Chung et al.[84 LRS84 _
Audio-visual speech recognition Trigeorgis et al.33]  RECOLA MSE: 0.684
Afouras et al.[36] LRS2-BBC -

-

—» Image to audio
~ Audio to image

Fig. 4 Demonstration of audio-to-image retrieval (The blue
arrows) and image-to-audio retrieval (The green arrows).

them. Suris et al. also leveraged cosine similarity to en-
sure that the two modalities in the same space were as
close as possible while not overlapping. Note that the de-
signed architecture would have a large number of para-
meters due to the existence of a large number of fully
connected layers.

Hong et al.l[% proposed a joint embedding model that
relied on pre-trained networks and used CNNs to replace
fully connected layers to reduce the number of paramet-
ers to some extent. The video and music were fed to the
pre-trained network and then aggregated, followed by a
two-stream network trained via the inter-modal ranking
loss. In addition, to preserve modality-specific character-
istics, the researchers proposed a novel soft intra-modal
structure loss. However, the resulting network was very
complex and difficult to apply in practice. To solve this
problem, Nagrani et al.[% proposed a cross-modality self-
supervised method to learn the embedding of audio and
visual information from a video and significantly reduced
the complexity of the network. For sample selection, Na-
grani et al.[5 designed a novel curriculum learning sched-
ule to further improve performance. In addition, the res-
ulting joint embedding could be efficiently and effect-
ively applied in practical applications.

Different from the above works only considering the
matching pairs, Zeng et al.00] further focused the mis-
matching pairs and proposed a novel deep triplet neural
network with cluster-based canonical correlation analysis
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in a two-stream architecture. Rather than designing a
model base on a two-stream structure, Sanguineti et al.[67]
introduced an extra model named acoustic images, which
contained abundant information. They aligned three
modalities in time and space and took advantage of such
correlation to learn more powerful audio-visual represent-
ations via knowledge distillation. Different from the ap-
proaches focused on face and audio, Chen et al.l%8 pro-
posed a deep image-voice retrieval (DIVR) to deal with
remote sensing images. During the training process, they
followed the idea of triplet loss. Moreover, they minimize
the distance between hash-like codes and hash codes to
reduce quantization error.

Music-emotion retrieval is an interesting topic in au-
dio-image retrieval task. Takashima et al.l[%9 proposed a
deep canonical correlation analysis (DeepCCA) by max-
imizing the correlation between two modalities in projec-
tion space via CCA rather than distance computing.

3.2 Audio-visual speech recognition

The recognition of the content of a given speech clip
(for example, predicting the emotion based on the given
speech(™) has been studied for many years, yet despite
great achievements, researchers are still aiming for satis-
factory performance in challenging scenarios. Due to the
correlation between audio and vision, combining these
two modalities tends to offer more prior information. For
example, one can predict the scene where the conversa-
tion took place, which provides a strong prior for speech
recognition, as shown in Fig. 5.

Bare

Bare

Fig. 5 Demonstration of audio-visual speech recognition
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Earlier efforts on audio-visual fusion models usually
consisted of two steps: 1) extracting features from the im-
age and audio signals and 2) combining the features for
joint classification[’273l. Later, taking advantage of deep
learning, feature extraction was replaced with a neural
network encoder(7476l, Several recent studies have shown
a tendency to use an end-to-end approach to visual
speech recognition. These studies can be mainly divided
into two groups. They either leverage the fully connected
layers and LSTM to extract features and model the tem-
poral information(""> 78] or use a 3D convolutional layer
followed by a combination of CNNs and LSTMs[™: 80],
However, LSTM is normally extensive. To this end,
Makino et al.Bl proposed a large-scale system on the
basis of a recurrent neural network transducer (RNN-T)
architecture to evaluate the performance of RNN model.

Instead of a two-step strategy, Petridis et al.["”] intro-
duced a new audio-visual model that is simultaneously
extracting features directly from pixels and classifying
speech, followed by a bidirectional LSTM module to fuse
audio and visual information. To this end, Wand et al.[?8l
presented a word-level lip-reading system using LSTM.
However, this work only conduct experiments on a lab-
controlled dataset®2. In contrast to previous methods,
Assael et.all™ proposed an end-to-end LipNet model
based on sentence-level sequence prediction, which con-
sisted of spatial-temporal convolutions, a recurrent net-
work, and a model trained via the connectionist tempor-
al classification (CTC) loss. Experiments showed that lip-
reading outperformed the two-step strategy.

However, the limited information in the visual modal-
ity may lead to a performance bottleneck. To combine
both audio and visual information for various scenes, es-
pecially in noisy conditions, Trigeorgis et al.83 intro-
duced an end-to-end model to obtain a context-aware fea-
ture from the raw temporal representation.

Chung et al.B4 presented a Watch, Listen, Attend,
and Spell (WLAS) network to explain the influence of au-
dio on the recognition task. The model took advantage of
the dual attention mechanism and could operate on a
single or combined modality. To speed up the training
and avoid overfitting, the researchers also used a cur-
riculum learning strategy. To analyze an in-the-wild data-
set, Nussbaum-Thom et al.8% proposed another model
based on residual networks and a bidirectional GRUMSI,
However, they did not take the ubiquitous noise in the
audio into account. To solve this problem, Afouras et
al.3%l proposed a model for performing speech recognition
tasks. The researchers compared two common sequence
prediction types: connectionist temporal classification and
sequence-to-sequence (seq2seq) methods in their models.
In the experiment, they observed that the model using
seq2seq could perform better according to word error rate
(WER) when it was only provided with silent videos. For
pure-audio or audio-visual tasks, the two methods be-
haved similarly. In a noisy environment, the performance
of the seq2seq model was worse than that of the corres-
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ponding CTC model, suggesting that the CTC model
could better handle background noises.

