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Abstract
Purpose Automated patient-specific image-based segmen-
tation of tissues surrounding aseptically loose hip prostheses
is desired. For this we present an automated segmentation
pipeline that labels periprosthetic tissues in computed tomog-
raphy (CT). The intended application of this pipeline is in
pre-operative planning.
Methods Individual voxels were classified based on a set of
automatically extracted image features. Minimum-cost graph
cuts were computed on the classification results. The graph-
cut step enabled us to enforce geometrical containment con-
straints, such as cortical bone sheathing the femur’s interior.
The solution’s novelty lies in the combination of voxel classi-
fication with multilabel graph cuts and in the way label costs
were defined to enforce containment constraints.
Results The segmentation pipeline was tested on a set of
twelve manually segmented clinical CT volumes. The distri-
bution of healthy tissue and bone cement was automatically
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determined with sensitivities greater than 82% and patholog-
ical fibrous interface tissue with a sensitivity exceeding 73%.
Specificity exceeded 96% for all tissues.
Conclusions The addition of a graph-cut step improved seg-
mentation compared to voxel classification alone. The pipe-
line described in this paper represents a practical approach
to segmenting multitissue regions from CT.

Keywords Segmentation · Graph cut ·
Voxel classification · Osteolysis · Computed tomography

Introduction

Periprosthetic osteolysis leading to aseptic loosening is one
of the foremost problems limiting the survival of hip pros-
theses [1]. Loosening caused by osteolysis is characterized
by extensive resorption of bone and its replacement by soft
fibrous interface tissue that offers little mechanical stability.
Surgical treatment becomes necessary when prosthesis loos-
ening ensues. During open revision surgery, the old prosthe-
sis and its cement mantle, along with surrounding fibrous
interface tissue, are removed, after which a new prosthesis is
placed.

Revision surgery is very demanding on the patient; there-
fore, experimental techniques substitute open surgery with
minimally invasive cement injection to fixate the loosened
prosthesis [2,3]. At the time of writing these procedures
are annually only performed on a handful of patients, with
a much larger potential target group if proven successful.
During minimally invasive refixation the surgeon is limited
to working under fluoroscopic guidance and can only apply
cement to two or three injection sites. Proper pre-operative
planning is therefore essential. Femoral strength and stability
may be simulated using finite element (FEM) modelling [4,5]
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Fig. 1 a Coronal X-ray radiograph of femur with osteolysis (arrows), b coronal CT slice of the same hip, c manual segmentation showing
periprosthetic tissues. The boundary of the region of interest (ROI) is indicated by the dotted line

but requires three-dimensional (3D) tissue segmentation for
creation of patient-specific models.

Plain radiographs such as in Fig. 1a are the default imag-
ing modality for diagnosing osteolysis [6]. While sufficient
for diagnosis, radiographs do not capture the 3D distribu-
tion of periprosthetic tissues, where computed tomography
(CT) remains the imaging modality of choice [7,8]. Unfor-
tunately, CT suffers from image degradation in the vicin-
ity of metal prostheses [9,10]. Image degradation makes the
3D classification of periprosthetic tissues a difficult task—
especially for low-contrast tissues other than cortical bone.
Patients suffering from osteolysis generally have very low
bone quality, which exacerbates segmentation problems. In
some cases cortical bone, normally thick and easy to discern,
is reduced to a thin shell of its former extent and may show
regions of very low image intensity.

Manual segmentation of this kind of volume is difficult
and too labour intensive for routine use. As an alternative,
automatic or semiautomatic techniques have been developed.
To segment skeletal structures, Zoroofi et al. [11] use his-
togram-based thresholding and binary morphological steps.
Kang et al. [12] use an automatic region-growing technique
augmented by manual correction. Yokota et al. [13] segment
the boundary of diseased hip bones with a hybrid statistical
shape model. Statistical models based on principal compo-
nent analysis require well-defined natural shape and tissue

distributions [14] and are therefore, similar to atlas-based
methods [15], ill-suited to sporadic lesions and surgically
modified joints fitted with prostheses.

We set out to develop an automatic 3D CT segmentation
pipeline that can segment all mechanically distinct tissues in
hip CT volumes, including periprosthetic osteolytic lesions.
The envisioned application was to assist with pre-operative
planning and the creation of patient-specific finite element
models to analyze prosthesis stability.

