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Abstract:   This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep be-
lief network (DBN). The important quality variable melt index of polypropylene is hard to measure in industrial processes. Lack of on-
line measurement instruments becomes a problem in polymer quality control. One effective solution is to use soft sensors to estimate the
quality variables from process data. In recent years, deep learning has achieved many successful applications in image classification and
speech recognition. DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep
architecture. It can meet the demand of modelling accuracy when applied to actual processes. Compared to the conventional neural net-
works, the training of DBN contains a supervised training phase and an unsupervised training phase. To mine the valuable information
from process data, DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the per-
formance of estimation. Selection of DBN structure  is  investigated  in the paper. The modelling results achieved by DBN and  feedfor-
ward neural networks are compared in this paper. It is shown that the DBN models give very accurate estimations of the polymer melt
index.
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1   Introduction

Much work on soft sensors in the research area of pro-

cess control has done in the past few decades. This tech-

nique is  widely  implemented  in  industrial  chemical  pro-

cesses.  Soft  sensors  are  very  effective  techniques  for  the

estimation of some important product quality variables in

industrial processes which cannot be measured effectively.

In the area of process control, the issues of hardware in-

struments, such as unavailability or high cost, hinder the

product quality control. To overcome these issues, empir-

ical models can be developed based on process operation-

al data obtained from real industrial processes. With such

models,  the  difficult-to-measure  quality  variables  can  be

estimated  from easy-to-measure  process  variables[1].  This

modelling technique based on historical  process data has

become increasingly  popular  in  chemical  processes  in  re-

cent  years.  Such  data  driven  models  can  be  effectively

used to  reduce  the  cost  of  production  in  industrial  pro-

cesses and improve the efficiency.

Much  successful  research  on  process  modelling  based

on multivariate statistical techniques has been completed

in the last century. In 1901, principal component analys-

is  (PCA)  was  proposed  by  Pearson[2].  This  method  was

further  developed  by  Harold  Hotelling  in  the  1930s[3, 4].

Based  on  PCA,  principal  component  regression  (PCR)

and  partial  least  squares  (PLS)  have  emerged  as  useful

modelling methods to address the problem of co-linearity

among  the  input  variables[2].  Data-driven  soft  sensors

based on PCR can be developed by using principal com-

ponents as the predictor variables. As an improvement of

PCR,  PLS  regression  can  model  both  the  process  data

and  quality  data  at  the  same  time[5].  Wold  et  al.[6] first

introduced  PLS  and  Wold  further  developed  it.  There

were  many  applications  based  on  the  PLS  technique  in

process  modelling.  One  limitation  of  PLS  and  PCR  is

that  they  are  both  linear  techniques.  They  are  not  very

effective when applied to nonlinear process modelling.

With the development of  machine learning,  many re-

searches  on  developing  soft  sensors  based  on  machine

learning techniques have been reported in the past a few

years. There are many successful process modelling tech-

niques based on machine learning, such as support vector

machine  (SVM)  and  artificial  neural  networks  (ANN).

McCulloch  and  Pitts[7] proposed the  original  neural  net-

work in the 1940s. After 20 years, with the vast improve-

ment  of  computer  capability,  neural  networks  became  a

popular  research  topic.  The  back-propagation  algorithm

was  applied  to  ANN by  Werbos[8] in 1975.  The  advant-

age of ANN is that they can be used to approximate any
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nonlinear functions. ANN gives very good performance on

estimation and  prediction  of  quality  data.  The  back-

propagation  algorithm  can  deal  with  the  exclusive-or

problems. In the backpropagation training algorithm, the

network weights between neurons are modified to distrib-

ute the errors back up from the output layer[8]. However,

conventional  ANN suffers  from problems of  local  optima

and  lack  of  generalization  capability.  SVM  can  achieve

accessible  optima  of  training  even  when  there  is  little

training  data[9]. However,  when  applying  SVM  to  pro-

cesses with large amount of modelling data, the pressure

of computation will increase. In 2006, Hinton et al.[10] first

introduced  deep  learning.  Deep  belief  network  (DBN)  is

one  kind  of  the  most  well-known  data-driven  modelling

techniques based on deep learning. It shows strong gener-

alization capability  in  modelling  highly  nonlinear  pro-

cesses. This model is established with a deep architecture.