Recent works introduced attention mechanisms to
highlight some significant information contained in audio
or visual representations. Zhang et al.B” proposed a fac-
torized bilinear pooling to learn the feature of respective
modalities via an embedded attention mechanism, and
then to integrate complex association between audio and
video for the audio-video emotion recognition task. Zhou
et al.8 focused on the feature of respective modalities by
multimodal attention mechanism to exploit the import-
ance of both modalities to obtain a fused representation.
Compared with the previous works which focused on the
feature of each modal, Tao et al.’9 paid more attention
to the network and proposed a cross-modal discriminat-
ive network called VFNet to establish the relationship
between audio and face by cosine loss.

3.3 Discussions

The representation learning between modalities is cru-
cial in audio-visual correspondence learning. One can add
more supplementary information (e.g., mutual informa-
tion, temporal information) or adjust the structure of the
network such as the use of RNN and LSTM, increasing
the modal structure or input pretreatment, etc., to ob-
tain better representation.

4 Audio and visual generation

The previously introduced retrieval task shows that
the trained model is able to find the most similar audio
or visual counterpart. While humans can imagine the
scenes corresponding to sounds and vice versa, research-
ers have tried to endow machines with this kind of ima-
gination for many years. Following the invention and ad-
vances of generative adversarial networks (GANsl, a
generative model based on adversarial strategy), image or
video generation has emerged as a topic. It involves sev-
eral subtasks, including generating images or video from a
potential spacel®ll, cross-modality generation92 93, etc.
These applications are also relevant to other tasks, e.g.,
domain adaptation®% 9], Due to the difference between
audio and visual modalities, the potential correlation
between them is nonetheless difficult for machines to dis-
cover. Generating sound from a visual signal or vice
versa, therefore, becomes a challenging task.

In this section, we will mainly review the recent devel-
opment of audio and visual generation, i.e., generating
audio from visual signals or vice versa. Visual signals here
mainly refer to images, motion dynamics, and videos. Sec-
tion 4.1 mainly focuses on recovering the speech from the
video of the lip area (Fig.6(a)) or generating sounds that
may occur in the given scenes (Fig.6(a)). In contrast,
Section 4.2 will examine generating images from a given
audio (Fig.7(a)), body motion generation (Fig.7(b)), and
talking face generation (Fig.7(c)). The brief advantages
and disadvantages are shown in Tables 5—7.
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Input lip sequences Output speech

(a) Demonstration of generating speech from lip sequences

—

Output audio

Input videos

(b) Demonstration of video-to-audio generation

Fig. 6 Demonstration of visual-to-audio generation
4.1 Vision-to-audio generation

Many methods have been explored to extract audio
information from visual information, including predicting
sounds from visually observed vibrations and generating
audio via a video signal. We divide the visual-to-audio
generation tasks into two categories: generating speech
from lip video and synthesizing sounds from general
videos without scene limitations.

4.1.1 Lip sequence to speech

There is a natural relationship between speech and
lips. Separately from understanding the speech content
by observing lips (lip-reading), several studies have tried
to reconstruct speech by observing lips. Le Cornu et al.[%l
attempted to predict the spectral envelope from visual
features, combining it with artificial excitation signals,
and synthesizing audio signals in a speech production
model. Ephrat and Pelegl®’ proposed an end-to-end mod-
el based on a CNN to generate audio features for each si-
lent video frame based on its adjacent frames. The wave-
form was therefore reconstructed based on the learned

R =

Input audio

Output image

(a) Demonstration of audio-to-images generation

Body dynamics

R Py

Input music

Avatar animation

(b) Demonstration of a moving body

S o o o

Input speech

Output faces

(c) Demonstration of a talking face

Fig. 7 Demonstration of talking face generation and moving
body generation.

features to produce understandable speech.

Using temporal information to improve speech recon-
struction has been extensively explored. Ephrat et al.[%]
proposed leveraging the optical flow to capture the tem-
poral motion at the same time. Le Cornu et al.% lever-
aged recurrent neural networks to incorporate temporal
information into the prediction.

4.1.2 General video to audio

When a sound hits the surfaces of some small objects,
the latter will vibrate slightly. Therefore, Davis et al.[100]
utilized this specific feature to recover the sound from vi-
brations observed passively by a high-speed camera. Note

Table 5 Summary of recent approaches to video-to-audio generation

Category Method

Ideas & strengths

Weaknesses

Le Cornu et al.[%6]

Reconstruct intelligible speech only from
visual speech features

Applied to limited scenarios

Ephrat et al.[8]
Lip sequence to speech purat et a

Compute optical flow between frames

Applied to limited scenarios

Le Cornu et al.[9]

Reconstruct speech using a classification
approach combined with feature-level
temporal information

Cannot apply to real-time conversational
speech

Davis et al.[100]

Recover real-world audio by capturing
vibrations of objects

Requires a specific device; Can only be
applied to soft objects

Owens et al.[101]

Use LSTM to capture the relation between
material and motion

For a lab-controlled environment only

General video to audio Zhou et al.[102]

Leverage a hierarchical RNN to generate
in-the-wild sounds

Monophonic audio only

Morgado et al.[12]