The main contributions of this work are the following:

• We extend the prototype voxel classification scheme of
Malan et al. [16] while simultaneously reducing the fea-
ture set to an optimized subset. Using this reduced fea-
ture set, we implement a k-centres + k-nearest neighbours
voxel classifier.

• We use s/t graph cuts [17] to obtain a “hard” multila-
bel tissue segmentation from the probabilistic tissue map
computed by the aforementioned voxel classifier. To our
knowledge this is the first medical image segmentation
application of multilabel graph cuts to the output of a
probabilistic voxel classifier.

• Following the example of Delong and Boykov [18], we
incorporate geometric containment constraints as part of
the graph-cut segmentation. The novelty of our approach
lies in our definition of the data cost term, which enables
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Fig. 2 Cross-section through the proximal femur. a Original CT,
b manually designated tissue regions. Black areas were left unassigned,
c classifier probability map for trabecular bone. Each tissue class has

such a map. d Maximum posterior probability, e segmentation by multi-
label graph cut without containment, f segmentation by multilabel graph
cut with containment

us to define per-node costs. This enables us to use a publi-
cally available multilabel graph-cut software library [19]
for solving either the unconstrained or constrained case.

Materials and methods

Imaging

We retrieved twelve anonymized clinical CT data sets from
twelve patients suffering aseptically loose femoral prosthe-
ses. All scans were made with Toshiba Aquilion (Toshiba
Medical Systems, Japan) scanners using the FC30 “bone
kernel”. We retroactively obtained clinical data and there-
fore had to accept inter-scan variation, most notably the tube
current (150–400 mA), peak voltage (120 or 135 kV) and
in-plane voxel spacing (0.44–0.59 mm).

Manual segmentation

An experienced operator (DM) manually segmented each
CT volume using the Medical Imaging Interaction Toolkit
(MITK) version 0.12.2 [20]. Segmentation was performed

using free-hand drawing on intermittent slices with interme-
diate contours completed by interpolation.

First, a region of interest (ROI) was delimited. The metal
prosthesis was removed by thresholding at 5,000 Houns-
field Units (HU). The ROI was then segmented into separate
regions of cement, cortical bone, trabecular bone, fibrous
interface tissue, intramedullary canal, and exterior muscle tis-
sue. Figures 1c and 2b show examples of segmentations thus
obtained. It proved difficult to manually distinguish some
regions in the low-image-quality CT volumes. We left these
regions unclassified to prevent false positives in the classifier
training sets. An example of a difficult to segment region is
shown in the upper part of Fig. 2a. The manual segmenta-
tions’ correctness was verified by an experienced orthopae-
dic surgeon (RN). Inter-observer tissue segmentation was
evaluated by having a second independent human operator
re-segment four randomly selected femurs.

Performance metrics

We used the manually segmented CT image volumes to
train voxel classifiers and secondly to serve as ground
truth for evaluating the performance of our automatic tissue
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Table 1 The thirteen candidate image features

1 CT volume at original resolution
(∼0.5 mm × 0.5 mm × 0.5 mm)

2 Metal artefact reduced CT volume. Computed using sinogram
interpolation

3 CT smoothed with σ = 0.5 mm isotropic Gaussian filter

4 CT smoothed with σ = 1.0 mm isotropic Gaussian filter

5 CT smoothed with σ = 2.0 mm isotropic Gaussian filter

6 Image Gradient magnitude of feature nr 3

7 Image Gradient magnitude of feature nr 4

8 Image Gradient magnitude of feature nr 5

9 Distance (in mm) to the threshold-segmented prosthesis surface

10 Signed distance from prosthesis head, along prosthesis long
axis

11 Signed distance from estimated convex hull of the femur’s
cortical bone

12 Cosine of angle to prosthesis neck in plane perpendicular to
long axis

13 Signed radial gradient of MAR volume smoothed by
σ = 0.5 mm Gaussian filter

segmentation. A rotating per-patient leave-one-out scheme
was used. Voxel classifier performance was evaluated by
counting the percentage of correctly classified voxels per tis-
sue class, shown as a confusion matrix in Table 6. Similar
to van der Lijn et al. [21] we evaluated the final segmented
volumes by their Dice similarity coefficients compared to
ground truth. The Dice coefficient is a value between 0 and
1, where 1.0 represents perfect agreement and 0.0 represents
completely disjoint segmentations. The coefficient is defined
as 2(|A ∩ B|)/(|A| + |B|), where |A| denotes the volume of
region A and A ∩ B is the intersection of regions A and B
[22].

