

Developing Soft Sensors for Polymer Melt Index in an

Industrial Polymerization Process Using

Deep Belief Networks

Chang-Hao Zhu Jie Zhang

School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract: This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep be-
lief network (DBN). The important quality variable melt index of polypropylene is hard to measure in industrial processes. Lack of on-
line measurement instruments becomes a problem in polymer quality control. One effective solution is to use soft sensors to estimate the
quality variables from process data. In recent years, deep learning has achieved many successful applications in image classification and
speech recognition. DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep
architecture. It can meet the demand of modelling accuracy when applied to actual processes. Compared to the conventional neural net-
works, the training of DBN contains a supervised training phase and an unsupervised training phase. To mine the valuable information
from process data, DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the per-
formance of estimation. Selection of DBN structure is investigated in the paper. The modelling results achieved by DBN and feedfor-
ward neural networks are compared in this paper. It is shown that the DBN models give very accurate estimations of the polymer melt
index.

Keywords: Polymer melt index, soft sensor, deep learning, deep belief network (DBN), unsupervised training.

1 Introduction

Much work on soft sensors in the research area of pro-

cess control has done in the past few decades. This tech-

nique is widely implemented in industrial chemical pro-

cesses. Soft sensors are very effective techniques for the

estimation of some important product quality variables in

industrial processes which cannot be measured effectively.

In the area of process control, the issues of hardware in-

struments, such as unavailability or high cost, hinder the

product quality control. To overcome these issues, empir-

ical models can be developed based on process operation-

al data obtained from real industrial processes. With such

models, the difficult-to-measure quality variables can be

estimated from easy-to-measure process variables[1]. This

modelling technique based on historical process data has

become increasingly popular in chemical processes in re-

cent years. Such data driven models can be effectively

used to reduce the cost of production in industrial pro-

cesses and improve the efficiency.

Much successful research on process modelling based

on multivariate statistical techniques has been completed

in the last century. In 1901, principal component analys-

is (PCA) was proposed by Pearson[2]. This method was

further developed by Harold Hotelling in the 1930s[3, 4].

Based on PCA, principal component regression (PCR)

and partial least squares (PLS) have emerged as useful

modelling methods to address the problem of co-linearity

among the input variables[2]. Data-driven soft sensors

based on PCR can be developed by using principal com-

ponents as the predictor variables. As an improvement of

PCR, PLS regression can model both the process data

and quality data at the same time[5]. Wold et al.[6] first

introduced PLS and Wold further developed it. There

were many applications based on the PLS technique in

process modelling. One limitation of PLS and PCR is

that they are both linear techniques. They are not very

effective when applied to nonlinear process modelling.

With the development of machine learning, many re-

searches on developing soft sensors based on machine

learning techniques have been reported in the past a few

years. There are many successful process modelling tech-

niques based on machine learning, such as support vector

machine (SVM) and artificial neural networks (ANN).

McCulloch and Pitts[7] proposed the original neural net-

work in the 1940s. After 20 years, with the vast improve-

ment of computer capability, neural networks became a

popular research topic. The back-propagation algorithm

was applied to ANN by Werbos[8] in 1975. The advant-

age of ANN is that they can be used to approximate any

Research Article

Special Issue on Improving Productivity Through Automation and
Computing
Manuscript received March 15, 2019; accepted September 18, 2019;

published online November 5, 2019
Recommended by Associate Editor Xian-Dong Ma

© The Author(s) 2019

International Journal of Automation and Computing 17(1), February 2020, 44-54
DOI: 10.1007/s11633-019-1203-x

nonlinear functions. ANN gives very good performance on

estimation and prediction of quality data. The back-

propagation algorithm can deal with the exclusive-or

problems. In the backpropagation training algorithm, the

network weights between neurons are modified to distrib-

ute the errors back up from the output layer[8]. However,

conventional ANN suffers from problems of local optima

and lack of generalization capability. SVM can achieve

accessible optima of training even when there is little

training data[9]. However, when applying SVM to pro-

cesses with large amount of modelling data, the pressure

of computation will increase. In 2006, Hinton et al.[10] first

introduced deep learning. Deep belief network (DBN) is

one kind of the most well-known data-driven modelling

techniques based on deep learning. It shows strong gener-

alization capability in modelling highly nonlinear pro-

cesses. This model is established with a deep architecture.

Deep learning has many applications in speech recogni-

tion and images classification[11]. There are two training

phases in the procedure of DBN training: unsupervised

training followed by supervised training. Before super-

vised training, DBN will capture more information from

nonlinear process input data to achieve more accurate

prediction or estimation of quality data. It has shown sig-

nificant performance in many other applications[12, 13].

Soft sensors for polymer melt index (MI) are estab-

lished using DBN and applied to an industrial polypro-

pylene polymerization process in this study. By using

deep learning techniques, large amount of industrial pro-

cess data samples without pre-existing labels can also be

used by DBN models in the unsupervised training phase.

However, these input data are useless for training the

conventional feed-forward neural networks which just use

supervised training. These process data samples help the

DBN model in adjusting the weights in a desirable region.

The information from process data were captured during

the procedure of unsupervised training. It is shown in this

paper that DBN models gave very accurate estimations of

MI.