Localize and separate sounds to generate
spatial audio from 360° video

Expensive 360° videos are required

Zhou et al.[104]

A unified model to generate stereophonic
audio from mono data
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Table 6 A quantitative study on video-to-audio generation

Category

Method

Dataset

Result

Lip sequence to speech

Le Cornu et al.[96]

GRID®2]

Ephrat et al.[%]

GRID[B2l and TCD TIMITI143]

PESQ: 1.922 (on GRID S4)

General video to audio

Le Cornu et al.[99] GRIDI#2] -
Dayvis et al.[100] Videos they collected SSNR: 28.7
Owens et al.[101] Videos they collected ERR: 0.21

Zhou et al.[102]

VEGAS

Flow at category level: 0.603

Table 7 Summary of recent studies of audio-to-visual generation

Category

Method

Ideas & strengths

Weaknesses

Wan et al.[105]

Combined many existing techniques to
form a GAN

Relative low quality

Qiu and Kataokall06]

Generated images related to music

Relative low quality

Chen et al. [92]

Generated both audio-to-visual and
visual-to-audio models

The models were independent

Audio to image

Wen et al.[112]

Explore the relationship between two
modalities

Hao et al. [107]

Proposed a cross-modality cyclic GAN

Generated images only

Li et al.[108]

A teacher-student for speech-to-image
generation

Wang et al. [109]

Relation information is leveraged

Alemi et al.[120]

Generated dance movements from music
via real-time GrooveNet

Lee et al.[121]

Generated a choreography system via an
autoregressive network

Audio to motions

Shlizerman et al.(122]

Applied a target delay LSTM to predict
body keypoints

Tang et al.[123]

Developed a music-oriented dance
choreography synthesis method

Yalta et al.[124]

Produced weak labels from motion
directions for motion-music alignment

Constrained to the given dataset

Kumar et al.[125] and
Supasorn et al.[127]

Generated keypoints by a time-delayed
LSTM

Need retraining for different identities

Jamaludin et al.[128]

Developed an encoder-decoder CNN model
suitable for more identities

Jalalifar et al.[129]

Combined RNN and GAN and applied
keypoints

Vougioukas et al. [130]

Applied a temporal GAN for more
temporal consistency

For a lab-controlled environment only

Chen et al.[132]

Applied optical flow

Generated lips only

Talking face

Eskimez et al.[137]

3D talking face landmarks;
New training method

Mass of time to train the model

Eskimez et al.[136]

Emotion discriminative loss

Heavy burden on the network and need
lots of time

Zhou et al.[133]

Disentangled information

Lacked realism

Zhu et al.[93]

Asymmetric mutual information
estimation to capture modality coherence

Suffered from the zoom-in-and-out
condition

Chen et al.[134]

Dynamic pixelwise loss

Required multistage training

Wiles et al.[135]

Self-supervised model for multimodality
driving

Relative low quality
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that it should be easy for suitable objects to vibrate,
which is the case for a glass of water, a pot of plants, or a
box of napkins. We argue that this work is similar to the
previously introduced speech reconstruction studies[96-99
since all of them use the relation between visual and
sound context. In speech reconstruction, the visual part
concentrates more on lip movement, while in this work, it
focuses on small vibrations.

Owens et al.191] observed that when different materi-
als were hit or scratched; they emitted a variety of
sounds. Thus, the researchers introduced a model that
learned to synthesize sound from a video in which ob-
jects made of different materials were hit with a drum-
stick at different angles and velocities. The researchers
demonstrated that their model could not only identify
different sounds originating from different materials but
also learn the pattern of interaction with objects (differ-
ent actions applied to objects result in different sounds).
The model leveraged an RNN to extract sound features
from video frames and subsequently generated wave-
forms through an instance-based synthesis process.

Although Owens et al.ll0l could generate sound from
various materials, the approach they proposed still could
not be applied to real-life applications since the network
was trained by videos shot in a lab environment under
strict constraints. To improve the result and generate
sounds from in-the-wild videos, Zhou et al.l!02] designed
an end-to-end model. It was structured as a video en-
coder and a sound generator to learn the mapping from
video frames to sounds. Afterwards, the network lever-
aged a hierarchical RNNI93] for sound generation. Spe-
cifically, the authors trained a model to directly predict
raw audio signals (waveform samples) from input videos.
They demonstrated that this model could learn the cor-
relation between sound and visual input for various
scenes and object interactions.

The previous efforts we have mentioned focused on
monophonic audio generation, while Morgado et al.l'?] at-
tempted to convert monophonic audio recorded by a 360°
video camera into spatial audio. Performing such a task
of audio specialization requires addressing two primary is-
sues: source separation and localization. Therefore, the re-
searchers designed a model to separate the sound sources
from mixed-input audio and then localize them in the
video. Another multimodality model was used to guide
the separation and localization since the audio and video
were complementary. To generate stereophonic audio
from mono data, Zhou et al.l%4 proposed a sep-stereo
framework that integrates stereo generation and source
separation into a unified framework.

4.2 Audio to vision

In this section, we provide a detailed review of audio-
to-visual generation. We first introduce audio-to-images
generation, which is easier than video generation since it
does not require temporal consistency between the gener-
ated images.
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4.2.1 Audio to image

To generate images of better quality, Wan et al.[105]
put forward a model that combined the spectral norm, an
auxiliary classifier, and a projection discriminator to form
the researchers’ conditional GAN model. The model could
output images of different scales according to the volume
of the sound, even for the same sound. Instead of generat-
ing real-world scenes of the sound that had occurred, Qiu
and Kataokall%l suggested imagining the content from
music. They proposed a model features by feeding the
music and images into two networks and learning the cor-
relation between those features, and finally generating im-
ages from the learned correlation.

