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Abstract In recent years, learner models have emerged from the research labora-
tory and research classrooms into the wider world. Learner models are now embedded
in real world applications which can claim to have thousands, or even hundreds of
thousands, of users. Probabilistic models for skill assessment are playing a key role
in these advanced learning environments. In this paper, we review the learner models
that have played the largest roles in the success of these learning environments, and
also the latest advances in the modeling and assessment of learner skills. We con-
clude by discussing related advancements in modeling other key constructs such as
learner motivation, emotional and attentional state, meta-cognition and self-regulated
learning, group learning, and the recent movement towards open and shared learner
models.

Keywords Student models · Learner models · Probabilistic models ·
Bayesian Networks · IRT · Model tracing · POKS · Bayesian Knowledge Tracing ·
Intelligent Tutoring System · Learning environments · Cognitive modeling

1 Introduction

It has long been recognized that individualized learning is much more effective than
classroom learning. In a seminal paper, Bloom (1984) quantified this conventional
wisdom knowledge as the two sigma effect. Based on available data, Bloom argued
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that the average student who received one-on-one tutoring from an expert tutor scored
two standard deviations higher on standardized achievement tests than an average
student who received traditional group-based instruction. Cohen et al. (1982) found
similar results, though not quite the same effect size, in a meta-analysis on tutoring in
general (including human tutors with less expertise than those studied in Bloom).

Achieving a similar degree of individualization has been a key interest among devel-
opers of interactive learning environments and Intelligent Tutoring Systems (ITSs).
To achieve one-on-one instruction, targeted and appropriate adaptation is required,
which in turn requires accurate assessment of learners.

A little over 20 years ago, Self (1988) discussed the skepticism that many research-
ers held about the feasibility of an effective and useful learner model. Self argued
that to overcome the difficulty of correctly assessing the learner’s state and the often
overwhelming effort to build comprehensive learner models, the field should revert to
didactly focused learner models of more limited scope. This view was somewhat ech-
oed about a decade later by Cumming and Mcdougall (2000), who raised the question
of whether Intelligent Tutoring can be main-streamed into Education. They argued
that defining a strong theoretical understanding of individualized learning is a neces-
sary condition for successfully meeting this challenge. They labeled this challenge as
“optimistic” for 2010.

The year 2010 is now behind us, and the 2000s have witnessed the rise of intelligent
learning systems that successfully integrate learner models, and which have achieved
widespread usage. To a certain extent, we can argue that the conditions proposed by
Self and those of Cumming and McDougall have materialized, as these systems do
incorporate didactly focused learner models and didactic strategies that yield success-
ful one-on-one tutoring, namely what is referred to as problem solving and solution
analysis and curriculum sequencing tutors.

We review these tutors, the latest developments in learner models, and the chal-
lenges that are currently being tackled. We start with the recent developments on the
topic of skill modeling and assessment, which bring together the fields of cognitive
modeling, psychometrics, and statistical learning.

Our review pays special attention to the techniques that have given rise to the most
successful applications in intelligent learning environments. First, let us start with a
short review of the basic learner model concepts.

2 Learner models basics

When a pupil answers that the solution to
( 1

3 + 3
4

)
is 4

7 , an expert human tutor can

easily observe that the pupil did
(

1 + 3
3 + 4

)
. He or she can then focus his instructions on

the rule, that states that only numerators with a common denominator can be added,
and can discuss how to generate equivalent fractions by multiplying the nominator and
the denominator by a given factor, in order to arrive at common denominators. The
tutor’s ability to diagnose what a student knows and does not know, and the ability to
select relevant interventions given this diagnosis, are pivotal to good tutoring. Another
key feature is tutors’ ability to infer, from the student’s problem solving actions and
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answers, what is likely well understood or mastered, and what is not, from only a
few observations, and to move on in the curriculum at the right pace for that spe-
cific student. The ability to infer which skills a student masters has been, to a large
extent, successfully emulated by the intelligent tutors we review in the next section.
They arguably are among the most important requirements for effective one-on-one
tutoring and we refer to them as skill modeling.1

There are, of course, other requirements for learner models. For example, we may
want to know if the student is bored or frustrated, what is the appropriate moment to
switch from drill and practice to explanations and theoretical material, etc. Human
tutors are well acquainted with factors like the student’s attitude and motivation
towards learning a given topic and their critical effect on the learning outcome (Lepper
et al. 1991). In Sect. 7 we briefly review other key issues that also play an important
role in student modeling and refer the reader to a recent book by Nkambou et al. (2010)
that covers many of these other factors in more details.

3 Learner models and learning environments success stories

Increasingly, several ITSs can claim to be a key part of education and learning in
the real world. Their number is growing, and the most successful systems are cur-
rently used by hundreds of thousands of users a year. The fact that some systems have
emerged from research labs and research classroom to widespread use is a clear indi-
cation that the models and techniques behind them have seen their potential realized.
We present a few key systems, focusing on the learner modeling approaches they used
and the research challenges that remain. We also focus on the systems used in public
settings, as it is relatively difficult to assess the uptake of systems used only under
classified settings (e.g. tutors for the military). In that respect, our review does not
intend to be exhaustive, but instead to provide an overview biased towards some of
the most successful and widely-used approaches to this day.