Computation of image features

To serve as input for voxel classification, thirteen candidate
image feature volumes, listed in Table 1, were computed from
every original CT volume.

We used the method of Kalender et al. [23], implemented
in MATLAB R2009b (Mathworks Inc., MA, USA), to com-
pute the metal artefact reduced (MAR) volume. All other
image features were computed using proprietary software
developed in the DeVIDE Runtime Environment [24].

Similar to previous studies [25–27] we used multiscale
image and image gradient values as features. Isotropic Gauss-
ian low-pass (blurring) with standard deviations of 0.5,
1 and 2 mm, along with their image gradient magnitudes,
were computed from the original CT volume.

The next feature consisted of the shortest Euclidian
distance to the prosthesis surface. The prosthesis was
automatically detected as the largest object exceeding a

threshold of 5,000 HU. This value was appropriate for all
cobalt-chromium and steel prostheses.

The tenth feature consisted of the signed distance from the
prosthesis head’s centroid, measured parallel to the femur’s
long axis. The prosthesis’s long axis was automatically com-
puted as the first principal spatial component of the pros-
thesis’ distal half. This direction closely corresponds to the
alignment of the femur’s long axis.

The next feature was the signed distance from the femur’s
outer surface. The geometry of the femur is initially unknown
to us. By thresholding the ROI between 800 and 3,000 HU
and excluding all voxels within 3.5 mm of metal components,
we capture the majority of voxels representing cortical bone.
Recall that CT image slices are always approximately per-
pendicular to the femur’s long axis. While a human femur is
not convex in three dimensions, it is approximately convex
in any cross-section perpendicular to its long axis. For every
image slice we therefore approximated the femur’s outline by
the two-dimensional convex hull of the thresholded voxels.

The twelfth candidate feature was the cosine of the angle
of each voxel relative to that of the femur head. This pla-
nar angle cosine was measured around the central axis of the
prosthesis stem.

The last candidate feature was the image gradient of the
smoothed MAR image, using a 0.5 mm Gaussian kernel,
computed in the radial direction perpendicular to the pros-
thesis’ long axis.

Classifier construction and feature selection

We constructed statistical classifiers using PRSD Studio (PR
Sys Design, Delft, The Netherlands) [28], a toolbox that
offers implementations of various classification algorithms.
Our training data consisted of all twelve manually segmented
CT volumes, where individual image voxels were regarded
as separate objects. All classifiers were trained and evaluated
using a rotating per-patient leave-one-out scheme.

We defined six tissue classes: cortical bone, trabecular
bone, bone cement, fibrotic tissue, intramedullary canal, and
tissue exterior to the femur. Equal per-class priors were used
to prevent infrequent but important tissues like fibrotic zones
being suppressed during optimization. Features were scaled
to have unit variance. Both forward and backward selection
processes were then used to determine an optimal subset of
the thirteen candidate image features.

Each classifier computed a “soft” probabilistic classifi-
cation, that is, probabilities of belonging to the six tissue
classes instead of “hard” unambiguous labels. Parametric
classifiers that construct internal probability density func-
tions directly output soft classifications. Others like the kNN
classifier output feature-space distances that were subse-
quently converted to unit-sum probabilities by using the nor-
malized inverse of their class separation distances.
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a b c

Fig. 3 An example 2D graph cut. a 3 × 4 bitmap image. b Graph
with two highlighted nodes to show data costs for being assigned either
“white” or “black”. Edge weights were chosen inversely proportional

to image gradient. c A cut of the graph with resultant data cost for every
node and the smoothness cost for every severed edge

Fig. 4 Left: a 2D image with three regions. Right: each pixel p is
represented by a node pair x A

p and x B
p . Edges are shown for a sin-

gle node’s edge pair. Smoothness costs are represented by undirected
in-plane edges. The “A contains B” relationship is enforced by an

infinity-weight directed edge from plane B to A. “B sheathed in at least
1 pixel width of A” is enforced by directed edges to its 4-connected
neighbourhood

Classification performance was compared between the
following classification algorithms available in PRSD Stu-
dio: linear, quadratic, Gaussian mixture model, kNN with k
equal to 1, 3 and 10, a Parzen classifier, neural net, naive
Bayes and a decision tree. A k-centres algorithm was used
as kNN pre-processing step. Each classifier was trained and
tested identically.