4.2.2 Speech to image generation

Several studies have focused on audio-visual mutual
generation. Chen et al.2 were the first to attempt to
solve this cross-modality generation problem using condi-
tional GANs. The researchers defined a sound-to-image
(S2I) network and an image-to-sound (I2S) network that
generated images and sounds, respectively. Instead of sep-
arating S2I and I2S generation, Hao et al.[197 combined
the respective networks into one network by considering a
cross-modality cyclic generative adversarial network (CM-
CGAN) for the cross-modality visual-audio mutual gener-
ation task. Following the principle of cyclic consistency,
CMCGAN consisted of four subnetworks: audio-to-visual,
visual-to-audio, audio-to-audio, and visual-to-visual.

Most recently, some studies tried to generate images
conditioned on the speech description. Li et al.[18] pro-
posed a speech encoding to learn the embedding features
of speech, which is trained with a pre-trained image en-
coder using teacher-student learning strategy to obtain
better generalization capability. Wang et al.l09 lever-
aged a speech embedding network to learn speech embed-
dings with the supervision of corresponding visual inform-
ation from images. A relation-supervised densely-stacked
generative model is then proposed to synthesize images
conditioned on the learned embeddings. Furthermore,
some studies have tried to reconstruct facial images from
speech clips. Duarte et al.l!l0 synthesized facial images
containing expressions and poses through the GAN mod-
el. Moreover, Duarte et al.ll’0l enhanced their model’s
generation quality by searching for the optimal input au-
dio length. To better learn normalized faces from speech,
Oh et al.ll'll explored a reconstructive model. The re-
searchers trained an audio encoder by learning to align
the feature space of speech with a pre-trained face en-
coder and decoder.

Different from the above methods, Wen et al.[112] pro-
posed an unsupervised approach to reconstruct a face
from audio. Specifically, they proposed a novel frame-
work base on GANs, which reconstructed a face via an
audio vector captured by the voice embedding and the
generated face and identity are distinguished by discrim-
inator and classifier, respectively.

4.2.3 Body motion generation

Instead of directly generating videos, numerous stud-

ies have tried to animate avatars using motions. The
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motion synthesis methods leveraged multiple techniques,
such as dimensionality reduction/!!3: 114 hidden Markov
models(!5],  Gaussian processes!!l6, and neural net-
works[117-119]

Alemi et al.'20] proposed a real-time GrooveNet based
on conditional restricted Boltzmann machines and recur-
rent neural networks to generate dance movements from
music. Lee et al.['21] utilized an autoregressive encoder-de-
coder network to generate a choreography system from
music. Shlizerman et al.22] further introduced a model
that used a target delay LSTM to predict body land-
marks. The latter was further used as agents to generate
body dynamics. The key idea was to create an animation
from the audio that was similar to the action of a pianist
or a violinist. In summary, the entire process generated a
video of artists’ performance corresponding to the input
audio.

Although previous methods could generate body mo-
tion dynamics, the intrinsic beat information of the mu-
sic has not been used. Tang et al.[123] proposed a music-
oriented dance choreography synthesis method that ex-
tracted a relation between acoustic and motion features
via an LSTM-autoencoder model. Moreover, to achieve
better performance, the researchers improved their model
with a masking method and temporal indexes. Providing
weak supervision, Yalta et al.l!24 explored producing
weak labels from motion direction for motion-music align-
ment. The authors generated long dance sequences via a
conditional autoconfigured deep RNN that was fed by an
audio spectrum.

4.2.4 Talking face generation

Exploring audio-to-video generation, many research-
ers showed great interest in synthesizing people’s faces
from speech or music. This has many applications, such
as animating movies, teleconferencing, talking agents, and
enhancing speech comprehension while preserving pri-
vacy. Earlier studies of talking face generation mainly
synthesized a specific identity from the dataset based on
audio of an arbitrary speech. Kumar et al.[125] attempted
to generate key points synced to audio by utilizing a
time-delayed LSTMIM!26l and then generated the video
frames conditioned on the key points by another network.
Furthermore, Supasorn et al.l'27] proposed a teeth proxy
to improve the visual quality of teeth during generation.

Subsequently, Jamaludin et al.[l28] attempted to use
an encoder-decoder CNN model to learn the correspond-
ences between raw audio and videos. Combining recur-
rent neural network (RNN) and GANDY Jalalifar et
al.['29] produced a sequence of realistic faces synchronized
with the input audio by two networks. One was an
LSTM network used to create lip landmarks out of audio
input. The other was a conditional GAN (cGAN) used to
generate the resulting faces conditioned on a given set of
lip landmarks. Instead of applying cGAN,130 proposed
using a temporal GAN[3! to improve the synthesis qual-
ity. However, the above methods were only applicable to
synthesizing talking faces with identities limited to those
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in a dataset.

The synthesis of talking faces of arbitrary identities
has recently drawn significant attention. Chen et al.[132]
considered correlations among speech and lip movements
while generating multiple lip images. The researchers
used the optical flow to better express the information
between the frames. The fed optical flow represented not
only the information of the current shape but also the
previous temporal information.

A frontal face photo usually has both identity and
speech information. Assuming this, Zhou et al.[!33] used
an adversarial learning method to disentangle different
types of information of one image during generation. The
disentangled representation had a convenient property
that both audio and video could serve as the source of
speech information for the generation process. As a result,
it was possible to not only output the features but also
express them more explicitly while applying the resulting
network.