Deep learning  has  many  applications  in  speech  recogni-

tion  and  images  classification[11].  There  are  two  training

phases  in  the  procedure  of  DBN  training:  unsupervised

training followed  by  supervised  training.  Before  super-

vised  training,  DBN will  capture  more  information  from

nonlinear  process  input  data  to  achieve  more  accurate

prediction or estimation of quality data. It has shown sig-

nificant performance in many other applications[12, 13].

Soft sensors  for  polymer  melt  index  (MI)  are  estab-

lished using  DBN  and  applied  to  an  industrial  polypro-

pylene  polymerization  process  in  this  study.  By  using

deep learning techniques, large amount of industrial pro-

cess data samples without pre-existing labels can also be

used by DBN models in the unsupervised training phase.

However,  these  input  data  are  useless  for  training  the

conventional feed-forward neural networks which just use

supervised training. These process data samples help the

DBN model in adjusting the weights in a desirable region.

The information from process data were captured during

the procedure of unsupervised training. It is shown in this

paper that DBN models gave very accurate estimations of

MI.

The rest of  this  paper is  organized as follows.  An in-

troduction  of  ANN  is  given  in  Section  2.  In  Section  3,

DBN  model  and  the  main  principles  of  restricted

Boltzmann  machines  (RBMs)  and  back-propagation  are

introduced. Section 4 introduces the case study of an in-

dustrial polypropylene polymerization process. The selec-

tion  of  DBN  model  architectures  are  discussed  and  the

polymer  melt  index  estimation  results  are  given  in

Section  5.  Section  6  summarizes  the  conclusions  of  this

paper.

2   Artificial neural networks

The  feed-forward  neural  network  is  one  of  the  most

well-known  machine  learning  techniques.  It  can  be  used

in solving many problems of prediction, classification, and

pattern recognition. Much research of ANN has been re-

ported in  the  past  decades.  In  the  initial  form of  simple

perceptron  invented  by  McCulloch  and  Pitts,  the  model

calculates  the  weighted  sum of  input  variables  and then

passes it to an activation function. Fig. 1 shows a simple

perceptron structure.

xi, i = 1, 2, · · · , n
wj , j = 1, 2, · · · , n

As can be seen from Fig. 1, , are in-

put variables and , are the correspond-

ing  weights  for  these  input  variables.  McCulloch  and

Pitts[7] used the threshold function as the activation func-

tion. They  proved  universal  computations  can  be  per-

formed by  simple  perceptrons  if  weights  are  chosen  ap-

propriately. However,  a  lot  of  complicated  systems  can-

not be represented by this method[14]. Many other activa-

tion functions  can be  used,  such as  Heaviside  step  func-

tion, sigmoid  function  and  Gaussian  function.  These  ac-

tivation  functions  are  sometimes  also  named  as  transfer

function  in  ANN  research.  The  most  popular  activation

function is the sigmoid function.

The characteristic of the sigmoid function is that it is

an “S”-shaped curve as shown in Fig. 2.

The sigmoid function maps its input values into a re-

gion from 0 to 1.  In Fig. 2,  the output value approaches

to 1  when x approaches  to  + ∞, whereas  the output ap-

proaches to 0 when x approaches to – ∞. It has the appro-

priate asymptotic properties. The sigmoid function is giv-

en by (1):

S (x) =
1

1 + e−βx
(1)

where x represents the sum of weighted input values and

β is a slope parameter.

The structure of ANN can be regarded as neurons ar-
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Fig. 1     Model of simple perceptron
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Fig. 2     “S”-shaped curve of sigmoid function
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ranged into inter-connected layers with weighted connec-

tions between neurons in adjacent layers. Basically, feed-

forward neural networks and recurrent networks are prin-

cipally  two  types  of  ANN.  Feed-forward  networks  have

no feedback  connections  from  the  network  outputs.  Re-

current  neural  networks  are  a  type  of  neural  networks

with feedback connections. In this work, feed-forward net-

works  are  also  used  for  soft  sensor  development  in  the

polypropylene  polymerization  process  for  the  purpose  of

comparison with DBN.