The rest of this paper is organized as follows. An in-

troduction of ANN is given in Section 2. In Section 3,

DBN model and the main principles of restricted

Boltzmann machines (RBMs) and back-propagation are

introduced. Section 4 introduces the case study of an in-

dustrial polypropylene polymerization process. The selec-

tion of DBN model architectures are discussed and the

polymer melt index estimation results are given in

Section 5. Section 6 summarizes the conclusions of this

paper.

2 Artificial neural networks

The feed-forward neural network is one of the most

well-known machine learning techniques. It can be used

in solving many problems of prediction, classification, and

pattern recognition. Much research of ANN has been re-

ported in the past decades. In the initial form of simple

perceptron invented by McCulloch and Pitts, the model

calculates the weighted sum of input variables and then

passes it to an activation function. Fig. 1 shows a simple

perceptron structure.

xi, i = 1, 2, · · · , n
wj , j = 1, 2, · · · , n

As can be seen from Fig. 1, , are in-

put variables and , are the correspond-

ing weights for these input variables. McCulloch and

Pitts[7] used the threshold function as the activation func-

tion. They proved universal computations can be per-

formed by simple perceptrons if weights are chosen ap-

propriately. However, a lot of complicated systems can-

not be represented by this method[14]. Many other activa-

tion functions can be used, such as Heaviside step func-

tion, sigmoid function and Gaussian function. These ac-

tivation functions are sometimes also named as transfer

function in ANN research. The most popular activation

function is the sigmoid function.

The characteristic of the sigmoid function is that it is

an “S”-shaped curve as shown in Fig. 2.

The sigmoid function maps its input values into a re-

gion from 0 to 1. In Fig. 2, the output value approaches

to 1 when x approaches to + ∞, whereas the output ap-

proaches to 0 when x approaches to – ∞. It has the appro-

priate asymptotic properties. The sigmoid function is giv-

en by (1):

S (x) =
1

1 + e−βx
(1)

where x represents the sum of weighted input values and

β is a slope parameter.

The structure of ANN can be regarded as neurons ar-

....

x1

x2

w1

w2

wn

xn

Σ Activation
function

y

Fig. 1 Model of simple perceptron

x

0

0.2

0.4

0.6

0.8

1.0

f (
x)

Sigmoid function

−5 0 5

Fig. 2 “S”-shaped curve of sigmoid function

C. H. Zhu and J. Zhang / Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process ··· 45

ranged into inter-connected layers with weighted connec-

tions between neurons in adjacent layers. Basically, feed-

forward neural networks and recurrent networks are prin-

cipally two types of ANN. Feed-forward networks have

no feedback connections from the network outputs. Re-

current neural networks are a type of neural networks

with feedback connections. In this work, feed-forward net-

works are also used for soft sensor development in the

polypropylene polymerization process for the purpose of

comparison with DBN.

Multilayer perceptrons are the most classic type of

feed-forward networks. They can deal with more complic-

ated problems than simple perceptrons. Neurons in the

adjacent layers are connected unidirectionally without

feedback loops. A multilayer perceptron model has at

least three layers. It is commonly constructed by an in-

put layer, a hidden layer and an output layer. The rela-

tionship between the neural network input and output

variables can be learnt during the process of supervised

training and stored as the trained network weights. The

structure of a multilayer perceptron with two hidden lay-

ers is shown in Fig. 3.

Each unit in the input layer is a network input. The

output of a unit in the hidden or output layer is calcu-

lated by passing the sum of the weighted outputs of the

previous layer to an activation function as follows:

Oj = f

(
n∑

i=1

wijIi + bj

)
(2)

where Oj is the output value of the unit j in a particular

layer, wij is the weight between this unit and the i-th

unit of the immediate previous layer, Ii is the i-th input

of this unit (i.e., the output value of the i-th unit in the

previous layer), bj is a bias, and f is the activation

function. During network training, the weights and biases

will be initialized as random values typically in a range

between –0.1 and 0.1. Network weights are adjusted by

using training algorithms to minimize the error terms

between network outputs and target labels. After

training, the relationship between system input variables

and output variables can be represented by the trained

neural networks.

The training process of a multilayer feedforward neur-

al network is supervised training. The most commonly

used supervised training algorithm is the backpropaga-

tion algorithm. Multilayer feedforward neural networks

have the capability of modeling nonlinear processes.

However, the process of polymerization is highly nonlin-

ear. The structure of commonly used multilayer neural

networks is shallow. When a feedforward neural network

with more than three layers is training by backpropaga-

tion, the model always suffers from the problem of poor

generalization. This modelling technique cannot meet the

demand of the accuracy of the estimation. To achieve

more accurate estimation of MI, DBN models are estab-

lished in this study. DBN has a deep architecture and

stronger generalization capability.

3 Deep belief networks

3.1 Structure of deep belief network

The limitation of traditional neural networks is that

they usually have shallow structures. There are typically

no more than three layers in a conventional neural net-

work model. With this limitation, a neural network with

shallow structure may not achieve satisfactory estima-

tion performance when applied to highly nonlinear indus-

trial processes. The actual industrial processes are com-

monly highly nonlinear. The shallow architecture of feed-

forward neural networks could lead to the lack of repres-

entation capability[15, 16]. To approximate various regions

of processes, the model needs more hidden neurons ad-

ded to the hidden layers. It is suggested in recent re-

search that networks with a deep structure can achieve

reliable results[15]. DBN has been successfully applied to

many research areas, such as classification and recogni-

tion[17]. In a DBN model, several restricted Boltzmann

machines (RBMs) can be stacked and combined as one

learning network. DBN is developed with a deep struc-

ture based on a deep learning technique. Fig. 4 presents

the basic architecture of DBN.