Most recently, to discover the high-level correlation
between audio and video, Zhu et al.[%] proposed a mutu-
al information approximation to approximate mutual in-
formation between modalities. Chen et al.['34 applied
landmark and motion attention to generating talking
faces and further proposed a dynamic pixel-wise loss for
temporal consistency. Facial generation is not limited to
specific audio or visual modalities since the crucial point
is whether there is a mutual pattern between these differ-
ent modalities. Wiles et al.[135] put forward a self-super-
vising framework called X2Face to learn the embedded
features and generate target facial motions. It could pro-
duce videos from any input as long as the embedded fea-
tures were learned.

Different from the above works, Eskimez et al.[136 pro-
posed a supervised system (fed with a speech utterance,
face image, emotion label and noise) to generate talking
face and focused on emotion to improve the authenticity
of the results. As intermediate information in talking
face, generating landmarks from audio has attracted more
attention in recent years. Eskimez et al.['37] proposed to
generate 3D talking face landmarks from audio in a noisy
environment. They exploited active shape model (ASM)
coefficients of face landmarks to smooth video frames and
introduced speech enhancement to cope with noise in the
background.

4.3 Discussions

Audio-visual generation is an important yet challen-
ging task among these fields. The challenge mainly de-
rives from the big gap between audio and visual modalit-
ies. In order to narrow this gap, some scholars intro-
duced extra information for their model, including land-
marks, keypoints, mutual information, and optical flow,
etc. More common approaches are changing network
structure base on power GAN or other generative models
such as cross-modality cycle generative adversarial net-
work, GrooveNet, condition GAN, etc. Another effective
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approach is pre-processing the model’s input, such as
aligning the feature space, and animating avatars from
motions.

5 Audio-visual representation learning

Representation learning aims to discover the pattern
representation from data automatically. It is motivated
by the fact that the choice of data representation usually
greatly impacts the performance of machine learningl!sl.
However, real-world data such as images, videos, and au-
dio are not amenable to defining specific features algorith-
mically. Additionally, the quality of data representation
usually determines the success of machine learning al-
gorithms. Bengio et al.l%l assumed the reason for this to
be that different representations could better explain the
laws underlying data, and the recent enthusiasm for Al
has motivated the design of more powerful representa-
tion learning algorithms to achieve these priors.

In this section, we will review a series of audio-visual
learning methods ranging from single-modality(138] to
dual-modality representation learning[l6: 17, 139-141] The
basic pipeline of such studies is shown in Fig.8, and the
strengths and weaknesses are shown in Tables 8 and 9.

5.1 Single-Modality representation learn-
ing

Naturally, to determine whether audio and video are
related to each other, researchers focus on determining if
they are from the same video or synchronized in the same

video. Aytar et al.!38] exploited the natural synchroniza-
tion between video and sound to learn an acoustic repres-
entation of a video. The researchers proposed a student-
teacher training process that used an unlabeled video as a
bridge to transfer discernment knowledge from a sophist-
icated visual identity model to the sound modality. Al-
though the proposed approach managed to learn audio-
modality representation in an unsupervised manner, dis-
covering audio and video representations simultaneously
remained to be solved.

5.2 Learning an audio-visual representa-
tion

The information concerning modality tends to be
noisy in the corresponding audio and images, while we
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Fig. 8 Basic pipeline of representation learning

Table 8 Summary of recent audio-visual representation learning studies

Type Method

Ideas & strengths

Weaknesses

Single modality Aytar et al.[138]

Student-teacher training procedure with
natural video synchronization

Only learned the audio representation

Leidal et al.[140]

Regularized the amount of information
encoded in the semantic embedding

Focused on spoken utterances and
handwritten digits

Arandjelovic et al.[16:139]  Proposed the AVC task

Considered only audio and video
correspondence

Dual modalities Korbar et al.[l7]

learning

Proposed the AVTS task with curriculum

The sound source has to feature in the video

Parekh et al.[144] .
learning

Use video labels for weakly supervised

Leverage the prior knowledge of event
classification

Hu et al.[141]

Disentangle each modality into a set of
distinct components

Require a predefined number of clusters

Table 9 A quantitative study on audio-visual representation learning studies

Type Method Dataset

Result

Single modality Aytar et al.[138]

DCASE, ESC-50 and ESC-10

Classification accuracy: 0.88 (on DCASE)

Leidal et al.[140]

TIDIGITs and MNIST -

Arandjelovic et al.l16]
Dual modalities

Flickr-SoundNet[!38] and Kinetics[!61]

Accuracy: 0.74 (on Kinetics)

Korbar et al.[l7]

Kinetics!'61] and AudioSet![165]

Accuracy: 0.78 (on Kinetics)

Parekh et al.[144]

Subset of AudioSet[165]

Recall: 0.694

@ Springer



H. Zhu et al. / Deep Audio-visual Learning: A Survey

only require semantic content rather than the exact visu-
al content. Leidal et al.l40 explored unsupervised learn-
ing of the semantic embedded space, which required a
close distribution of the related audio and image. The re-
searchers proposed a model to map an input to vectors of
the mean. The logarithm of variance of a diagonal Gaus-
sian distribution, and the sample semantic embeddings
were drawn from these vectors.