Multilayer  perceptrons  are  the  most  classic  type  of

feed-forward networks. They can deal with more complic-

ated  problems  than  simple  perceptrons.  Neurons  in  the

adjacent  layers  are  connected  unidirectionally  without

feedback  loops.  A  multilayer  perceptron  model  has  at

least three  layers.  It  is  commonly  constructed  by  an  in-

put layer, a hidden layer and an output layer. The rela-

tionship  between  the  neural  network  input  and  output

variables  can  be  learnt  during  the  process  of  supervised

training and stored as  the trained network weights.  The

structure of a multilayer perceptron with two hidden lay-

ers is shown in Fig. 3.

Each unit in the input layer is  a network input.  The

output of  a  unit  in  the  hidden  or  output  layer  is  calcu-

lated by passing the sum of the weighted outputs of the

previous layer to an activation function as follows:

Oj = f

(
n∑

i=1

wijIi + bj

)
(2)

where Oj is the output value of the unit j in a particular

layer, wij is  the  weight  between  this  unit  and  the i-th

unit of the immediate previous layer, Ii is the i-th input

of this unit (i.e., the output value of the i-th unit in the

previous  layer), bj is  a  bias,  and f is  the  activation

function. During network training, the weights and biases

will  be  initialized  as  random values  typically  in  a  range

between  –0.1  and  0.1.  Network  weights  are  adjusted  by

using  training  algorithms  to  minimize  the  error  terms

between  network  outputs  and  target  labels.  After

training, the relationship between system input variables

and  output  variables  can  be  represented  by  the  trained

neural networks.

The training process of a multilayer feedforward neur-

al  network  is  supervised  training.  The  most  commonly

used supervised  training  algorithm  is  the  backpropaga-

tion  algorithm.  Multilayer  feedforward  neural  networks

have  the  capability  of  modeling  nonlinear  processes.

However, the  process  of  polymerization  is  highly  nonlin-

ear.  The  structure  of  commonly  used  multilayer  neural

networks is shallow. When a feedforward neural network

with more than three  layers  is  training by backpropaga-

tion,  the  model  always  suffers  from the  problem of  poor

generalization. This modelling technique cannot meet the

demand  of  the  accuracy  of  the  estimation.  To  achieve

more accurate  estimation of  MI,  DBN models  are  estab-

lished  in  this  study.  DBN  has  a  deep  architecture  and

stronger generalization capability.

3   Deep belief networks

3.1   Structure of deep belief network

The  limitation  of  traditional  neural  networks  is  that

they usually have shallow structures. There are typically

no more  than  three  layers  in  a  conventional  neural  net-

work model. With this limitation, a neural network with

shallow structure  may  not  achieve  satisfactory  estima-

tion performance when applied to highly nonlinear indus-

trial processes.  The  actual  industrial  processes  are  com-

monly highly nonlinear. The shallow architecture of feed-

forward neural networks could lead to the lack of repres-

entation capability[15, 16].  To approximate various regions

of processes,  the  model  needs  more  hidden  neurons  ad-

ded to  the  hidden  layers.  It  is  suggested  in  recent  re-

search  that  networks  with  a  deep  structure  can  achieve

reliable  results[15].  DBN  has  been  successfully  applied  to

many research  areas,  such  as  classification  and  recogni-

tion[17].  In  a  DBN  model,  several  restricted  Boltzmann

machines  (RBMs)  can  be  stacked  and  combined  as  one

learning network.  DBN  is  developed  with  a  deep  struc-

ture  based  on  a  deep  learning  technique. Fig. 4 presents

the basic architecture of DBN.

The DBN shown in Fig. 4 has five layers, an input lay-

er, an output layer and three hidden layers. In Fig. 4, W

is  the  weight  of  the  network, b and c are  biases  of  the

network. It  can  be  considered  that  DBN  is  a  combina-

tion of stacking RBMs. Each hidden layer of DBN is re-

garded as one single RBM. Compared with the tradition-

al  Boltzmann machine,  the  neurons  in  a  hidden layer  of

DBN are not connected to each other. However, the lay-

ers in a network have symmetrical connections with each

other. The units in hidden layers are binary units and the

visible  input  layer  units  are  Gaussian  units.  The  first

phase of  training  is  unsupervised  training  and  the  pro-

cess  operational  data  are  used  to  train  the  DBN  model

without  any  target  variables  involved.  The  unsupervised

training helps the DBN mine more correlations than the

feed-forward  neural  networks.  The  weights  are  adjusted

 

x1

x2

xn

wni wij wjk y

Input layer Hidden layer Output layer

....
....

....

 
Fig. 3     Multilayer perceptron
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in  a  desired  region  before  the  supervised  training  phase.