3.1 Tutors for problem solving and solution analysis

Some of the best known success stories are from two families of tutors: Cognitive
Tutors (CT) (Koedinger et al. 1997; Corbett and Anderson 1995) and Constraint-Based
Modeling (CBM) (Mitrovic 2012). CT are now distributed commercially by Carnegie
Learning Inc. and reach hundreds of thousands of students each year. The Assistment
system, a close cousin of CT, is also gaining a strong user base (Feng et al. 2006), and
is used by thousands of students a year. These systems fall into what Brusilovsky and
Peylo have termed problem solving and solution analysis tutors (Brusilovsky 2003).
Their didactic approach is distinct from the curriculum sequencing approach that we
review later as part of the widely used real-world learning environments.

1 In this paper, we define the notion of skill as encompassing problem solving abilities, concept acquisition,
simple memorization of factual information and, if the tutoring context allows, even motor skills—a related
conceptualization is Koedinger et al’s (under review) notion of a “knowledge component” (Koedinger et al.
2011).
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Fig. 1 KT rules and CBM constraint examples (adapted from Mitrovic et al. 2003)

3.1.1 Cognitive tutors and constraint based modeling

Cognitive Tutor represents knowledge that is procedural, as it can be directly mapped
to student actions. CBM tutors represent declarative knowledge as constraints over
student answers (as opposed to actions) or over the outcome of the student’s actions.
Figure 1 illustrates a few examples of KT rules and CBM predicates for a problem
relating to the computation of angles in an isoceles triangle.

In spite of their differences, they share strong similarities and they can achieve
similar results, as demonstrated in a comparative study (Mitrovic et al. 2003).

In CT and Constraint Based Modeling (CBM), the skills are represented as rules
(CT) and predicates (CBM), which bear a strong formal similarity. In CT, a skill is
considered correctly applied by the student when a rule is matched to student perfor-
mance actions. In the case of CBM, a skill is considered mastered when a predicate
is matched over student responses.
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In addition to skills, misconceptions can also be represented with these formalisms.
They correspond to buggy-rules and to patterns of true and false predicates that reflect
incorrect student knowledge. For example, Fig. 1’s KT buggy-rule would correspond
to violations of constraint 2 (that correspond to Cr2 and Cs2, where Cr2 is the relevance
condition and Cs2 is the satisfaction condition).

When incorrect knowledge is detected, this information allows immediate and fine
grained remedial didactic content to be delivered to the student. This just-in-time
remedial feedback is important to the student’s learning and to the success of these
approaches. Viewed more broadly, this feedback provides a form of scaffolding (sup-
port) that is delivered at the appropriate time, in order to be most effective (Lajoie
2005).

3.1.2 The role of student models in CT and CBM

It is interesting to note that the scaffolding and just-in-time remedial feedback that is
critical to CT and CBM tutors does not necessarily imply any substantial “long term”
student model. A tutor may solely track the user actions from the last problem, and
the successful and unsuccessful attempts within the current topic, to decide whether
to move on to the next topic. Then, it can start anew given this next topic, as if it were
dealing with another student. This student would still receive hints and remedial con-
tent based on the cognitive diagnosis of his or her actions and answers. This analysis
of user actions to track the problem resolution state is termed Model Tracing and it
bears resemblance to plan recognition techniques.

Model Tracing allows the tutor to give feedback and hints, akin to the process
of identifying which constraints are satisfied or not in CBM. However, as the skills
assessed by Model Tracing typically span multiple topics and exercises, it is desir-
able to maintain a student model that provides an accurate assessment of all relevant
skills, over time. In CT, this is known as Knowledge Tracing and is now used in most
CT (Corbett and Anderson 1995). We return to Knowledge Tracing in Sect. 5.4. In
CBM tutors, similar techniques have been devised, some based on overlay models and
others based on probabilistic approaches (see Mayo and Mitrovic 2001 and Mitrovic
2012).

3.2 Content sequencing tutors

Another family of tutors that have enjoyed substantial success today are environments
that guide a student through learning material. The most widely used is probably the
ALEKS system (www.aleks.com), which is now said to be used by millions of users.
ALEKS is a commercial spin off of the University of California at Irvine and is based
on the cognitive theory of knowledge spaces (Doignon and Falmagne 1999, 1985).
This theory is at the basis of a number of efforts and active developments in the field
of learner modeling (Heller et al. 2006; Desmarais et al. 2006).

The ALEKS tutor takes a very different approach to tutoring. This approach can
be considered curriculum sequencing, a concept that can be traced back to McCalla
et al. (1982) and Peachey and McCalla (1986), and which consists in defining learning
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paths in a space of learning objectives and didactic content (see also Brusilovsky and
Vassileva 2003 and Vassileva 1995).