Segmentation by maximum posterior probability

The most straightforward approach for converting the “soft”
classifier output to a “hard” segmentation was by indepen-
dently assigning, for every voxel, the class with highest pos-
terior probability. An example of the classification results
obtained with this scheme is shown in Fig. 2d.

Segmentation by graph cuts

Maximum posterior probability classification is prone to
noise and irregular segmentation geometry as seen in Fig. 2d.
To counter this we instead used multilabel graph cuts to trans-
form the soft classifier output into a multilabel segmentation.
For this we used and adapted the publically available gco-
v3.0 multilabel graph-cut library [19].

An image may be expressed as a graph by represent-
ing individual image pixels or voxels as graph nodes and
representing their neighbourhood relationships with edges.
Graph-cut algorithms, also known as “minimum cut/maxi-
mum flow” algorithms, offer a computationally efficient way
of minimizing certain energy functions defined on a graph
[29,30]. Figure 3 shows how a 2D image may be segmented
by a graph cut.

A cut is minimal if its associated energy is smaller or equal
to the energy of any other cut of the same graph. This energy
typically consists of two parts: a data cost and a smoothness
cost [31]. The data cost of each node is computed from the
mismatch between its observed properties and those of its
assigned label. Following the example of Boykov et al. [17]
we defined each voxel’s data costs as the negative logarithm
of its per-class membership probability. The smoothness cost
of each severed edge may be defined inversely proportional
to local image gradient.

Delong and Boykov [18] show how a directed binary graph
with two nodes for every image pixel may be constructed to
enforce geometric containment, attraction or exclusion. A 2D
example of a containment enforcing graph is shown in Fig. 4.
Every image pixel is represented by two graph nodes—these
node pairs define two separate planes. Within each plane,
every node is connected to its neighbours using 4-connected
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Table 2 The pairwise data costs of the nodes in Fig. 4 as defined by
Delong and Boykov [18]

x A
p value x B

p value Label of p defined Data cost Dp

by (x A
p , x B

p )

0 0 C − log(Pr(C))

0 1 n/a K

1 0 A − log(Pr(A))

1 1 B − log(Pr(B))

K is an arbitrary constant since the infinity-weight edge prevents a
(0, 1) value pair from occurring

Table 3 Our data costs depend only on each node’s own binary label

Variable Value Data cost Dp

x A
p 0 − log(Pr(C)) + maxA

x A
p 1 − log(Pr(A)) + maxA

x B
p 0 maxA

x B
p 1 log(Pr(A)) − log(Pr(B)) + maxA

Compared to Table 2 the global energy differs by a constant and has the
same labelling as solution

undirected (or bidirectional) edges. Directed edges link node
pairs between the planes to enforce containment and attrac-
tion relationships.

The graph for a 3D voxel grid is analogous to the 2D
model, the difference being the replacement of the 4-con-
nected pixel-node planes A and B with two 8-connected
voxel-node grids. A binary cut on this graph assigns every
node a value of one or zero. The label of every pixel is defined
by the assignment of binary values to its corresponding node
pair, as in Table 2.

The difference of our approach compared to that of De-
long and Boykov is that we assigned data costs to individual
nodes in the graph—dependent only on the binary values
which the nodes may individually assume, not on pairwise
labelling. The advantage of this is that it allows computation
of the minimum graph cut using standard graph-cut libraries
such as gco-v3.0 [19].

Starting with Table 2 we replaced the costs of pairwise
node assignments by the summed costs of each pair’s two
separate components, leading to Table 3. This new definition
yields the same pairwise costs, up to a constant. For exam-
ple: the data cost of assigning (0, 0) to x A

p and x B
p becomes

[− log(Pr(C)) + maxA] + [maxA] = − log(Pr(C)) +
2 ∗ maxA. We defined maxA as max(− log(A)), computed
across all voxels. This constant term prevents any individ-
ual data costs from being negative—a requirement of the
gco-v3.0 library. The additional global data cost is therefore
maxA times the number of nodes, a known constant. Since
the same labelling minimizes all equivalent energy functions

Table 4 Symmetric smoothness cost matrix used for the standard
multi-label α-expansion graph cut algorithm

Outside Canal Fibrous Trabecular Cortical Cement

Outside 0 2 2 2 1 2

Canal – 0 1 2 1 1

Fibrous – – 0 1 1 1

Trabecular – – – 0 1 1

Cortical – – – – 0 1

Cement – – – – – 0

that differ by a constant, the solution is an equivalent label-
ling.