After  unsupervised  training,  DBN  is  fine-tuned  by  the

backpropagation algorithm in the supervised training phase.

3.2   Restricted Boltzmann machines

In  the  1980s,  Smolensky[18] developed  the  restricted

Boltzmann  machine.  Hinton  et  al.[10] developed  DBN by

stacking  RBMs  as  the  layers  of  DBN.  A  DBN  contains

stacked RBMs as shown in Fig. 4.
To  understand  the  basics  of  RBM,  the  probability

function  between  visible  units  and  hidden  units  need  to

be introduced  at  first.  Equation  (3)  shows  the  probabil-

ity function

P (v,h) =
exp {−Energy (v,h)}

Z
(3)

where Z represents a normalizing factor, v represents the

vector of  visible layer, h represents the vector of  hidden

layer. The probability P(v, h) increases when the energy

function  decreases.  In  the  RBM,  the  energy  function  is

given by

Energy (v,h) = −bTv − cTh− hTWv (4)

where W, b and c are  parameters  of  the  function.  It

should  be  noted  that  the  vector v and  the  vector h are

both  binary-valued.  Binary  RBMs  are  used  as  hidden

layers in a DBN model. However, they cannot be used to

deal  with  continuous  variables.  To  overcome  this  issue,

(4) can be extended to energy function of Gaussian RBM:

Energy (v,h) =
∑
i

(vi − ai)
2

2σ2
i

− cTh− hTWv (5)

where ai is  the  mean  of  Gaussian  distribution, σi is  the

standard  deviation  of  Gaussian  distribution  for  input

neuron.  The  samples  of  input  data  are  commonly

normalized  to  zero  mean  and  unit  variance  in  practical

applications. Therefore, (5) can be changed to

Energy (v,h) =
1

2
vTv − bTv − cTh− hTWv. (6)

Hintons[19] also described other forms of RBM, but the

DBN in this  paper only uses  Gaussian RBM and binary

RBM.

3.3   Learning algorithm for RBM

The  objective  of  training  RBM  is  to  maximize  the

probability P(v),  which  can  be  achieved  by  minimizing

the energy function. From Gibbs sampling, h can only be

sampled  from v of  visible  layers.  Based  on  the  previous

work, the gradient at a visible point v can be formulated

as

∂logP (v)

∂θ
=

∂log
∑
h

P (v,h)

∂θ
=∑

h

e−Energy(v,h)

(
∂ [−Energy (v,h)]

∂θ

)
∑
h

e−Energy(v,h)
−

∑
ṽ

∑
h

e−Energy(ṽ,h)

(
∂ [−Energy (ṽ,h)]

∂θ

)
∑
ṽ

∑
h

e−Energy(ṽ,h)
=

∑
h

P (h|v) ∂ [−Energy (v,h)]

∂θ
−

∑
ṽ

∑
h

P (ṽ,h)
∂ [−Energy (ṽ,h)]

∂θ
(7)

θ = {W , b, c}

h(t)

v(t−1)

v(t) h(t)

where  is  a  vector  of  the  network

parameters.  Computing  the  positive  term  in  (7)  is  easy

because  the  vector v has  been  known.  Calculating  the

negative term in (7) becomes intractable. The contrastive

divergence  is  a  useful  method  to  overcome  the  issue  of

calculating  second-order  approximation  of  the  negative

term and it offers an effective solution[20, 21]. The process

of  training  RBM  starts  with  training  vectors  on  the

visible  units.  Then  hidden  units  can  be  generated

from  by  Gibbs  sampling  and  update  visible  units

 from .  It  is  named  as  a  Markov  chain.  After

infinite iterations of Gibbs sampling, the visible units v(∞)

and hidden units h(∞) are sampled. The correlation of v(∞)

and h(∞) can be measured after sampling for a long time.

However,  in  practical  situations,  just  one  iteration  of

Gibbs sampling can achieve a satisfactory result and the

learning algorithm works well.