The DBN shown in Fig. 4 has five layers, an input lay-

er, an output layer and three hidden layers. In Fig. 4, W

is the weight of the network, b and c are biases of the

network. It can be considered that DBN is a combina-

tion of stacking RBMs. Each hidden layer of DBN is re-

garded as one single RBM. Compared with the tradition-

al Boltzmann machine, the neurons in a hidden layer of

DBN are not connected to each other. However, the lay-

ers in a network have symmetrical connections with each

other. The units in hidden layers are binary units and the

visible input layer units are Gaussian units. The first

phase of training is unsupervised training and the pro-

cess operational data are used to train the DBN model

without any target variables involved. The unsupervised

training helps the DBN mine more correlations than the

feed-forward neural networks. The weights are adjusted

x1

x2

xn

wni wij wjk y

Input layer Hidden layer Output layer

....
....

....

Fig. 3 Multilayer perceptron

 46 International Journal of Automation and Computing 17(1), February 2020

in a desired region before the supervised training phase.

After unsupervised training, DBN is fine-tuned by the

backpropagation algorithm in the supervised training phase.

3.2 Restricted Boltzmann machines

In the 1980s, Smolensky[18] developed the restricted

Boltzmann machine. Hinton et al.[10] developed DBN by

stacking RBMs as the layers of DBN. A DBN contains

stacked RBMs as shown in Fig. 4.
To understand the basics of RBM, the probability

function between visible units and hidden units need to

be introduced at first. Equation (3) shows the probabil-

ity function

P (v,h) =
exp {−Energy (v,h)}

Z
(3)

where Z represents a normalizing factor, v represents the

vector of visible layer, h represents the vector of hidden

layer. The probability P(v, h) increases when the energy

function decreases. In the RBM, the energy function is

given by

Energy (v,h) = −bTv − cTh− hTWv (4)

where W, b and c are parameters of the function. It

should be noted that the vector v and the vector h are

both binary-valued. Binary RBMs are used as hidden

layers in a DBN model. However, they cannot be used to

deal with continuous variables. To overcome this issue,

(4) can be extended to energy function of Gaussian RBM:

Energy (v,h) =
∑
i

(vi − ai)
2

2σ2
i

− cTh− hTWv (5)

where ai is the mean of Gaussian distribution, σi is the

standard deviation of Gaussian distribution for input

neuron. The samples of input data are commonly

normalized to zero mean and unit variance in practical

applications. Therefore, (5) can be changed to

Energy (v,h) =
1

2
vTv − bTv − cTh− hTWv. (6)

Hintons[19] also described other forms of RBM, but the

DBN in this paper only uses Gaussian RBM and binary

RBM.

3.3 Learning algorithm for RBM

The objective of training RBM is to maximize the

probability P(v), which can be achieved by minimizing

the energy function. From Gibbs sampling, h can only be

sampled from v of visible layers. Based on the previous

work, the gradient at a visible point v can be formulated

as

∂logP (v)

∂θ
=

∂log
∑
h

P (v,h)

∂θ
=∑

h

e−Energy(v,h)

(
∂ [−Energy (v,h)]

∂θ

)
∑
h

e−Energy(v,h)
−

∑
ṽ

∑
h

e−Energy(ṽ,h)

(
∂ [−Energy (ṽ,h)]

∂θ

)
∑
ṽ

∑
h

e−Energy(ṽ,h)
=

∑
h

P (h|v) ∂ [−Energy (v,h)]

∂θ
−

∑
ṽ

∑
h

P (ṽ,h)
∂ [−Energy (ṽ,h)]

∂θ
(7)

θ = {W , b, c}

h(t)

v(t−1)

v(t) h(t)

where is a vector of the network

parameters. Computing the positive term in (7) is easy

because the vector v has been known. Calculating the

negative term in (7) becomes intractable. The contrastive

divergence is a useful method to overcome the issue of

calculating second-order approximation of the negative

term and it offers an effective solution[20, 21]. The process

of training RBM starts with training vectors on the

visible units. Then hidden units can be generated

from by Gibbs sampling and update visible units

 from . It is named as a Markov chain. After

infinite iterations of Gibbs sampling, the visible units v(∞)

and hidden units h(∞) are sampled. The correlation of v(∞)

and h(∞) can be measured after sampling for a long time.

However, in practical situations, just one iteration of

Gibbs sampling can achieve a satisfactory result and the

learning algorithm works well.

3.4 Supervised training through back-
propagation

Back-propagation is the most commonly used super-

vised training approach to train neural networks. After

Additional top layer
y
Σ

h3

h2

h1

h3

h2

h1

{W3, c3}{W3, b3, c3}

{W2, b2, c2}

{W1, b1, c1}

{W2, c2}

{W1, c1}

Input dataInput data

Binary RBM

Binary RBM

Gaussian RBM

Deep belief network

Fig. 4 Architecture of DBN

C. H. Zhu and J. Zhang / Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process ··· 47

the unsupervised training phase, the back-propagation al-

gorithm will fine tune the whole network in the super-

vised training phase. The errors between the network out-

puts and the corresponding labels are computed and back

propagated to the previous layer. Equation (8) shows the

error terms

Errj = Oj (1−Oj) (Tj −Oj) (8)

where Oj represents the network output for a training

sample, Tj is the corresponding target value for the j-th

output neuron. The error term of hidden layers is

formulated as

Errj = Oj (1−Oj)
∑
k

Errkwjk (9)

where wjk is the vector of weights connecting output

layer and the last hidden layer, Errk is the error term of

output layer. During training, the weight updating is

transferred from the output layer to the input layer. The

formulas of weight updating are given as

wij = wij + ηErrjOi (10)

cj = cj + ηErrj (11)

where η is the learning rate of the training process, wij
and cj are the vectors of weights and bias respectively.