Segmentation by single multilabel graph cut on classifier
output

We started with smoothness costs similar to the Potts model
of Boykov et al. [17,31], but with larger values assigned to
tissues that are expected to be non-adjacent, such as between
exterior muscle tissue and either the intramedullary canal or
fibrous interface tissue. These costs, shown in Table 4, satisfy
the definition of a metric as required for convergence of the
α-expansion algorithm [32], that is, V (β, α) ≤ V (α, γ ) +
V (γ, β) and V (α, α) = 0 for all labels α, β, γ .

The costs of Table 4 were additionally scaled with a spa-
tially varying term that depended on the image intensity gra-
dient at each voxel’s location. This factor was defined as
Sd = exp(−c ∗ Gd), having a value of 1.0 in areas with zero
gradient and exponentially decaying with increasing gradi-
ent. The subscript “d” refers to the orthogonal direction, that
is, “x”, “y” or “z”. Gd is the CT image gradient magnitude in
the given direction, expressed in HU/mm, and “exp” refers to
the exponential function. The parameter c is a scaling param-
eter that we set to 0.008 to provide the desired falloff rate.

Segmentation by stepwise multilabel graph cut
with geometrical containment

The gco-v3.0 library used for solving the unconstrained mul-
tilabel problem does not support directed graphs or labels
defined on pairs of nodes. Since graph directionality is
essential to the containment relationships in Figs. 4 and 5,
we modified the code to enable edge directionality. The first
modification consisted of allowing asymmetric neighbour-
hood relationships; that is, node p being a neighbour of node
q does not imply that node q must be a neighbour of p.
The second modification was for allowing the asymmetric
smoothness costs of Table 5 that were subsequently scaled to
also be inversely proportional to image gradient as described
in the previous section.
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Fig. 5 A coronal slice showing the three-step segmentation process. Steps 1 and 2 enforce geometrical containment relationships

Table 5 Smoothness cost matrix used for the containment-enforcing
two-layer binary-valued graph of Fig. 4

Value 0 Value 1

Value 0 0 1

Value 1 0 0

Looking at Fig. 4 and Table 2 we see that the asymme-
try of Table 5 ensures that the “infinity” cost of a contain-
ment-rule violation is correctly enforced. Assigning (0, 1)
to the (x A

p , x B
p ) node pair is illegal and does not correspond

to any tissue label. This transgression is prohibited by the
smoothness cost of 1 multiplied by the graph’s “infinity”-
weight edge, resulting in “infinite” cost. Conversely, the (1, 0)
assignment corresponding to the label “A” is allowed. Mul-
tiplying the zero smoothness cost and “infinite” edge weight
yields zero cost. Spatially neighbouring voxels are connected
by bidirectional edges equivalent to the undirected edges of
Fig. 4. Here, label discontinuities are penalized as before,
since exactly one of the bidirectional edges will cross a
(0, 1) transition.

We used containment relationships to force the region
defined by the union of intramedullary canal, cement, fibrous
interface tissue and trabecular bone to be enclosed in a layer
of cortical bone with a thickness of at least one voxel. This
was motivated by the fact that the whole femur is enclosed
in cortical bone, even though this layer can be very thin
and difficult to discern in the proximal femur. Likewise, we
created a penalty term to discourage trabecular bone from
not being enclosed in a layer of cortical bone of at least

a single-voxel thickness. An example of this is shown in
Fig. 2e where an unconstrained graph-cut solution allows
holes in the encompassing cortical bone. In Fig. 2f we see
that the containment constraint enforces a continuous cortical
sheath.

Including multiple containment relationships in a single
graph cut complicates graph construction and data cost terms.
We instead opted for the data cost structure of Table 3 that
only allows three tissue zones at a time. We desired two
containment constraints—the femur having an uninterrupted
cortical shell and trabecular bone being enclosed in cortical
bone. Each of these constraints required a separate graph-cut
step. The remaining tissues were separated using a standard
α-expansion multilabel graph cut as described by Boykov
et al. [17].