3.4   Supervised training through back-
propagation

Back-propagation is  the  most  commonly  used  super-

vised  training  approach  to  train  neural  networks.  After
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Fig. 4     Architecture of DBN
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the unsupervised training phase, the back-propagation al-

gorithm will  fine  tune  the  whole  network  in  the  super-

vised training phase. The errors between the network out-

puts and the corresponding labels are computed and back

propagated to the previous layer. Equation (8) shows the

error terms

Errj = Oj (1−Oj) (Tj −Oj) (8)

where Oj represents  the  network  output  for  a  training

sample, Tj is  the corresponding target value for  the j-th

output  neuron.  The  error  term  of  hidden  layers  is

formulated as

Errj = Oj (1−Oj)
∑
k

Errkwjk (9)

where wjk is  the  vector  of  weights  connecting  output

layer and the last hidden layer, Errk is the error term of

output  layer.  During  training,  the  weight  updating  is

transferred from the output layer to the input layer. The

formulas of weight updating are given as

wij = wij + ηErrjOi (10)

cj = cj + ηErrj (11)

where η is  the  learning  rate  of  the  training  process, wij
and cj are  the  vectors  of  weights  and  bias  respectively.

The  learning  rate  needs  to  be  properly  selected.  A large

learning  rate  may  miss  the  minimum  whereas  a  small

learning rate usually leads to slow training speed.

As described earlier, the training of DBN contains an

unsupervised  training  phase  and  a  supervised  training

phase. The initial weights are adjusted to an appropriate

region in the unsupervised training procedure. The whole

network is then fine-tuned by backpropagation in the su-

pervised training phase to achieve accurate modelling res-

ults. The profuse latent information extracted from input

variables during the unsupervised training is  more inter-

pretable. This  semi-supervised  method  improves  the  ro-

bustness  and  generalization  capability  of  model  with  a

deep architecture.

4   Polypropylene polymerization
process

Advanced monitoring, control, and optimization tech-

niques are  essential  in  modern  industrial  chemical  pro-

cesses to overcome the issue of high cost and improve the

efficiency of production[22]. In this paper, DBN is used to

develop soft sensors for a polypropylene production plant

in China. In this plant, two continuous stirred tank react-

ors  (CSTR)  and  two  fluidized-bed  reactors  (FBR)  are

used to produce polypropylene as shown in Fig. 5. Propyl-

ene, hydrogen,  and  catalyst  are  fed  to  reactors.  React-

ants for the growing polymer particles are these gases and

liquids fed to the reactors. They are also the provider of

the heat transfer  media.  The melt  index of  polymer is  a

key polymer quality variable and should be closely mon-

itored  and  controlled.  MI  of  polypropylene  depends  on

many factors  like  catalyst,  reactor  temperature and con-

centration of the reaction materials. For example, hydro-

gen can  increase  the  polymerization  rate  of  polypropyl-

ene. It mainly increases the initial polymerization rate of

propylene[23].  The  hydrogen  concentration  regulates  the

weight of polypropylene. Hydrogen can also delay the de-

cay rate of the catalyst. Due to the difficulty of measur-

ing polymer MI in this process,  the relationship between

MI  and  some  process  variables which  can  be  measured

easily during the process needs to be found. The inferen-

tial estimation of MI can be obtained by soft sensors. As

this  industrial  process  is  very  complicated,  it  is  difficult

to develop first principle models linking polymer MI with

easy-to-measure  process  variables.  Therefore,  nonlinear

data-driven models need to be utilised in developing soft

sensors for this process.

The  polypropylene  grades  are  related  to  some  key

variables, such as reactant composition, reactor temperat-

ure  and  catalyst  properties.  The  feedstock  of  D201  are

propylene, hydrogen and catalyst. The co-monomer is ad-

ded  to  D204.  Several  grades  of  polymers  were  produced

within  one  month.  Industrial  process  operational  data

covering this  time  period  are  available  for  this  applica-

tion.  In  this  process,  polymer MI were  logged every two

hours and process samples were logged every half hour. In

fact, MI  are  only  highly  relevant  to  a  few  process  vari-

ables. Based on the research of Zhang et al.[24], there are

strong  correlations  between  MI  of  polymer  in  reactor

D204 and hydrogen concentration in reactor D201 and re-

actor D202. MI of polymer in reactor D201 is highly rel-

evant  with  the  hydrogen  concentration  and  feed  rate  in

reactor D201[24].  Concentration of  hydrogen in D201 and

D202,  feed rate  of  hydrogen and MI of  polypropylene in

reactor  D201  and  D204  are  shown  in Figs. 6– 8, respect-

ively.  Due  to  the  industrial  confidentiality,  the  units  of

these variables are not disclosed.