The learning rate needs to be properly selected. A large

learning rate may miss the minimum whereas a small

learning rate usually leads to slow training speed.

As described earlier, the training of DBN contains an

unsupervised training phase and a supervised training

phase. The initial weights are adjusted to an appropriate

region in the unsupervised training procedure. The whole

network is then fine-tuned by backpropagation in the su-

pervised training phase to achieve accurate modelling res-

ults. The profuse latent information extracted from input

variables during the unsupervised training is more inter-

pretable. This semi-supervised method improves the ro-

bustness and generalization capability of model with a

deep architecture.

4 Polypropylene polymerization
process

Advanced monitoring, control, and optimization tech-

niques are essential in modern industrial chemical pro-

cesses to overcome the issue of high cost and improve the

efficiency of production[22]. In this paper, DBN is used to

develop soft sensors for a polypropylene production plant

in China. In this plant, two continuous stirred tank react-

ors (CSTR) and two fluidized-bed reactors (FBR) are

used to produce polypropylene as shown in Fig. 5. Propyl-

ene, hydrogen, and catalyst are fed to reactors. React-

ants for the growing polymer particles are these gases and

liquids fed to the reactors. They are also the provider of

the heat transfer media. The melt index of polymer is a

key polymer quality variable and should be closely mon-

itored and controlled. MI of polypropylene depends on

many factors like catalyst, reactor temperature and con-

centration of the reaction materials. For example, hydro-

gen can increase the polymerization rate of polypropyl-

ene. It mainly increases the initial polymerization rate of

propylene[23]. The hydrogen concentration regulates the

weight of polypropylene. Hydrogen can also delay the de-

cay rate of the catalyst. Due to the difficulty of measur-

ing polymer MI in this process, the relationship between

MI and some process variables which can be measured

easily during the process needs to be found. The inferen-

tial estimation of MI can be obtained by soft sensors. As

this industrial process is very complicated, it is difficult

to develop first principle models linking polymer MI with

easy-to-measure process variables. Therefore, nonlinear

data-driven models need to be utilised in developing soft

sensors for this process.

The polypropylene grades are related to some key

variables, such as reactant composition, reactor temperat-

ure and catalyst properties. The feedstock of D201 are

propylene, hydrogen and catalyst. The co-monomer is ad-

ded to D204. Several grades of polymers were produced

within one month. Industrial process operational data

covering this time period are available for this applica-

tion. In this process, polymer MI were logged every two

hours and process samples were logged every half hour. In

fact, MI are only highly relevant to a few process vari-

ables. Based on the research of Zhang et al.[24], there are

strong correlations between MI of polymer in reactor

D204 and hydrogen concentration in reactor D201 and re-

actor D202. MI of polymer in reactor D201 is highly rel-

evant with the hydrogen concentration and feed rate in

reactor D201[24]. Concentration of hydrogen in D201 and

D202, feed rate of hydrogen and MI of polypropylene in

reactor D201 and D204 are shown in Figs. 6– 8, respect-

ively. Due to the industrial confidentiality, the units of

these variables are not disclosed.

From Fig. 8, it can be observed that the MI data cov-

er quite a wide range. Thus, the data are suitable for de-

Hydrogen
propylene

Hydrogen Hydrogen Hydrogen
PP

Catalyst

D201
Liquid phase

CSTR

D202
Liquid phase

CSTR

D203
Gas phase

FBR

D204
Gas phase

FBR

Fig. 5 Propylene polymerization process

 48 International Journal of Automation and Computing 17(1), February 2020

veloping data-driven models. Soft sensors should extract

the information from limited process data and quality

data to obtain accurate estimation of MI. From the

trends displayed in Figs. 6–8, it can be seen that MI is

highly correlated with hydrogen feed rate and concentration.

The time delay of the industrial process can be found

based on the cross-correlations analysis[24]. The data-driv-

en model for inferential estimation of MI can be represen-

ted as

MI1 (t) = f1[H1 (t) , H1 (t− 1) , H1 (t− 2) , F (t− 9) ,

F (t− 10) , F (t− 11)]
(12)

MI2 (t) = f2[H1 (t− 7) , H1 (t− 8) , H1 (t− 9) ,

H2 (t− 6) , H2 (t− 7) , H2 (t− 8)] (13)

where MI1 and MI2 are the MI in D201 and D204,

respectively, H1 and H2 are the concentrations of

hydrogen in D201 and D202, respectively, and F is the

hydrogen feed rate to D201.

The original process data set contains 1 534 samples of

process operational data and 383 samples of quality data

(MI) which are available for the establishment of data

driven DBN models. It indicates that the amount of pro-

cess variable samples is larger than the amount of qual-

ity variable samples. There are only 383 samples of pro-

cess variables that have corresponding quality variables.