The resulting three-step segmentation process is shown in
Fig. 5.

1. The ROI is segmented into three classes: exterior, corti-
cal, and “interior” using a containment relationship that
forces the interior to be enclosed in a cortical shell of at
least single-voxel thickness.

2. The “interior” and “cortical” regions are re-segmented
into trabecular, cortical and “rest”. A containment rela-
tionship similar to step 1 specifies trabecular bone to be
enclosed in cortical bone. The final cortical region con-
sists of the union of the cortical regions from steps 2
and 3.

3. Finally, the “rest” tissue from step 2 is segmented into
cement, fibrous and canal using a three-label α-expan-
sion graph cut without containment restriction.
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Fig. 6 Voxel classifier sensitivities for the two most difficult-to-
classify tissues versus number of CT training volumes

Results

Feature and classifier selection

Using both forward and backward feature selection on dis-
joint training and test sets, we identified an optimal subset
of nine features. Removing any of these or adding any of the
remaining features increased the classification error. Refer-
ring to Table 1, these nine features, ranked from most to least
important, were numbers 10, 11, 2, 4, 9, 13, 7, 1, 5. It is
important to note that these features were not necessarily the
best individual discriminators, but instead provided the best
combined classification power when used as a set.

Using these nine features, we evaluated different classifier
algorithms. We found the best overall classification perfor-
mance using a kNN classifier with k = 3, after pre-process-
ing the input data with a k-centres algorithm with k = 2, 000.
We evaluated the classifier’s learning curve as it was trained

on successively larger patient sets. Testing was performed in
a per-patient leave-one-out manner. The results for the dif-
ficult-to-classify fibrous and trabecular tissues are plotted in
Fig. 6.

We see that classification performance tended to stabi-
lize once a training set size of at least five CT volumes was
reached. Further increasing the number of training sets did
not significantly improve median classification performance
but did reduce the occurrence of negative outliers.

Tissue segmentation

In Table 6 we see that the classifier using the maximum proba-
bility criterion managed to correctly classify the large major-
ity of labelled voxels. The most difficult tissues were fibrous
interface tissue (66.7%) and trabecular bone (81.1%)—both
being low in CT image contrast and located close to the pros-
thesis in the zone most affected by metal artefacts. Graph-cut
post-processing improved classification performance relative
to maximum posterior classification—most notably for the
fibrotic and trabecular tissue classes. Sensitivity and specific-
ity of the final constrained graph-cut segmentation are shown
in Table 7.

In the example slice of Fig. 2 we see that the geometrically
unconstrained graph-cut procedure considerably smoothed
the segmentation result, with many of the isolated noisy mis-
classifications removed. The same general tissue distribution
was maintained, including a gap in the outer shell of cortical
bone. With the constrained graph-cut approach we note that
the gap in the outer cortical shell has been closed, and the
region of trabecular bone is fully enclosed and shielded from
fibrous tissue by a layer of cortical bone as was required by
our containment rule. We note from Fig. 7 that there is still

Table 6 Confusion matrix
showing median classification
performance of our kNN2k
classifier when labelling each
voxel with its maximum
posterior probability (MPP,
upper rows) and constrained
graph cuts (CGC, lower rows)

Bold values, which represent the
sensitivities, i.e., the
percentages of each tissue type
that was classified correctly,
form the main diagonal of the
confusion matrix

Label Automatically segmented

Method Exterior Canal Fibrotic Trabecular Cortical Cement

Manually segmented
Exterior MPP 85.71 0.00 2.18 8.65 2.18 0.47

CGC 89.47 0.00 1.53 4.76 2.09 0.70

Canal MPP 0.00 97.46 0.31 0.00 0.52 0.96

CGC 0.00 98.50 0.00 0.00 0.59 0.55

Fibrotic MPP 2.04 0.51 66.67 11.70 4.45 3.83

CGC 0.11 0.22 73.04 3.49 5.14 3.43

Trabecular MPP 5.72 0.00 8.18 81.08 2.71 1.20

CGC 2.76 0.00 8.28 82.90 3.86 0.22

Cortical MPP 0.96 0.96 3.90 2.92 86.79 5.79

CGC 4.08 0.71 3.43 3.90 86.40 3.27

Cement MPP 0.42 1.24 5.80 1.17 5.19 84.74

CGC 0.03 1.29 5.33 0.42 4.41 86.64
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Table 7 Sensitivity and specificity of the constrained graph-cut solu-
tion, computed from Table 6