From Fig. 8, it can be observed that the MI data cov-

er quite a wide range. Thus, the data are suitable for de-
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Fig. 5     Propylene polymerization process
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veloping  data-driven  models.  Soft  sensors  should  extract

the  information  from  limited  process  data  and  quality

data  to  obtain  accurate  estimation  of  MI.  From  the

trends  displayed  in Figs. 6–8,  it  can  be  seen  that  MI  is

highly correlated with hydrogen feed rate and concentration.

The time delay of the industrial process can be found

based on the cross-correlations analysis[24]. The data-driv-

en model for inferential estimation of MI can be represen-

ted as

MI1 (t) = f1[H1 (t) , H1 (t− 1) , H1 (t− 2) , F (t− 9) ,

F (t− 10) , F (t− 11)]
(12)

MI2 (t) = f2[H1 (t− 7) , H1 (t− 8) , H1 (t− 9) ,

H2 (t− 6) , H2 (t− 7) , H2 (t− 8)] (13)

where MI1 and MI2 are  the  MI  in  D201  and  D204,

respectively, H1 and H2 are  the  concentrations  of

hydrogen  in  D201  and  D202,  respectively,  and F is  the

hydrogen feed rate to D201.

The original process data set contains 1 534 samples of

process operational data and 383 samples of quality data

(MI)  which  are  available  for  the  establishment  of  data

driven DBN models. It indicates that the amount of pro-

cess variable  samples  is  larger  than the  amount  of  qual-

ity variable samples.  There are only 383 samples of  pro-

cess  variables  that  have  corresponding  quality  variables.

However, the rest of process variable samples can be util-

ized by DBN in the unsupervised training phase. By such

means, DBN can capture much valuable information from

process data. The estimation of MI achieved by DBN can

be improved.

The data set for supervised training phase were separ-

ated  into  a  training  data  set,  a  testing  data  set  and  an

unseen validation data set. The partition of data sets for

estimating MI1 is presented by Table 1. The partition of

data sets for estimating MI2 is presented by Table 2.

The  selections  of  model  structure  can  be  determined

by  the  training  data  set  and  testing  data  set  through

cross-validation. The unseen validation data are useful to

test the performance of the final developed DBN model.
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It  can  be  seen  from Tables  1 and 2,  277  samples  of

training  and  testing  variables  were  selected  to  fine  tune

DBN by backpropagation for MI1 and DBN only use 268

samples  of  training  and  testing  variables  to  fine  tune

DBN  in  supervised  training  phase  for MI2.  During  the

unsupervised  training  phase  of  DBN  models,  only  input

data  are  required  and  target  values  are  not  required.

Those input data samples without the corresponding out-

put data are named as “unlabeled” process  data.  There-

fore,  in the unsupervised training phase of  DBN models,

samples  of  process  variables  without  the  corresponding

MI data can also be utilized. However, those “unlabeled”

process  variables  could  not  be  used  by  other  traditional

neural  networks  for  inferential  estimation  of  product

quality.  For  comparison,  conventional  neural  network

models were also developed.

5   Results and discussions

The model  structures  need to  be  determined first.  In

this  study,  25  DBN  models  with  different  architectures

were developed and compared to each other. The one giv-

ing the best performance on the testing data set was re-

garded  as  having  the  appropriate  structure.  These  DBN

models have one visible layer (input layer), one addition-

al  top  layer  (output  layer)  and  two  hidden  layers.  The

learning rate in the unsupervised training phase is  selec-

ted as  0.01.  The learning rate  in  the supervised training

phase  is  0.001 5,  The  structures  of  25  DBN  models  are

shown  in Table  3. Figs. 9 and  10 present  the  sum  of

squared errors (SSE) on the training data set and testing

data set, respectively for these 25 DBN models for estim-

ating MI1.

From Figs. 9 and 10,  the  7th  DBN  model  gives  the

best  generalization  performance  on  the  testing  data  set.