Whereas CT and CBM aim to provide specific remedial content based on a detailed
analysis of the student’s problem solving steps or answers, curriculum sequencing aims
to make broader skills assessment to adapt the learning content in general. Adaptive
hypermedia (Brusilovsky 2001), used as a learning tool, is a representative example of
this approach. Adaptation can be as coarse-grained as recommending courses or book
chapters, or as fine-grained as choosing exercises deemed new and challenging, yet
not too difficult, in accordance to Vigotsky’s zone of proximal development (Vygotsky
1978). Other systems like SIETTE (Conejo et al. 2004) (limited to test items sequenc-
ing) and RATH (Hockemeyer et al. 1997) (also based on the theory of knowledge
spaces) adopt a curriculum sequencing approach. See also Brusilovsky (2003), who
has reviewed a number of similar approaches.

Whereas the success of problem solving and solution analysis tutors, such as CT
and CBM, relies on the ability to provide just-in-time remedial feedback and decide
when to move on to a new topic, the success of curriculum sequencing lies in tai-
loring the learning content based on an accurate assessment of a large array of skills
with the least possible amount of evidence. The ratio of the amount of evidence to
the breadth of the assessment is particularly critical for systems that cover a large
array of skills, as it would be unacceptable to ask hours of questions before mak-
ing a usable assessment. This requires a model that can build links among skills,
such as prerequisites; for example, such a model would infer that a student’s knowl-
edge of English vocabulary terms such as “sibilate” and “quandary” clearly indicates
that familiar common terms would probably be unchallenging. Modeling prerequisite
structure is not as critical for tutors like CT and CBM, that adopt a problem solv-
ing and solution analysis approach. As a consequence, learner models for CT and
CBM tutors on one side, and for content sequencing tutors on the other side, have
diverging emphasis which lead them to adopt different (though not incompatible)
approaches.

4 Learning models revisited

In retrospect, we can argue that the early success of intelligent learning environments
came from two sources. One of them is the support for highly specific, immediate,
and effective feedback during problem solving. The value of this feature to the student
was prominent in CT and in CBM tutors. Another source was the ability to structure
the learning path according to the individual skill profile of each student. This feature
was the most salient in ALEKS, and it required that the learning application be able
to define meaningful learning paths and to build an accurate and global assessment of
the student skills with only partial evidence, from a few questions.

The first source of success can be considered as fine-grained skill diagnosis that
relies on a detailed domain analysis of each exercise proposed to the student, whereas
the second source relies on what has been called a transfer model: a model that can
perform a multi-skill assessment from a subset of observed skill mastery or, in other
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Fig. 2 Learner modeling layers

words, a model that transfers evidence between skills, or between items and skills that
are not directly linked.2

The distinction between these sources can be conceptualized according to Fig. 2’s
layers. The learner actions are displayed at the lowest level of the network. One or
more actions can be directly mapped onto nodes in a model. A sequence of actions can
therefore trigger the activation of a node in the observable nodes layer, and indicate
mastery of a skill, or it can trigger a mal-rule indicating a misconception.

Moreover, one or more actions can also generate an outcome (second layer up in
Fig. 2). The outcome can change the problem state which, in turn, can be used as a
constraint in a CBM tutor. In that respect, the Action outcome layer is one level of
abstraction above the actions, since many different action sequences can result in the
same outcome. Akin to mapping actions to one or more specific observable skills in
the model, Outcome nodes can be mapped to one or many skills nodes in the model.

A tutor that does not transfer knowledge of what is considered mastered between
exercises would have its model nodes tied to observable actions only. Obviously, for
highly effective transfer, the model’s nodes need to be fully connected. There are
many ways to achieve node connection. Models behind curriculum sequencing such
as ALEKS build links among observable nodes themselves, without hidden nodes.
Another approach, IRT which we review later, links every observable node to a single
hidden node. Finally, Bayesian Networks (BNs) can contain many layers of hidden
nodes, albeit by imposing constraints or assumptions to allow the calibration of links
among hidden nodes that, otherwise, would be very error prone without any empirical
input from direct observations (see Reye 2004).

Not represented in Fig. 2 is the temporal dimension of observations and the fact that
a node probability changes over time, along sequences of observations. These types
of models have been the focus of intense research, in particular following the seminal

2 The term transfer model has been used in cognition and learning to express different phenomena. We use
it here in a sense close to that of Pavlik et al. (2009a,b).
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work of Corbett and Anderson (1995). They are temporal BNs (Dynamic BNs) that
share resemblance to Markov Models (see Sect. 5.4).

In the next section, we go into more details describing the models we mention
above.

5 Models of skills

Uncertainty is a factor that must be dealt with when modeling and assessing skills.
For example, after how many successful opportunities should we consider a skill mas-
tered? The answer depends on many factors. The occurrence of slips, when a student
accidentally (or due to carelessness) fails a known item, and guesses, when the student
correctly answers an item by chance, are important sources of uncertainty (Baker and
Corbett 2008). Uncertainty is particularly important for transfer models when the goal
is to build global assessment from indirect evidence. For example, if a pupil succeeds
at solving

√
(26) = 8, a transfer model may conclude that this student would also solve

3/4 × 2/5. But because the specific skills involved are different, requiring transfer
of evidence from one problem to the other, we consider this evidence as indirect and
inherently uncertain.