To learn the audio and video's semantic information
by simply watching and listening to a large number of
unlabeled videos, Arandjelovic et al.16] introduced an au-
dio-visual correspondence learning task (AVC) for train-
ing two (visual and audio) networks from scratch, as
shown in Fig.9(a). In this task, the corresponding audio
and visual pairs (positive samples) were obtained from
the same video, while mismatched (negative) pairs were
extracted from different videos. To solve this task,
Arandjelovic and Zisserman(l6l proposed an L3-Net that
detected whether the semantics in visual and audio fields
were consistent. Although this model was trained without
additional supervision, it could learn representations of
dual modalities effectively.

Exploring the proposed audio-visual coherence (AVC)
task, Arandjelovic and Zisserman[139 continued to invest-
igate AVE-Net that to find the most similar visual area
to the current audio clip. Owens and Efros/42] proposed
adopting a model similar to that of [16] but used a 3D
convolution network for the videos instead, which could
capture the motion information for sound localization.

In contrast to previous AVC task-based solutions,
Korbar et al.l7 introduced another proxy task called au-

Positive pairs

Negative pairs

AAAA
e e s

5 9 5 5

(a) Introduction to the AVC task

Hard negative Super hard

pairs negative pairs
- *g

(b) Introduction to the AVTS task

Positive pairs

Fig. 9 Introduction to the representation task
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dio-visual time synchronization (AVTS) that further con-
sidered whether a given audio sample and video clip were
synchronized or not. In the previous AVC tasks, negat-
ive samples were obtained as audio and visual samples
from different videos. However, exploring AVTS, the re-
searchers trained the model using harder negative
samples representing unsynchronized audio and visual
segments sampled from the same video, forcing the mod-
el to learn the relevant temporal features. At this time,
not only the semantic correspondence was enforced
between the video and the audio, but more importantly,
the synchronization between them was also achieved. The
researchers applied the curriculum learning strategyl!43 to
this task and divided the samples into four categories:
positives (the corresponding audio-video pairs), easy neg-
atives (audio and video clips originating from different
videos), difficult negatives (audio and video clips originat-
ing from the same video without overlap), and super-diffi-
cult negatives (audio and video clips that partly overlap),
as shown in Fig.9(b).

The above studies rely on two latent assumptions:
1) The sound source should be present in the video, and
2) only one sound source is expected. However, these as-
sumptions limit the applications of the respective ap-
proaches to real-life videos. Therefore, Parekh et al.[l44]
leveraged class-agnostic proposals from both video frames
to model the problem as a multiple-instance learning task
for audio. As a result, the classification and localization
problems could be solved simultaneously. The research-
ers focused on localizing salient audio and visual compon-
ents using event classes in a weakly supervised manner.
This framework was able to deal with the difficult case of
asynchronous audio-visual events. To leverage more de-
tailed relations between modalities, Hu et al.l4l recom-
mended a deep coclustering model that extracted a set of
distinct components from each modality. The model con-
tinually learned the correspondence between such repres-
entations of different modalities and further introduced
K-means clustering to distinguish concrete objects or
sounds.

5.3 Discussions

Representation learning between audio and visual is
an emerging topic in deep learning. For single modality
representation learning, existing efforts usually train an
audio network to correlate with visual outputs. The visu-
al networks are pre-trained with fixed parameters acting
as a teacher. In order to learn audio and visual represent-
ation simultaneously, some efforts usually use the natur-
al audio-visual correspondence in videos. However, this
weak constraint cannot enforce models to produce pre-
cise information. Therefore, some efforts were proposed to
solve this dilemma by adding more constraints such as
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class-agnostic proposals, corresponded or not, negative or
positive samples, etc. Moreover, some works tend to ex-
ploit more precise constraints, for example, synchronized
or not, harder negative samples, asynchronous audio-visu-
al events, etc. By adding these constraints, their model
can achieve better performance.

6 Recent public audio-visual datasets

Many audio-visual datasets ranging from speech-re-
lated to event-related data have been collected and re-
leased. We divide datasets into two categories: audio-
visual speech datasets that record human faces with the
corresponding speech, and audio-visual event datasets
consisting of musical instrument videos and real events’
videos. In this section, we summarize the information of
recent audio-visual datasets (Table 10 and Fig. 10).

6.1 Audio-visual speech datasets

Constructing datasets containing audio-visual corpora
is crucial to understanding audio-visual speech. The data-
sets are collected in lab-controlled environments where
volunteers read the prepared phrases or sentences, or in-
the-wild environments of TV interviews or talks.

6.1.1 Lab-controlled environment

Lab-controlled speech datasets are captured in specif-
ic environments, where volunteers are required to read
the given phases or sentences. Some of the datasets only
contain videos of speakers that utter the given sentences;
these datasets include GRID[B2, TCD TIMIT!4], and
VidTIMIT[46], Such datasets can be used for lip reading,
talking face generation, and speech reconstruction. Devel-
opment of more advanced datasets has continued: e.g.,
Livingstone et al.l47 offered the RAVDESS dataset that
contained emotional speeches and songs. The items in it
are also rated according to emotional validity, intensity,
and authenticity.

Some datasets such as Lombard Grid48 and
OuluVS49, 150 focus on multiview videos. In addition, a
dataset named SEWAS! offers rich annotations, includ-
ing answers to a questionnaire, facial landmarks, LLD
(low-level descriptors) features, hand gestures, head ges-
tures, transcript, valence, arousal, liking or disliking, tem-
plate behaviors, episodes of agreement or disagreement,
and episodes of mimicry. MEAD[52 igs a large-scale, high-
quality emotional audio-visual dataset that contains 60
actors and actresses talking with eight different emotions
at three different intensity levels. This large-scale emo-
tional dataset can be applied to many fields, such as con-
ditional generation, cross-modal understanding, and ex-
pression recognition.