The 6th DBN model gives the second lowest value of er-

ror  on  the  testing  data  set.  The  12th  to  the  25th  DBN

models  have  lower  training  errors  than  the  7th  DBN

model.  However,  those  models  give  larger  testing  errors

than  the  7th  DBN  model.  Thus,  the  12th  to  the  25th

DBN models are likely have suffered from overfitting and

their structures are not appropriate to be selected. From

the results  given by Figs. 9 and 10, the number of  neur-

ons in the first hidden layer can be considered as 5. From

Table  3,  it  can be seen that  these  25 DBN models  have

close  numbers  of  neurons  in  the  first  and second hidden

layers.  The  first  step  of  this  investigation  is  to  confirm

that the 7th DBN gave the best performance among these

25 DBN models.  To avoid the situation that some DBN

models  not  included  in Table  3 might give  better  per-

formance,  the  second  step  is  to  further  investigate  the

number of neurons in the second hidden layer. Nine addi-

tional  DBN  models  with  neurons  in  the  second  hidden

layer ranging from 2 to 10 are constructed. The values of

error  terms  on  the  training  and  testing  data  of  these

DBN models are shown in Table 4.

From Table 4, it can be seen that the training error of

the 7th DBN is the smallest. However, its testing error is

not  the  smallest.  The  testing  errors  from the  6th  to  the

9th DBN increased.  Therefore,  the  estimation on testing

data obtained by the 6th to the 9th DBNs are overfitted.

The 4th DBN (i.e.,  the 7th DBN model  in Table 3) has

the lowest testing error among all DBN models. This in-

dicates  that  the 4th DBN model  has  better  performance

than other models and its structure should be adopted.

In order to demonstrate the advantage of using those

input  data  samples  without  corresponding  target  values

as  additional  training  data  in  the  unsupervised  training

 

Table 1    Partition of data sets for estimating MI1

Data sets Percentage Number of samples

Training data 50% 192

Testing data 22% 85

Unseen validation data 28% 106
 

 

Table 2    Partition of data sets for estimating MI2

Data sets Percentage Number of samples

Training data 52% 200

Testing data 18% 68

Unseen validation data 30% 115
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Fig. 9     SSE on training data for estimating MI1
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phase,  a  DBN  model  trained  only  using  the  input  data

samples  with  the  pre-existing  labels  in  the  unsupervised

training phase was also developed. This is represented by

DBN No. 1 in Table 5, where DBN No. 2 was built by us-

ing  “unlabeled”  process  data  without  corresponding  MI

samples as well. DBN No. 2 in Table 5 is in fact the 4th

DBN model in Table 4. The two DBN models in Table 5

have the same structure. It can be seen from Table 5 that

the first DBN model has larger SSE values on the train-

ing, testing and validation data set than the second DBN

model.  Therefore,  DBN  can  extract  more  features  from

the “unlabeled”  data.  DBN  No.  2  gives  better  perform-

ance than DBN No. 1.

Seven  conventional  single  hidden  layer  feedforward

neural network models were also established for the pur-

pose of comparison. The SSE values of these convention-

al  feedforward  neural  networks  with  different  structures

on  the  training  and  testing  data  are  given  in Table  6.

From Table 6, the 4th neural network has the lowest SSE

on  the  testing  data  set  for  estimating MI1 and  the  3rd

neural network has the lowest SSE on the testing data for

estimating MI2.

The estimations of MI1 on the unseen validation data

by DBN  and  the  conventional  feedforward  neural  net-

work  are  shown  in Fig. 11.  In Fig. 11,  the  solid,  dashed,

and dotted lines represent, respectively, the actual values

of MI1, the estimations by DBN, and the estimations by

the  conventional  feedforward  neural  network.  It  can  be

seen from Fig. 11 that the estimations by the DBN model

are generally closer to the corresponding actual values of

MI1 than those  by the  feedforward neural  network.  The

SSE values of both DBN and neural network are presen-

ted in Table 7. It can be seen from Table 7 that the SSE

of  DBN  on  training  data  set  is  larger  than  that  of  the

neural network. However, the SSE values of DBN on test-

ing and unseen validation data set are much smaller than

those  of  the  neural  network.  The  strong  generalization

 

Table 3    DBN models with different structures

No. Neurons in 1st hidden layer Neurons in 2nd hidden layer No. Neurons in 1st hidden layer Neurons in 2nd hidden layer

1 2 1 14 8 7

2 2 2 15 9 9

3 3 3 16 9 8

4 3 2 17 10 10

5 4 4 18 10 9

6 4 3 19 11 11

7 5 5 20 11 10

8 5 4 21 12 12

9 6 6 22 12 11

10 6 5 23 13 13

11 7 7 24 13 12

12 7 6 25 14 13

13 8 8
 

 