However, the rest of process variable samples can be util-

ized by DBN in the unsupervised training phase. By such

means, DBN can capture much valuable information from

process data. The estimation of MI achieved by DBN can

be improved.

The data set for supervised training phase were separ-

ated into a training data set, a testing data set and an

unseen validation data set. The partition of data sets for

estimating MI1 is presented by Table 1. The partition of

data sets for estimating MI2 is presented by Table 2.

The selections of model structure can be determined

by the training data set and testing data set through

cross-validation. The unseen validation data are useful to

test the performance of the final developed DBN model.

0 200 400 600 800 1 000 1 200 1 400 1 600
Samples

0

5

10

15

(a) D201

H
2 i

n
D

20
1

0 200 400 600 800 1 000 1 200 1 400 1 600
Samples

0

4

2

8

6

12

10

(b) D202

H
2 i

n
D

20
2

Fig. 6 Concentration of hydrogen in (a) D201 and (b) D202

0 200 400 600 800 1 000 1 200 1 400 1 600
Samples

0

10

5

20

15

30

25

Fe
ed

 ra
te

 o
f H

2

Fig. 7 Feed rate of hydrogen

0 50 100 150 200 250 300 350 400
Samples

0

100

50

200

150

300

250

0 50 100 150 200 250 300 350 400
Samples

0

25
20
15
10

5

35
30

45
40

M
I i

n
D

20
4

M
I i

n
D

20
1

(a) D201

(b) D204

Fig. 8 Melt index in (a) D201 and (b) D204

C. H. Zhu and J. Zhang / Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process ··· 49

It can be seen from Tables 1 and 2, 277 samples of

training and testing variables were selected to fine tune

DBN by backpropagation for MI1 and DBN only use 268

samples of training and testing variables to fine tune

DBN in supervised training phase for MI2. During the

unsupervised training phase of DBN models, only input

data are required and target values are not required.

Those input data samples without the corresponding out-

put data are named as “unlabeled” process data. There-

fore, in the unsupervised training phase of DBN models,

samples of process variables without the corresponding

MI data can also be utilized. However, those “unlabeled”

process variables could not be used by other traditional

neural networks for inferential estimation of product

quality. For comparison, conventional neural network

models were also developed.

5 Results and discussions

The model structures need to be determined first. In

this study, 25 DBN models with different architectures

were developed and compared to each other. The one giv-

ing the best performance on the testing data set was re-

garded as having the appropriate structure. These DBN

models have one visible layer (input layer), one addition-

al top layer (output layer) and two hidden layers. The

learning rate in the unsupervised training phase is selec-

ted as 0.01. The learning rate in the supervised training

phase is 0.001 5, The structures of 25 DBN models are

shown in Table 3. Figs. 9 and 10 present the sum of

squared errors (SSE) on the training data set and testing

data set, respectively for these 25 DBN models for estim-

ating MI1.

From Figs. 9 and 10, the 7th DBN model gives the

best generalization performance on the testing data set.

The 6th DBN model gives the second lowest value of er-

ror on the testing data set. The 12th to the 25th DBN

models have lower training errors than the 7th DBN

model. However, those models give larger testing errors

than the 7th DBN model. Thus, the 12th to the 25th

DBN models are likely have suffered from overfitting and

their structures are not appropriate to be selected. From

the results given by Figs. 9 and 10, the number of neur-

ons in the first hidden layer can be considered as 5. From

Table 3, it can be seen that these 25 DBN models have

close numbers of neurons in the first and second hidden

layers. The first step of this investigation is to confirm

that the 7th DBN gave the best performance among these

25 DBN models. To avoid the situation that some DBN

models not included in Table 3 might give better per-

formance, the second step is to further investigate the

number of neurons in the second hidden layer. Nine addi-

tional DBN models with neurons in the second hidden

layer ranging from 2 to 10 are constructed. The values of

error terms on the training and testing data of these

DBN models are shown in Table 4.

From Table 4, it can be seen that the training error of

the 7th DBN is the smallest. However, its testing error is

not the smallest. The testing errors from the 6th to the

9th DBN increased. Therefore, the estimation on testing

data obtained by the 6th to the 9th DBNs are overfitted.

The 4th DBN (i.e., the 7th DBN model in Table 3) has

the lowest testing error among all DBN models. This in-

dicates that the 4th DBN model has better performance

than other models and its structure should be adopted.

In order to demonstrate the advantage of using those

input data samples without corresponding target values

as additional training data in the unsupervised training

Table 1 Partition of data sets for estimating MI1

Data sets Percentage Number of samples

Training data 50% 192

Testing data 22% 85

Unseen validation data 28% 106

Table 2 Partition of data sets for estimating MI2

Data sets Percentage Number of samples

Training data 52% 200

Testing data 18% 68

Unseen validation data 30% 115

0 5 10 15 20 25
0

0.4

0.2

0.8

0.6

1.2

1.0

SS
E

DBN No.

Fig. 9 SSE on training data for estimating MI1

0 5 10 15 20 25
0

1.0
0.8
0.6
0.4
0.2

1.4
1.2

1.8
1.6

SS
E

DBN No.