6.1.2 In-the-wild environment

The above datasets were collected in lab environ-
ments; as a result, models trained on those datasets are
difficult to apply in real-world scenarios. Thus, research-
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ers have tried to collect real-world videos from TV inter-
views, talks, and movies and released several real-world
datasets, including LRW, LRW variants84 153,154 Vox-
celeb and its variants[l%5 156 AV A-ActiveSpeaker!!57,
and AVSpeechl!l. The LRW dataset consists of 500 sen-
tences[!53], while its variant contains 1 000 sentences/[®4, 154],
all of which were spoken by hundreds of different speak-
ers. VoxCeleb and its variants contain over 100 000 utter-
ances of 1251 celebrities!” and over a million utter-
ances of 6 112 identities[156],

AVA-ActiveSpeaker!57 and AVSpeechl!l] datasets
contain even more videos. The AVA-ActiveSpeaker[!57]
dataset consists of 3.65 million human-labeled video
frames (approximately 38.5h). The AVSpeechl'l] dataset
contains approximately 4 700h of video segments from a
total of 290 000 YouTube videos spanning a wide variety
of people, languages, and face poses. The details are re-
ported in Table 10.

6.2 Audio-visual event datasets

Another audio-visual dataset category consists of mu-
sic or real-world event videos. These datasets are differ-
ent from the aforementioned audio-visual speech datasets
in not being limited to facial videos.

6.2.1 Mousic-related datasets

Most music-related datasets were constructed in a lab
environment. For example, ENST-Drums/!58 merely con-
tains drum videos of three professional drummers special-
izing in different music genres. The C4S dataset[!% con-
sists of 54 videos of 9 distinct clarinetists, each perform-
ing three different classical music pieces twice (4.5h in
total).

The URMP60 dataset contains a number of multi-in-
strument musical pieces. However, these videos were re-
corded separately and then combined. To simplify the use
of the URMP dataset, Chen et al.[%2] further proposed the
Sub-URMP dataset that contains multiple video frames
and audio files extracted from the URMP dataset.

6.2.2 Real events-related datasets

More and more real-world audio-visual event datasets
have recently been released, that consisting numerous
videos uploaded to the Internet. The datasets often com-
prise hundreds or thousands of event classes and the cor-
responding videos. Representative datasets include the
following.

Kinetics-400[161], Kinetics-600162] and Kinetics-700[163]
contain 400, 600 and 700 human action classes with at
least 400, 600 and 700 video clips for each action, respect-
ively. Each clip lasts approximately 10s and is taken
from a distinct YouTube video. The actions cover a
broad range of classes, including human-object interac-
tions such as playing instruments, as well as human-hu-
man interactions such as shaking hands. The AVA-Ac-
tions dataset(164 densely annotated 80 atomic visual ac-
tions in 43 015 min of movie clips, where actions were loc-
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Table 10 Summary of speech-related audio-visual datasets. These datasets can be used for all tasks related to speech we have
mentioned above. Note that the length of a speech dataset denotes the number of video clips, while for music or real event datasets, the
length represents the total number of hours of the dataset.

Category Dataset Environment Classes Length* Year
GRID®2] Lab 34 33 000 2006

Lombard Grid[148] Lab 54 54 000 2018

TCD TIMITI145] Lab 62 - 2015

Vid TIMIT146] Lab 43 - 2009

RAVDESS[147] Lab 24 - 2018

SEWAL51] Lab 180 - 2017

OuluVsH4] Lab 20 1000 2009

Speech OuluVS2(150] Lab 52 3640 2016
MEAD[52] Lab 60 281 400 2020

Voxcelebl!59] Wild 1251 154 516 2017

Voxceleb2![156] Wild 6112 1128246 2018

LRWL53] Wild ~1 000 500 000 2016

LRS[4] Wild ~1 000 118 116 2017

LRS3[154] Wild ~1 000 74 564 2017
AVA-ActiveSpeaker[157] Wild - 90 341 2019

C48159] Lab - 4.5 2017

Music ENST-Drums/!58] Lab - 3.75 2006
URMPI160] Lab - 1.3 2019

YouTube-8MI[166] Wild 3862 350 000 2016

AudioSet[165] Wild 632 4971 2016

Real event Kinetics-400[161] Wild 400 850%* 2018
Kinetics-600[162] Wild 600 1400* 2018

Kinetics-700[163] Wild 700 1 806* 2018

Audio-visual

dataset

Fig. 10 Demonstration of audio-visual datasets

@ Springer



368 International Journal of Automation and Computing 18(3), June 2021

alized in space and time, resulting in 1.58 M action labels
with multiple labels corresponding to a certain person.

AudioSet[165], a more general dataset, consists of an
expanding ontology of 632 audio event classes and a col-
lection of 2 084 320 human-labeled 10-second sound clips.
The clips were extracted from YouTube videos and cover
a wide range of human and animal sounds, musical in-
struments and genres, and common everyday environ-
mental sounds. YouTube-8MI66] is a large-scale labeled
video dataset that consists of millions of YouTube video
IDs with high-quality machine-generated annotations
from a diverse vocabulary of 3 800+ visual entities.

7 Discussions

AVL is a foundation of the multimodality problem
that integrates the two most important perceptions of our
daily life. Despite great efforts focused on AVL, there is
still a long way to go for real-life applications. In this sec-
tion, we briefly discuss the key challenges and the poten-
tial research directions in each category.