Table 4    Errors of DBN models with different structures for
estimating MI1

No. Neurons in 1st
hidden layer

Neurons in 2nd
hidden layer

SSE
(training)

SSE
(testing)

1 5 2 0.756 2 0.581 9

2 5 3 0.820 4 0.619 3

3 5 4 0.782 4 0.594 5

4 5 5 0.769 6 0.511 8

5 5 6 0.820 6 0.577 3

6 5 7 0.727 1 0.574 2

7 5 8 0.672 3 0.585 9

8 5 9 0.762 8 0.607 1

9 5 10 0.737 2 0.632 2
 

 

Table 6    Errors of neural networks with different structures

No. Neurons in
hidden layer

MI1 MI2

SSE
(training)

SSE
(testing)

SSE
(training)

SSE
(testing)

1 2 1.325 6 0.744 6 1.602 5 0.685 5

2 3 0.794 9 0.822 1 1.518 5 0.737 4

3 4 0.792 4 0.652 7 1.503 5 0.656 4

4 5 0.767 5 0.632 3 1.365 0 0.688 3

5 6 0.634 7 0.653 2 1.100 9 0.821 4

6 7 0.512 4 1.105 4 0.784 4 0.830 5

7 8 0.420 1 0.889 5 0.510 8 1.602 4
 

 

Table 5    Errors of DBN models for estimating MI1 with
different input data

DBN No. SSE (training) SSE (testing) SSE (validation)

1 1.620 3 0.890 5 0.702 4

2 0.769 6 0.511 8 0.685 1
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capability of  DBN was proved by the inferential  estima-

tion of MI1. It gave better performance than the feed-for-

ward  neural  network.  The  profuse  latent  information

from process data were extracted by DBN during the un-

supervised training phase. Overall, the DBN model gives

more accurate estimations of MI1.

Fig. 12 compares the estimations of MI2 by DBN and

conventional  feedforward  neural  network  on  the  unseen

validation data.  In Fig. 12, the solid,  dashed, and dotted

lines represent, respectively, the actual values of MI2, the

estimations by DBN, and the estimations by the conven-

tional feedforward neural network. From Fig. 12, it can be

seen that both models give similar performance when MI

values  are  high.  However,  when  MI  values  are  low,  the

DBN model  gives  better  estimations. Table  8 shows  the

SSE values in the estimation of MI2. The SSE of DBN on

training data  is  larger  than that  of  neural  network.  The

SSE values of DBN on testing and unseen validation data

set  are  much  smaller  than  those  of  the  neural  network

model.  The  results  in Fig. 12 and Table  8 indicate  that

the  estimations  of MI2 achieved by  DBN are  more  reli-

able and accurate than those from the conventional feed-

forward neural network.

6   Conclusions

DBN  models  for  the  on-line  inferential  estimation  of

the  polymer  melt  index  in  an  industrial  polymerization

process are  developed  in  this  paper.  DBN  can  be  de-

veloped with a deep structure. The profuse latent inform-

ation  from  the  process  variables  can  be  extracted  by

DBN.  The  “unlabeled”  process  data,  which  ware  useless

to  the  conventional  neural  network  models,  can  be  used

in the unsupervised training stage of DBN. It is shown in

this  paper  that  the  accuracy  of  inferential  estimation  of

polymer MI can be improved by this means. Selection of

DBN structure is investigated in the paper. The appropri-

ate structures of DBN for the estimation of MI1 and MI2
are selected.  DBN  has  much  better  performance  com-

pared  with  the  results  from  conventional  feedforward

neural  networks.  The  study  demonstrates  that  DBN  is

very suitable  for  developing  nonlinear  data-driven  mod-

els  for  the  inferential  estimation  of  polymer  melt  index.

The proposed DBN model could be extended for develop-

ing multi-step ahead prediction models in the future. The

network  structure  of  DBN  can  be  further  optimized  to

improve the robustness.
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Table 7    SSE of estimating MI1

Models SSE (training) SSE (testing) SSE (validation)

Neural network 0.767 5 0.632 3 0.824 3

DBN 0.769 6 0.511 8 0.685 1
 

 

Table 8    SSE of estimating MI2

Models SSE (training) SSE (testing) SSE (validation)

Neural network 1.503  5 0.656  4 0.991  5

DBN 1.517  0 0.434  2 0.856  0
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