Fig. 10 SSE on testing data for estimating MI1

 50 International Journal of Automation and Computing 17(1), February 2020

phase, a DBN model trained only using the input data

samples with the pre-existing labels in the unsupervised

training phase was also developed. This is represented by

DBN No. 1 in Table 5, where DBN No. 2 was built by us-

ing “unlabeled” process data without corresponding MI

samples as well. DBN No. 2 in Table 5 is in fact the 4th

DBN model in Table 4. The two DBN models in Table 5

have the same structure. It can be seen from Table 5 that

the first DBN model has larger SSE values on the train-

ing, testing and validation data set than the second DBN

model. Therefore, DBN can extract more features from

the “unlabeled” data. DBN No. 2 gives better perform-

ance than DBN No. 1.

Seven conventional single hidden layer feedforward

neural network models were also established for the pur-

pose of comparison. The SSE values of these convention-

al feedforward neural networks with different structures

on the training and testing data are given in Table 6.

From Table 6, the 4th neural network has the lowest SSE

on the testing data set for estimating MI1 and the 3rd

neural network has the lowest SSE on the testing data for

estimating MI2.

The estimations of MI1 on the unseen validation data

by DBN and the conventional feedforward neural net-

work are shown in Fig. 11. In Fig. 11, the solid, dashed,

and dotted lines represent, respectively, the actual values

of MI1, the estimations by DBN, and the estimations by

the conventional feedforward neural network. It can be

seen from Fig. 11 that the estimations by the DBN model

are generally closer to the corresponding actual values of

MI1 than those by the feedforward neural network. The

SSE values of both DBN and neural network are presen-

ted in Table 7. It can be seen from Table 7 that the SSE

of DBN on training data set is larger than that of the

neural network. However, the SSE values of DBN on test-

ing and unseen validation data set are much smaller than

those of the neural network. The strong generalization

Table 3 DBN models with different structures

No. Neurons in 1st hidden layer Neurons in 2nd hidden layer No. Neurons in 1st hidden layer Neurons in 2nd hidden layer

1 2 1 14 8 7

2 2 2 15 9 9

3 3 3 16 9 8

4 3 2 17 10 10

5 4 4 18 10 9

6 4 3 19 11 11

7 5 5 20 11 10

8 5 4 21 12 12

9 6 6 22 12 11

10 6 5 23 13 13

11 7 7 24 13 12

12 7 6 25 14 13

13 8 8

Table 4 Errors of DBN models with different structures for
estimating MI1

No. Neurons in 1st
hidden layer

Neurons in 2nd
hidden layer

SSE
(training)

SSE
(testing)

1 5 2 0.756 2 0.581 9

2 5 3 0.820 4 0.619 3

3 5 4 0.782 4 0.594 5

4 5 5 0.769 6 0.511 8

5 5 6 0.820 6 0.577 3

6 5 7 0.727 1 0.574 2

7 5 8 0.672 3 0.585 9

8 5 9 0.762 8 0.607 1

9 5 10 0.737 2 0.632 2

Table 6 Errors of neural networks with different structures

No. Neurons in
hidden layer

MI1 MI2

SSE
(training)

SSE
(testing)

SSE
(training)

SSE
(testing)

1 2 1.325 6 0.744 6 1.602 5 0.685 5

2 3 0.794 9 0.822 1 1.518 5 0.737 4

3 4 0.792 4 0.652 7 1.503 5 0.656 4

4 5 0.767 5 0.632 3 1.365 0 0.688 3

5 6 0.634 7 0.653 2 1.100 9 0.821 4

6 7 0.512 4 1.105 4 0.784 4 0.830 5

7 8 0.420 1 0.889 5 0.510 8 1.602 4

Table 5 Errors of DBN models for estimating MI1 with
different input data

DBN No. SSE (training) SSE (testing) SSE (validation)

1 1.620 3 0.890 5 0.702 4

2 0.769 6 0.511 8 0.685 1

C. H. Zhu and J. Zhang / Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process ··· 51

capability of DBN was proved by the inferential estima-

tion of MI1. It gave better performance than the feed-for-

ward neural network. The profuse latent information

from process data were extracted by DBN during the un-

supervised training phase. Overall, the DBN model gives

more accurate estimations of MI1.

Fig. 12 compares the estimations of MI2 by DBN and

conventional feedforward neural network on the unseen

validation data. In Fig. 12, the solid, dashed, and dotted

lines represent, respectively, the actual values of MI2, the

estimations by DBN, and the estimations by the conven-

tional feedforward neural network. From Fig. 12, it can be

seen that both models give similar performance when MI

values are high. However, when MI values are low, the

DBN model gives better estimations. Table 8 shows the

SSE values in the estimation of MI2. The SSE of DBN on

training data is larger than that of neural network. The

SSE values of DBN on testing and unseen validation data

set are much smaller than those of the neural network

model. The results in Fig. 12 and Table 8 indicate that

the estimations of MI2 achieved by DBN are more reli-

able and accurate than those from the conventional feed-

forward neural network.

6 Conclusions

DBN models for the on-line inferential estimation of

the polymer melt index in an industrial polymerization

process are developed in this paper. DBN can be de-

veloped with a deep structure. The profuse latent inform-

ation from the process variables can be extracted by

DBN. The “unlabeled” process data, which ware useless

to the conventional neural network models, can be used

in the unsupervised training stage of DBN. It is shown in

this paper that the accuracy of inferential estimation of

polymer MI can be improved by this means. Selection of

DBN structure is investigated in the paper. The appropri-

ate structures of DBN for the estimation of MI1 and MI2
are selected. DBN has much better performance com-

pared with the results from conventional feedforward

neural networks. The study demonstrates that DBN is

very suitable for developing nonlinear data-driven mod-

els for the inferential estimation of polymer melt index.