We review the major modern probabilistic approaches to skill modeling within the
light of these considerations. We start with the most general approach, BNs.

5.1 Bayesian Networks and graphical models

A Bayesian Network (BN) is a highly flexible graphical and probabilistic modeling
framework that has the potential to encompass all modeling layers found in Fig. 2.
BNs have been widely used for the purpose of modeling learner skills. Among the
best known are the ANDES Assessor (Conati et al. 2002; VanLehn et al. 2005), HY-
DRIVE (Mislevy and Gitomer 1995), and Zapata-Rivera and Greer’s (2004) inspect-
able student models. The attractiveness of Bayesian models comes from their high
representative power and the fact that they lend themselves to an intuitive graphi-
cal representation. In addition, BNs offer a well defined formalism that lends itself to
sound probability computations of unobserved nodes from evidence of observed nodes.
A number of software applications and libraries are available to compute probabilities
based on observed nodes. Moreover, BNs can potentially be derived from data, thereby
reducing the need for substantial knowledge engineering (see Neapolitan 2004). How-
ever, in practice, issues arise when we need to determine the topology and probability
parameters of hidden nodes. We already hinted on the problem of parameter learning
in BN and will revisit it again as it is a critical issue.

Figure 3 illustrates a potential Bayesian network in the domain of fraction arith-
metic. Skills or concepts involved (top) are linked to specific items to solve (bottom).
Some items involve a single concept, whereas others can involve two and potentially
more. In addition to representing skills, misconceptions can also be combined within
the BN framework and they can be linked to skills and items. Furthermore, skills them-
selves can be linked among themselves to express higher order knowledge (C1 → C2
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Fig. 3 Hypothetical BN on fraction arithmetics. Concept and misconception are hidden nodes that represent
algebraic transformation rules that a student can apply in solving exercises, whereas items are observable
nodes representing exercises (left-hand-side of equality) and student responses (right-hand-side)

and C1 → C3). A gentle introduction to the topic can be found in Jameson (1995)
and a more recent surveys can be found in Mayo and Mitrovic (2001), Almond et al.
(2007) and Reye (2004), and in recent books by Woolf (2009) and Nkambou et al.
(2010).

Links represent interdependencies that are captured in the form of Conditional
Probability Tables of a child node given its parents (P(child|parents)). Following the
semantics of BNs, we would conclude, from Fig. 3’s network, that if we find out that
a student knows C2, then that would increase our belief that C3 is also known,3 but
if we knew that C1 is also known, then further discovering that C2 is known would
not affect our belief about C3. This property is known as the Markov Blanket and it is
a fundamental concept of BN. Not only does the topology of BN inform us of which
nodes are parents and children, it also defines the conditional independence between
nodes. Returning to the example above, Fig. 3 BN informs us that C2 and C3 are
conditionally independent given C1.

Now, the links between C1, C2, and C3 need not be cognitively nor conceptu-
ally meaningful. In this particular case, the links are based on the principle that the
decomposition rule C1 would generally imply that the student also knows about the
decomposition rules C2 and C3, since they are involved in the formal derivation of
rule C1. This principle is congruent with the Markov Blanket condition. In general,
such kinds of logical or practical relations will indeed reflect the interdependencies
between concepts, misconceptions, and items. Nevertheless, it should be stressed that
it may not represent the optimal network topology for predictive (skill assessment)
purposes.

Furthermore, attempts to guide the definition of a Bayesian network based on
sound cognitive or conceptual principles may not be compatible with the objective

3 Or, alternatively, decrease our belief that C3 is known. The Bayesian Network formalism does not pre-
scribe increase or decrease in probability. It solely defines conditional dependencies and independencies.
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of delivering an optimal probabilistic skills assessment model. For example, although
the granularity hierarchies of Greer and McCalla (1989); McCalla et al. (1992) form a
sound basis for defining efficient skills abstractions for diagnosis using constraint sat-
isfaction and plan recognition techniques, their semantics may clash with the Bayesian
network’s own semantics.

5.1.1 Issues and challenges

Bayes Nets have been popular in the field in large part due to their combination of (1)
flexibility (any node can, in theory, be given as new evidence and all other node proba-
bilities will be updated accordingly), (2) high expressiveness in a unifying framework
(concepts, items, and misconceptions all follow the same semantics for computation of
probabilities), and (3) sound computations that can be carried out by standard software
packages.

However, these advantages come at a price. The most challenging issue is that
such networks can contain a high number of hidden nodes, such as concepts/skills
and misconceptions. Because hidden nodes are never directly observed, deriving the
conditional probability tables from data can prove very complex as it becomes subject
to the so-called curse of dimensionality (see Hastie et al. 2001).

Vomlel (2004) addressed the issue of setting the conditional probability tables by
reverting to a combination of expert derived estimates and a data driven approach.
Using standard algorithms to derive the structure of a BN from data, he used this
information to validate the structure of relations among skills in fraction arithmetic
that are similar to Fig. 3 and encompass a total of 20 hidden nodes. By asking experts
to assess whether each of 149 student mastered the 20 concepts from their test results,
he was able to derive part of the BN structure from this data and refine the structure
with experts. The conditional probability tables were also derived in this manner.