7.1 Challenges

The heterogeneous nature of the discrepancy in AVL
determines its inherent challenges. Audio tracks use a
level of electrical voltage to represent analog signals,
while the visual modality is usually represented in the
RGB color space; the large gap between the two poses a
major challenge to AVL. The essence of this problem is to
understand the relation between audio and vision, which
is also the basic challenge of AVL.

Audio-visual separation and localization is a
longstanding problem in many real-life applications. Re-
gardless of the previous advances in speaker-related or re-
cent object-related separation and localization, the main
challenges are failing to distinguish the timbre of various
objects and exploring ways of generating different objects’
sounds. Addressing these challenges requires us to care-
fully design the models or ideas (e.g., the attention mech-
anism) for dealing with different objects. Audio-visual
correspondence learning has vast potential applica-
tions, such as those in criminal investigations, medical
care, transportation, and other industries. Many studies
have tried to map different modalities into the shared fea-
ture space. However, it is challenging to obtain satisfact-
ory results since extracting clear and effective informa-
tion from ambiguous input, and target modalities re-
mains difficult. Therefore, sufficient prior information
(the specific patterns people usually focus on) has a signi-
ficant impact on obtaining more accurate results. Audio
and vision generation focuses on empowered machine
imagination. In contrast to the conventional discriminat-
ive problem, the task of cross-modality generation is to fit
a mapping between probability distributions. Therefore,
it is usually a many-to-many mapping problem that is
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difficult to learn. Moreover, despite the large difference
between audio and visual modalities, humans are sensit-
ive to the difference between real-world and generated
results, and subtle artifacts can be easily noticed, making
this task more challenging. Finally, audio-visual rep-
resentation learning can be regarded as a generaliza-
tion of other tasks. As we discussed before, both audio
represented by electrical voltage and vision represented
by the RGB color space are designed to be perceived by
humans while not making it easy for a machine to discov-
er the common features. The difficulty stems from hav-
ing only two modalities and lacking explicit constraints.
Therefore, the main challenge of this task is to find a
suitable constraint. Unsupervised learning as a prevalent
approach to this task provides a well-designed solution,
while not having external supervision makes it difficult to
achieve our goal. The challenge of the weakly supervised
approach is to find correct implicit supervision.

7.2 Directions for future research

AVL has been an active research field for many
years20: 21] and is crucial to modern life. However, there
are still many open questions in AVL due to the challen-
ging nature of the domain itself and people’s increasing
demands.

First, from a macro perspective, as AVL is a classic
multimodality problem, its primary issue is to learn the
mapping between modalities, specifically to map the at-
tributes in audio and the objects in an image or a video.
We think that mimicking the human learning process,
e.g., by following the ideas of the attention mechanism
and a memory bank, may improve the performance of
learning this mapping. Furthermore, the second most dif-
ficult goal is to learn logical reasoning. Endowing a ma-
chine with the ability to reason is not only important for
AVL but also an open question for the entire Al com-
munity. Instead of directly empowering a machine with
the full logic capability, which is a long way to go from
the current development state, we can simplify this prob-
lem and consider fully utilizing the prior information and
constructing the knowledge graph. Building a compre-
hensive knowledge graph and leveraging it in specific
areas properly may help machine thinking.

As to each task we have summarized before, Sections
2 and 3 can be referred to as the problem of understand-
ing, while Sections 4 and 5 can be referred to as genera-
tion and representation learning, respectively. Significant
advances in understanding and generation tasks such as
lip-reading, speaker separation, and talking face genera-
tion have recently been achieved for human faces. The
domain of faces is comparatively simple yet important
since the scenes are normally constrained, and it has a
sizable amount of available useful prior information. For
example, consider a 3D face model. These faces usually
have neutral expressions, while the emotions that are the



H. Zhu et al. / Deep Audio-visual Learning: A Survey

basis of the face have not been studied well. Furthermore,
apart from faces, the more complicated in-the-wild scenes
with more conditions are worth considering. Adapting
models to the new varieties of audio (stereoscopic audio)
or vision (3D video and AR) also leads in a new direction.
The datasets, especially large and high-quality ones that
can significantly improve the performance of machine
learning, are fundamental to the research community!l67).
However, collecting a dataset is laborintensive and time-
intensivell08l. However, collecting a dataset is labor-in-
tensive and time-intensive. Small-sample learning also be-
nefits the application of AVL. Learning representations,
which is a more general and basic form of other tasks,
can also mitigate the dataset problem. While recent stud-
ies lacked sufficient prior information or supervision to
guide the training procedure, exploring suitable prior in-
formation may allow models to learn better representa-
tions.

Finally, many studies focus on building more complex
networks to improve performance, and the resulting net-
works generally entail unexplainable mechanisms. To
make a model or an algorithm more robust and explain-
able, it is necessary to learn the essence of the earlier ex-
plainable algorithms to advance AVL.

8 Conclusions

The desire to better understand the world from the
human perspective has drawn considerable attention to
audio-visual learning in the deep learning community.
This paper provides a comprehensive review of recent au-
dio-visual learning advances categorized into four re-
search areas: audio-visual separation and localization, au-
dio-visual correspondence learning, audio and visual gen-
eration, and audio-visual representation learning. Fur-
thermore, we present a summary of datasets commonly
used in audio-visual learning. The discussion section iden-
tifies the key challenges of each category, followed by po-
tential research directions.
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