The proposed DBN model could be extended for develop-

ing multi-step ahead prediction models in the future. The

network structure of DBN can be further optimized to

improve the robustness.

Acknowledgments

The work was supported by National Natural Science

Foundation of China (No. 61673236) and the European

Union (No. PIRSES-GA-2013-612230).

Open Access

This article is licensed under a Creative Commons At-

tribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to

the Creative Commons licence, and indicate if changes

were made.

The images or other third party material in this art-

icle are included in the article’s Creative Commons li-

cence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creat-

ive Commons licence and your intended use is not per-

mitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the

copyright holder.

Table 7 SSE of estimating MI1

Models SSE (training) SSE (testing) SSE (validation)

Neural network 0.767 5 0.632 3 0.824 3

DBN 0.769 6 0.511 8 0.685 1

Table 8 SSE of estimating MI2

Models SSE (training) SSE (testing) SSE (validation)

Neural network 1.503 5 0.656 4 0.991 5

DBN 1.517 0 0.434 2 0.856 0

0 20 40 60 80 100 120
Samples

0

50

150

100

250

200

Actual value of MI
Estimation of MI by DBN
Estimation of MI by neural network

M
I 1

Fig. 11 Estimation of MI1 by DBN and neural network

0 20 40 60 80 100 120
Samples

−5
0

25
20
15
10
5

35
30

45
40

M
I 2

Fig. 12 Estimation of MI2 by DBN and neural network

 52 International Journal of Automation and Computing 17(1), February 2020

To view a copy of this licence, visit http://creative-

commons. org/licenses/by/4.0/.

References

 M. T. Tham, G. A. Montague, A. J. Morris, P. A. Lant.
Soft-sensors for process estimation and inferential control.
Journal of Process Control, vol. 1, no. 1, pp. 3–14, 1991.
DOI: 10.1016/0959-1524(91)87002-F.

[1]

 K. Pearson. On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 2,
no. 11, pp. 559–572, 1901. DOI: 10.1080/14786440109
462720.

[2]

 H. Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of Educational Psycho-
logy, vol. 24, no. 6, pp. 417–441, 1933. DOI: 10.1037/
h0071325.

[3]

 H. Hotelling. Relations between two sets of variates.
Breakthroughs in Statistics: Methodology and Distribu-
tion, S. Kotz, N. L. Johnson, Eds., New York, USA:
Springer, pp. 321–377, 1992. DOI: 10.1007/978-1-4612-
4380-9_14.

[4]

 H. Wold. Estimation of principal components and related
models by iterative least squares. Multivariate Analysis,
P. R. Krishnaiah, Ed., New York, USA: Academic Press,
pp. 391–420, 1966.

[5]

 S. Wold, M. Sjöström, L. Eriksson. PLS-regression: A ba-
sic tool of chemometrics. Chemometrics and Intelligent
Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001. DOI:
10.1016/S0169-7439(01)00155-1.

[6]

 W. S. McCulloch, W. Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathemat-
ical Biophysics, vol. 5, no. 4, pp. 115–133, 1943. DOI:
10.1007/BF02478259.

[7]

 P. Werbos. Beyond Regression: New Fools for Prediction
and Analysis in the Behavioral Sciences, Ph. D. disserta-
tion, Harvard University, Boston, USA, 1974.

[8]

 K. Desai, Y. Badhe, S. S. Tambe, B. D. Kulkarni. Soft-
sensor development for fed-batch bioreactors using sup-
port vector regression. Biochemical Engineering Journal,
vol. 27, no. 3, pp. 225–239, 2006. DOI: 10.1016/j.bej.2005.
08.002.

[9]

 G. E. Hinton, S. Osindero, Y. W. Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 2006. DOI: 10.1162/neco.2006.18.
7.1527.

[10]

 A. Mnih, G. E. Hinton. A scalable hierarchical distributed
language model. In Proceedings of the 21st International
Conference on Neural Information Processing Systems,
Curran Associates Inc., Vancouver, Canada,
pp. 1081–1088, 2009.

[11]

 F. Li, J. Zhang, C. Shang, D. X. Huang, E. Oko, M. H.
Wang. Modelling of a post-combustion CO2 capture pro-
cess using deep belief network. Applied Thermal Engineer-
ing, vol. 130, pp. 997–1003, 2018. DOI: 10.1016/j.applther-
maleng.2017.11.078.

[12]

 Z. J. Yao, J. Bi, Y. X. Chen. Applying deep learning to in-
dividual and community health monitoring data: A sur-
vey. International Journal of Automation and Computing,
vol. 15, no. 6, pp. 643–655, 2018. DOI: 10.1007/s11633-018-
1136-9.

[13]

 A. K. Jain, J. C. Mao, K. M. Mohiuddin. Artificial neural
networks: A tutorial. Computer, vol. 29, no. 3, pp. 31–44,
1996. DOI: 10.1109/2.485891.

[14]

 Y. Bengio, O. Delalleau, N. Le Roux. The curse of highly
variable functions for local kernel machines. In Proceed-
ings of the 18th International Conference on Neural In-
formation Processing Systems, MIT Press, Vancouver,
Canada, pp. 107–114, 2006.