However, the process of requiring experts to assess concept mastery of students
from test results is in general impractical and prone to errors. Thus, the majority of
systems that use a BN learner model revert to simplifying assumptions in order to
determine conditional probabilities (Conati et al. 2002; Carmona et al. 2005; Millán
and Pérez-de-la-Cruz 2002; Almond et al. 2001; Mislevy et al. 1999). Some of the
key simplifying assumptions used in learning systems are discussed in the following
sections.

5.1.2 Noisy-AND, Leaky-OR Gates assumptions

One such simplifying assumption is the notion of a Leaky-OR Gate, where, in the
context of a set of an item or a concept having many parents, any parent is considered
sufficient to succeed the item child, or to master the concept child. An alternative
assumption is the Noisy-AND Gate where all parents are required be true in order for
the child to be true.

Under the Noisy-AND gate assumption (VanLehn et al. 1998), the probability of a
correct response to a child node X (assuming it is an observable test item) given its
parents (i.e. the skills involved to solve the item) is:
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P(X | all parents = T) = 1 − slip

P(X | at least one parents = F) = guess

In the case of the Leaky-OR gate, probabilities are obtained by:

P(X | one or more parent = T) = 1 − slip

P(X | all parents = F) = guess

The slip and guess parameters are generally global to all items and tasks, although
they can be set according to rules such as guess/number of answers to that problem
(VanLehn et al. 1998), in which case it can be different on a per-item basis.

Versions of the Noisy-OR gate approach was adopted by Conati et al. (2002)
for the Andes system and followed by Carmona et al. (2005), among others. These
approaches can be considered simplified versions of the NIDA/DINA (Noisy-AND)
and NIDO/NIDO (Noisy-OR) models, that were developed within the psychomet-
rics field and which are reviewed in Sect. 5.3. The difference lies in the number of
individual parameters that each model handles, namely if individual guess and slip
parameters are defined for each skill and each item.

5.1.3 Data driven Bayesian Networks

Instead of using simplified assumptions, another approach consists in dealing only
with observable nodes and limiting the size of the network. For example, Mayo and
Mitrovic (2001) used a structure learning algorithm with training data to identify the
most relevant tasks and events (constraint violation) related to the current task and
parameterize a BN with these nodes only. Then, based on the previous success and
failures of the student, the BN is updated to assess the chances of success to the current
task.

A different BN is derived for each problem, which makes the approach genuinely
dynamic. The constraint of building a BN with observable nodes only make the BN
induction and parametrization tractable in practice. They term their approach data-
centric because models are derived from data as opposed to domain expert engineered
models (expert-centric) or approaches that rely on strong simplifying assumptions
(efficiency-centric). The principle of constraining the model to observable nodes only
is a key factor to the success of this approach and has been followed by many other
approaches we review below.

5.2 IRT and latent trait models

Item Response Theory is a prominent approach that has been studied in the field of
psychometrics for over 40 years and formed the basis of the first personalized assess-
ment environments, Computer Adaptive Tests. Only recently have researchers from
this community and the ITS community begun to draw from the other tradition’s rich
history.
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As a learner skills model, IRT can be considered as the ultimate transfer model.
Referring to Fig. 2 layers, IRT would contain a single hidden node (the latent trait)
that is linked to all observable outcomes, where the outcomes are the success or failure
to test items. Any observation of an outcome therefore leads to a transfer of evidence
to all other items through the latent trait.

The fundamental idea behind IRT is that the chances of success on a task or, to use
the standard IRT terminology, to an item, increases as a function of the level of mas-
tery of a latent, unobserved skill, θ . According to the psychometric theory, the shape
of this function corresponds to the integration of a normal distribution (cumulative
distribution function) and it is termed the Item Characteristic Curve (ICC), which can
be closely approximated by the logistic distribution. Therefore, IRT can be conceived
as a logistic regression model where, given a vector of responses X, skill mastery, θ ,
is estimated by maximizing the equation:

P(θ |X) =
∏

i

P(Xi |θ)

As noted by Almond and Mislevy (1999), this is similar to a Naive Bayes structure
where θ is the root node of a set of item nodes, X, except that instead of having each
P(Xi |θ) modeled as a conditional probability table, it is modeled as a logistic function

P(Xi |θ) = 1

(1 + e−ai (θ−bi ))
(1)

where a corresponds to the item’s discrimination power and b corresponds to its dif-
ficulty.

In its standard form, IRT is a single skill model, which makes it unfit for fine-
grained cognitive diagnosis. However, it enjoys a strong theoretical background both
in terms of being grounded in psychometric measurement, and a sound mathematical
framework with proven algorithms (Baker and Kim 2004).

There are variants called multidimensional-IRT that can handle two and more
dimensions (Briggs and Wilson 2003; Reckase and McKinley 1991), but their com-
plexity is much greater, and they have not yet been used widely in personalized learning
environments.