Label Sensitivity (%) Specificity (%)

Exterior 89.47 98.60

Canal 95.50 99.56

Fibrotic 73.04 96.29

Trabecular 82.90 97.49

Cortical 86.40 96.78

Cement 86.64 98.37

Tissue
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Fig. 7 Comparison of manually segmented ground truth with maxi-
mum posterior probability, graph cut and constrained graph cut. Inter-
observer variability, computed with a second human segmenter, is also
shown

an obvious difference between our automated segmentation
methods and a second human segmenter but are encouraged
by the overlapping Dice coefficients ranges.

Across all tissues we find that the graph-cut segmenta-
tions, both with and without geometric constraints, have
significantly higher Dice coefficients than using maxi-
mum probability classification. This was confirmed using
a Wilcoxon signed rank test (p < 0.001 in both cases).
Compared to the graph-cut method without containment,
however, geometric containment shows no statistically sig-
nificant improvement in Dice coefficient (p = 0.466).
Geometric containment had its greatest value in qualita-
tive segmentation improvement—for example, the closing of
holes in the cortical shell, as seen in Fig. 2. The lack of statis-
tically significant improvement in Dice coefficient therefore
tells only part of the tale.

Computational cost

For a typical CT volume of interest consisting of 200×200×
300 voxels, the total running time of our segmentation pipe-
line was approximately 15 min. This time was recorded on a
3.0 GHz Intel Core-i7 desktop computer running Microsoft

Windows7 64-bit with 12 GB of working memory. Compu-
tation of the nine image features took approximately 10 min.
Subsequent soft classification by the trained voxel classifier
took 3 min. The post-processing of the classification output
by the graph-cut algorithm took approximately 40 s regard-
less of whether containment relationships were specified or
not. Since our algorithms currently rely on single-threaded
operation, we envisage a substantial possible speed increase
should we modify our code to harness processor cores simul-
taneously.

The most memory intensive operation was the graph-
cut step where, in addition to MATLAB’s base footprint of
200 MB, a peak amount of 600 MB without containment or
1,100 MB with containment was required.

We note that the execution time and memory requirements
of feature generation, voxel classification and the graph-cut
algorithm all show linear dependence on the number of classi-
fied voxels. This is in accordance with the findings of Delong
and Boykov [18], and we experimentally affirmed it.

Discussion

We constructed and optimized a voxel classifier that uses a
diverse set of automatically computable image features. The
retention of several derived distance metrics in the optimal
feature subset showed that image features other than inten-
sities and gradients are beneficial. This was emphasized by
observing that the original CT volume ranked as only the
eighth most important feature.

The most straightforward way to convert statistical classi-
fier output to a final labelling is by assigning, for each voxel,
the label with maximum posterior probability. This classifi-
cation method leads to noisy results with an excessive number
of label transitions. We know that biological tissues tend to
form contiguous regions. The maximum posterior probabil-
ity classification does not incorporate this prior knowledge.

We showed that the α-expansion graph-cut algorithm of
Boykov et al. [17] can be applied to obtain an improved seg-
mentation result. The required data cost terms are easily com-
puted from the voxel classifier’s output probabilities, and
the obtained results exhibit the contiguousness we expect.
The resulting segmentations are a qualitative and quantita-
tive improvement over standalone voxel classification.

Additional containment relationships, implemented as
modifications to the method of Delong and Boykov [18],
have their biggest effect on the segmentation of fibrotic tis-
sue and trabecular bone. This desired result is as expected,
since we specifically enforce the containment of these two
tissues in a shell of cortical bone. The containment relation-
ships simultaneously enable us to close unwanted holes in
the segmentation of thin shell regions of cortical bone.
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In Fig. 7, just as in Tables 6 and 7, we note that we had the
least success with the softer, irregularly shaped, low-con-
trast fibrous tissue and trabecular bone. There is a notable
outlier in each of the “Canal”, Trabecular and “Cortical” tis-
sue classes, but given the small sample size and large inter-
scan variation this not completely unexpected. Indeed the
“canal” outlier occurred for a data set where almost no intra-
medullary canal was included in the defined ROI, thereby
leading to a negligibly small volume and low Dice coef-
ficient between successive segmentations. The outliers for
trabecular and cortical bone both occurred for the same data
set, which had an unusually small femur diameter. This high-
lights the importance of having a sufficiently large training
set to cover the expected inter-patient variation—an assump-
tion which failed for this single data set.