[15]

 Y. Bengio, Y. LeCun. Scaling learning algorithms towards
AI. Large-scale Kernel Machines, L. Bottou, O. Chapelle,
D. DeCoste, J. Weston, Eds., Cambridge, USA: MIT
Press, pp. 1–41, 2007.

[16]

 Y. C. Tang, R. Salakhutdinov, G. Hinton. Robust
Boltzmann machines for recognition and denoising. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, Providence, USA,
pp. 2264–2271, 2012.

[17]

 P. Smolensky. Information Processing in Dynamical Sys-
tems: Foundations of Harmony Theory, Technical Report
CU-CS-321-86, University of Colorado, Boulder, USA,
1986.

[18]

 G. E. Hinton. A practical guide to training restricted
Boltzmann machines. Neural Networks: Tricks of the
Trade, G. Montavon, G. B. Orr, K. R. Müller, Eds., Berlin
Heidelberg, Germany: Springer, pp. 599-619, 2012. DOI:
10.1007/978-3-642-35289-8_32.

[19]

 M. Á. Carreira-Perpiñán, G. E. Hinton. On contrastive di-
vergence learning. In Proceedings of the 10th Internation-
al Workshop on Artificial Intelligence and Statistics, The
Society for Artificial Intelligence and Statistics, Barbados,
pp. 33–40, 2005.

[20]

 C. Shang, F. Yang, D. X. Huang, W. X. Lyu. Data-driven
soft sensor development based on deep learning technique.
Journal of Process Control, vol. 24, no. 3, pp. 223–233,
2014. DOI: 10.1016/j.jprocont.2014.01.012.

[21]

 S. Z. Gao, X. F. Wu, L. L. Luan, J. S. Wang, G. C. Wang.
PSO optimal control of model-free adaptive control for
PVC polymerization process. International Journal of
Automation and Computing, vol. 15, no. 4, pp. 482–491,
2018. DOI: 10.1007/s11633-016-0973-7.

[22]

 J. B. P. Soares, A. E. Hamielec. Kinetics of propylene poly-
merization with a non-supported heterogeneous Ziegler-
Natta catalyst–effect of hydrogen on rate of polymeriza-
tion, stereoregularity, and molecular weight distribution.
Polymer, vol. 37, no. 20, pp. 4607–4614, 1996. DOI: 10.1016/
0032-3861(96)00286-8.

[23]

 J. Zhang, Q. Jin, Y. Xu. Inferential estimation of polymer
melt index using sequentially trained bootstrap aggreg-
ated neural networks. Chemical Engineering & Techno-
logy, vol. 29, no. 4, pp. 442–448, 2006. DOI: 10.1002/ceat.
200500352.

[24]

Chang-Hao Zhu received the B. Sc. de-
gree in mechanical engineering from Shan-
dong University, China in 2014, and the
M. Sc. degree in electrical power from New-
castle University, UK in 2016. Currently,
he is a Ph. D. degree candidate in chemical
engineering at the School of Engineering,
Newcastle University, UK.
 His research interests include process

control, machine learning, development of data driven soft

sensor and their applications industrial chemical processes.

 E-mail: c.zhu5@newcastle.ac.uk

 ORCID iD: 0000-0003-1801-0787

C. H. Zhu and J. Zhang / Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process ··· 53

http://dx.doi.org/10.1016/0959-1524(91)87002-F
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1016/j.bej.2005.08.002
http://dx.doi.org/10.1016/j.bej.2005.08.002
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1007/s11633-018-1136-9
http://dx.doi.org/10.1007/s11633-018-1136-9
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1016/j.jprocont.2014.01.012
http://dx.doi.org/10.1007/s11633-016-0973-7
http://dx.doi.org/10.1016/0032-3861(96)00286-8
http://dx.doi.org/10.1016/0032-3861(96)00286-8
http://dx.doi.org/10.1002/ceat.200500352
http://dx.doi.org/10.1002/ceat.200500352
http://dx.doi.org/10.1016/0959-1524(91)87002-F
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1007/978-1-4612-4380-9_14
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1016/j.bej.2005.08.002
http://dx.doi.org/10.1016/j.bej.2005.08.002
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.078
http://dx.doi.org/10.1007/s11633-018-1136-9
http://dx.doi.org/10.1007/s11633-018-1136-9
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1016/j.jprocont.2014.01.012
http://dx.doi.org/10.1007/s11633-016-0973-7
http://dx.doi.org/10.1016/0032-3861(96)00286-8
http://dx.doi.org/10.1016/0032-3861(96)00286-8
http://dx.doi.org/10.1002/ceat.200500352
http://dx.doi.org/10.1002/ceat.200500352

Jie Zhang received the B. Sc. degree in
control engineering from Hebei University
of Technology, China in 1986, and the
Ph. D. degree in control engineering from
City University, UK in 1991. He is a Read-
er in the School of Engineering, Newcastle
University, UK. He has published over 300
papers in international journals, books and
conferences. He is a senior member of

IEEE, a member of the IEEE Control Systems Society, IEEE
Computational Intelligence Society, and IEEE Industrial Elec-
tronics Society. He is on the Editorial Boards of a number of
journals including Neurocomputing published by Elsevier.
 His research interests are in the general areas of process sys-
tem engineering including process modelling, batch process con-
trol, process monitoring, and computational intelligence.
 E-mail: jie.zhang@newcastle.ac.uk (Corresponding author)
 ORCID iD: 0000-0002-9745-664X

 54 International Journal of Automation and Computing 17(1), February 2020