One of the earliest and most complete effort to embed IRT as a cognitive diagnos-
tic tool in a system that can yield a fine-grained cognitive diagnosis was conducted
by Millán and Pérez-de-la-Cruz (2002). They integrated the principles of IRT with a
hierarchical structure of concepts to derive a detailed assessment. The probability of
mastery of a concept increases as the number of its children are considered mastered,
and the link function is inspired from IRT’s ICC curve. Another similar effort has been
developed by Guzmán et al. (2007) and integrated into the SIETTE adaptive testing
system (Conejo et al. 2004).

5.3 Latent cousins DINA, NIDA, DINO, NIDO

Developments in the field of psychometrics have brought a class of latent models that
can be considered as generalization of the AND/OR Gate models we have already
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encountered in Sect. 5.1.2 (see Roussos et al. 2007, for an overview of these models;
and Junker and Sijtsma 2001). They are based on the notion that each task is linked
to a number of skills (dimensions), akin to the notion of opportunities to practice a
skill for given task in Knowledge Tracing. The mapping between tasks and skills is
represented by a Q-matrix (Tatsuoka 1983) which defines the links between items and
skills. Assuming we have I items and K skills, then the Q-matrix is defined as:

skills

items

⎛

⎜
⎝

q1,1 · · · q1,K
...

. . .
...

qI,1 · · · qI,K

⎞

⎟
⎠

For example, if an item x1 involves only skills k2 and k3, then q1,2 and q1,3 will be
set to 1, and all other entries for that item, q1,•, will be set to 0. Q-matrices are in
fact considered a form of transfer model which can link items to concepts, or even
concepts together (see for e.g. Pavlik et al. 2009a).

When an item involves multiple skills and when the low mastery of a single one of
them is sufficient for failing this item, the model is considered part of the conjunctive
class, signifying that all skills are necessary to succeed the corresponding item. Con-
versely, if a strong mastery of a single skill is sufficient to succeed at the item, it will
be considered part of the compensatory class of models.

The NIDA model (Noisy Input Deterministic And) (Junker and Sijtsma 2001) is
a conjunctive model: All skills involved in an item must be mastered to succeed. It
also makes the assumption that all items within a skill have the same guess and slip
parameters. However, guess and slip vary across skills.

The probability of a correct response to an item X is 1−sk (slip) if all skills involved
are mastered and gk if any skill is not mastered (guess). The assumption that the slip
and guess parameters vary across skills but not across items renders their estimation
feasible even with very small samples, but these assumptions are obviously unrealistic
in many contexts.

The NIDO model is the NIDA model’s disjunctive (compensatory) counterpart:
it assumes that a single skill is necessary to succeed the item. The probability of a
correct response is 1 minus sk if any skill involved is mastered and gk if no single skill
is mastered.

The Deterministic Input Noisy And (DINA) model (Haertel 1989) associates the
guess and slip parameters to items instead of skills. It makes the same underlying
assumption as the NIDA model, namely that all required skills must be mastered for
the item to be succeeded. But different guess and slip parameters are associated with
each item. The guess parameter represents the chances of success given nonmastery
of one or more skills. Conversely the slip parameter represents the chances of fail-
ure given mastery of all items. Akin to NIDO, the DINO model is the compensatory
counterpart to the DINA model. Because these models comprise a large number of
parameters, they require more data for their estimation. Yet, they make no distinction
for the number or the nature of the skills involved for an item, which also is unrealistic
in many contexts.
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By dropping some assumptions and by introducing different parameters and
assumptions, a number of variants to these models can be introduced. We refer the
reader to Roussos et al. (2007) and Junker and Sijtsma (2001) for more details. Further
details about compensatory and non compensatory models with continuous estimates
of skills are reviewed in Stout (2007).

5.4 Bayesian Knowledge-Tracing

Bayesian Knowledge-Tracing (BKT) is another approach that relies on Bayesian the-
ory. It operates at the level of learner actions and observable nodes (see Fig. 2), but
it integrates a notion of time sequences. The approaches reviewed so far assume a
static learner knowledge state, whereas BKT models learning in time. This approach
to skills modeling is particularly relevant for tutors that use exercises and scaffolding
as the main vehicle for learning and that monitor fine-grained skill mastery to decide
on the next step.

The BKT technique is used in CT (Corbett and Anderson 1995) and it has gained
widespread acceptance. BKT continues to be the subject of intensive research, focused
on ways to improve upon the base model without losing the simplicity and tractability
that characterizes BKT.

Bayesian Knowledge-Tracing is essentially a model for determining if and when
the learning of a skill (or other type of knowledge component) occurs during a specific
problem-solving step. Assuming that each step of each learning exercise calls for a
given single skill, an opportunity to demonstrate (and learn) that skill occurs and the
student can either succeed or fail the task. In the basic model, four parameters are
defined:

P(L0): Probability the skill is already mastered before the first opportunity
to use the skill in problem solving.

P(T ): Probability the skill will be learned at each opportunity to use the
skill.

g: Probability the student will guess correctly if the skill is not mas-
tered (guess).

s: Probability the student will slip (make a mistake) if the skill is
mastered (slip).