In Fig. 7 we saw that human inter-observer variability has
a similar order of magnitude, albeit smaller, than differences
between automated and human segmentation. Since we can
only evaluate classifier performance relative to the manually
segmented ground truth which is itself subject to error and
simplification, subtle improvements due to geometrical con-
tainment may be obscured in our measurements.

Limitations to this study include the small number of CT
volumes used for training and evaluation. Figure 6 suggests,
however, that the twelve CT data sets used in this study were
sufficiently representative for the goals of this paper.

Since all automatic segmentation algorithms can occa-
sionally fail, it will be good to allow manual segmentation
corrections in future work. This could be approached similar
to the method of Egger et al. [33]. As in previous literature
we used the Dice similarity coefficient to evaluate segmenta-
tion accuracy. In future work it will be important to examine
the relationship between volumetric segmentation accuracy
and derived modelling accuracy, such as when using finite
elements.

A further limitation of this study is that all CT image
volumes were obtained from the same make of scanner and
from the same hospital. By pooling the available data sets
we obtained a collection of image volumes containing real
clinical data with heterogeneous scan parameters. We fore-
see the presented algorithm to work similarly well on data
from other centres but did not have the opportunity to verify
this claim.

Despite CT’s proven diagnostic superiority over stan-
dard radiographs [8,34], it is still not routinely performed
on patients suffering osteolysis and therefore limited our
access to clinical data. Traditional open revision surgery is
performed under visual guidance and therefore does not
require accurate 3D-image-based tissue segmentation. How-
ever, we foresee this situation changing. Minimally invasive
refixation is already performed as an alternative to refix-
ation in frail patients [2,3], and here, the surgeon is much
more dependent on image-based pre-operative planning.

Finite element modelling is a powerful tool for computing
mechanical stability of the femur [4,5] but requires 3D tis-
sue distribution models. These advances may lead to vali-
dation and wider application of minimally invasive cement
injection. This will, in turn, fuel the demand for automated
segmentation techniques such as the one described in this
paper.

Conclusions

We presented a complete pipeline for segmenting peripros-
thetic tissues in clinical CT volumes of patients with hip
prostheses. Due to low tissue contrast and the presence of
beam hardening artefacts, these image volumes are extremely
difficult to segment—even manually by a trained human
operator.

We applied our algorithm to tissues that pertain to
aseptically loose hip prostheses, namely cortical bone,
trabecular bone, fibrous interface tissue, bone cement,
intramedullary canal, and tissue exterior to the femur. Voxel
classification offers a way of combining the strengths of sev-
eral complementary image features, including metal artefact
reduced image data that involve data loss if used on its
own [35]. We showed how tissue classifiers’ results may
be improved by coupling them with a graph-cut post-pro-
cessing step. We further showed how an adaptation to the
algorithm of Delong and Boykov [18] can be used to incor-
porate geometrical assumptions into the graph-cut segmen-
tation process. Using this, we enforced the requirement that
the femur be enclosed in a layer of cortical bone and trabecu-
lar bone to be sheathed in cortical bone. Compared to before,
these restrictions helped to close segmentation holes caused
by low contrast and partial volume effects in the input CT
data.

To our knowledge, in the field of medical image segmen-
tation, this is the first use of graph cuts on voxel classi-
fier output since the pioneering work of van der Lijn et al.
[21]. In contrast to their study we extend our solution to
a multilabel, as opposed to binary, problem. Not only are
the graph-cut solutions qualitatively better than voxel clas-
sification on its own, but we show that they quantitatively
better represent the manually segmented ground truth in
terms of their Dice coefficients, our measure for geometric
similarity.

The pipeline described in this paper represents a prac-
tical approach to segmenting multitissue regions from CT.
The demonstrated approach to containment relationships
improves the solution wherever such a priori knowledge
is available. We demonstrated our solution using clinical
CT images of tissues surrounding metal hip prostheses suf-
fering from low contrast and beam hardening artefacts.
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Our proposed solution succeeds for this specific applica-
tion and may in future also be applied to other anatomical
regions and imaging environments that are subject to similar
constraints.
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