Xn = {1, 0, xn}: {Correct outcome, Incorrect outcome, Outcomen} for the item cor-
responding to opportunity n to use the skill.

The probability that the skill L at opportunity n is mastered can be computed as:

P(Ln−1|Xn =1) = P(Ln−1)(1 − s)

P(Ln−1)(1 − s) + (1 − P(Ln−1))g

P(Ln−1|Xn =0) = P(Ln−1)s

P(Ln−1)s + (1 − P(Ln−1))(1 − g)

P(Ln|Xn = xn) = P(Ln−1|Xn = xn) + (1 − P(Ln−1|Xn = xn))P(T )
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The BKT model can be considered as a Markov Model to the extent that the prob-
abilities above depend either on fixed parameters and on the previous state, n − 1.
BKT models can also be considered simple Dynamic BNs, which are a special class
of BNs for representing temporal information4. The particular topology of such net-
works allows for sound and tractable computations of the predictions as well for the
learning of parameters from data. There exists ongoing debate as to the best approach
for computing parameters, including Expectation Maximization and Brute Force/Grid
Search (Pavlik et al. 2009b; Gong et al. 2010).

Recent work in extending BKT has introduced a number of advances, such as
the contextualization of estimates of guessing and slipping parameters (Baker et al.
2008a), estimates of the probability of transition from use of help features (Beck et al.
2008), and estimates of the initial probability that the student knows the skill (Pardos
and Heffernan 2010a). Item difficulty has also been recently integrated in this model
(Pardos and Heffernan 2011).

Performance Factors Analysis (Pavlik et al. 2009b) and Learning Factors Analysis
(Cen et al. 2006; Pavlik et al. 2009a) are alternative approaches to BKT for inferring
changes in knowledge from sequential data that may offer advantages over BKT (see
also Yudelson et al. 2011). Another alternative proposes to use a logistic regression
based approach which is particularly efficient in the case of tasks involving multiple
skills (Xu and Mostow 2011).

Recently, Thai-Nghe et al. (2011) used a matrix factorization model inspired from
the field of recommender systems to predict student performance. To account for the
learning that occurs over time, a tensor factorization forecasting models the sequential
learning effect. This approach is shown to perform better than the BKT approach on
two data sets, and can apparently scale well to large data sets.

The BKT approach is a sound and well defined scheme to assess the observable
node layer. However, to perform a global skills assessment, typical of curriculum
sequencing approaches, it needs to be complemented with a transfer model. The Q-
matrix is one such model that can serve as a complement (see Sect. 5.3), and efforts
to conduct such an integration have begun (Pavlik et al. 2009a).

5.5 Models without hidden nodes

The last class of models that we consider are based on the theory of Knowledge spaces,
where a learner’s state of knowledge is represented as a subset of items representing
knowledge units. The distinctive characteristic of models based on knowledge spaces
is that they contain only observable nodes (refer to Fig. 2).

Representing a student’s knowledge state as a subset of observable nodes is similar
to the well-known overlay approach used in ITS, with the exception that items corre-
spond to observable task outcomes instead of concepts/skills. Furthermore, the theory
indicates which knowledge states can be reached from a given knowledge state, based
on surmise relations among items. Surmise relations impose an order among items.
This order represents the constraint that a student learns to solve simpler problems

4 Dynamic BNs are also considered a generalisation of single-state Hidden Markov Models.
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Fig. 4 Example of a knowledge
structure. Each node represents
an observable test item where
the answer is given on the
right-hand-side. The links
indicates the order in which a
typical student would learn to
solve the problems. The
corresponding knowledge space
is {{3, 1, 4, 5}, {1, 4, 5}, {1, 5},
{4, 5}, {5},∅} and it represents
all valid knowledge states

before moving on to more complex ones. To demonstrate this principle of item orders,
let us reuse items (1), (3), and (4) of Fig. 3, and add a new item, (5). Figure 4 illus-
trates the likely surmise relations between these items. Surmise relations are similar
to logical implication relations and do not convey the same semantics as a Bayesian
Network. The relations stipulate that if a student gets item (1) or item (4) right, we can
infer that item (5) will also be succeeded on. Conversely, if the student fails item (4),
then item (3) is likely to be failed on also. This structure dictates there is no clear order
between items (1) and (4).

As mentioned, knowledge structures do not contain concepts, nor misconceptions,
which would be represented by hidden nodes. However, it is possible to derive their
structure from data and recover subtle relations between items such as the fact that
item (4) is more difficult than item (5) for most pupils (because of the actual num-
bers involved), even though the two items involve the same algebraic concepts (C3 in
Fig. 3). To go from items to concepts, one could use a Q-Matrix where each item is
linked to concepts, possibly with weights that indicate the relative importance (akin to
scoring items of an exam). In addition to this simple scheme, other approaches have
been developed that extend the knowledge space framework to include skills (e.g.
Heller et al. 2006; Dütsch and Gediga 1995).

The simplest approach to modeling based on observable nodes is the Partial Order
Knowledge Structures (POKS) model. POKS was originally introduced in Desmarais
et al. (1996) and a refined version was reported in Desmarais et al. (2006). The approach
consists in deriving a partial order among item similar to Fig. 4. This formalism is
a special case in the Knowledge Spaces theory, because it does not allow alternative
paths: if an item, say an exercise, involves two alternate methods to solve it, then only
one of the children node must be mastered, as opposed to imposing that all children
nodes be mastered as in Fig. 4. The formalism to represent knowledge structures in the
Knowledge Spaces theory is known as an AND/OR graph instead of a partial order.
The partial order simplification greatly reduces the amount of data that is required to
induce the knowledge structure.

Other approaches that derive from the theory of Knowledge spaces can be found as
early as 1992 (Villano 1992), as well as more recently in the theory of Competence-
based Knowledge Space (Heller et al. 2006). An active line of research is to integrate
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concepts within the theory of Knowledge Spaces. Ley et al. (2010) have recently
worked on combining expert judgement with competence-based Knowledge Spaces
to enhance model building. Liu (2009) introduces a related technique to construct
hierarchical knowledge structures from data.

As mentioned, the widely-used ALEKS tutor (www.aleks.com) is based on the
Knowledge Spaces theory. Although the commercial nature of ALEKS may imply
that the latest developments and technical details are missing from the scientific liter-
ature, an instructive description can be found in Falmagne et al. (2006).

5.5.1 Probabilistic assessment algorithms

The algorithms to assess the student’s knowledge state in the knowledge spaces
approach vary according to the version of the approach. In the simpler POKS frame-
work, updating the probability that a student masters a given item can either follow
a Naive Bayes approach as in Desmarais et al. (2006), or slightly more sophisti-
cated models such as a Tree Augmented Network (TAN) (Desmarais 2011). In the
more complex framework where knowledge structures are represented as AND/OR
graphs, assessment of the student’s knowledge state is modeled through a Markov
Chain procedure, where the nodes are the potential student’s knowledge state (there
are 2k possible states, where k is the number of items) and the probability that
a student is in a given state is computed according to the Markov Chain model
(Doignon and Falmagne 1999). The ALEKS system relies on this procedure (Fal-
magne et al. 2006). A scheme similar to Falmagne et al.’s Markov Chain procedure
was devised by Augustin et al. (2011) to assess skills with Competence-based Knowl-
edge Structures.

6 Assessing learner models

Learner models for use within adaptive systems should be validated, in order to guar-
antee that the model accurately assesses the construct(s) that it is thought to assess. For
static student models, this process can be as straightforward as assessing the power
of a model to predict successes and failures from a subset of student response out-
comes. Validation has also been extensively studied for static learner models such
as IRT, for which statistics such as person-fit and item-fit are a standard part of
most software packages (see Khalid 2009 for a recent review). However, validation
is more complex for dynamically changing learner models such as CT and CBM
tutors. We review validation issues and techniques for dynamic student models in this
section.

Assessments of changing student knowledge are typically validated with reference
to two criteria. The first is the assessment’s ability to predict future student perfor-
mance within the learning system. The second is validation with external measures,
such as post-tests of knowledge. In each case, actual student mastery is latent, and not
directly measurable, but can be inferred via performance on other items designed to
measure that same construct.
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The first type of common validation, validating student performance with future
performance within the learning system is conceptually similar to the use of factor
analysis to measure static instruments (Cole 1987). In the static case, any data on a
given skill is equally relevant to predict any other data for that skill. In the dynamic
case, by contrast, it is more relevant to see how the past predicts the future, than how
the future predicts the past. More specifically, since the system’s adaptive behavior at
a given time will be based on assessment from evidence up to that time, the natural
approach is to validate the assessment based on how the evidence up to a given time
predicts performance on the student’s next opportunity to demonstrate the skill. By
aggregating evaluation of the assessment made at each possible prediction opportunity
(e.g. each opportunity to practice the skill), it is possible to get an overall measure of
how accurate the student model is.

As such, student performance between the first and nth opportunity to practice a
knowledge component, according the domain structure model, is imputed into the
assessment system, and used to predict performance (correct or not correct) on the
n + 1th opportunity to practice that knowledge component. The degree of correctness
can be assessed using A′, the probability that if the model is given two actions—one
correct, the other incorrect—the model can accurately determine which is which. A′
is also equivalent to the area under the ROC curve (Receiver Observer Characteristic),
called Area Under the Curve (AUC) (Hanley and McNeil 1982). An A′ of 0.5 is equiv-
alent to chance, and an A′ of 1.0 represents perfect performance. A′ has two useful
properties—first, values of A′ are comparable across models and data sets—a model
with A′ of 0.54 is always better than a model with A′ of 0.53. Second, A′ values can
be statistically compared to each other, or to chance, to establish the statistical signifi-
cance of differences in A′ (Fogarty et al. 2005). However, when conducting statistical
significance tests on A′ in learner behavior that occurs over time, it is important to
take the non-independence of different observations of the same student into account,
to avoid biasing in favor of statistical significance. A method for doing so is presented
in Baker et al. (2008a).

Other popular measures, such as kappa (Cohen 1960), and accuracy, have signifi-
cant disadvantages. Kappa, the degree to which a classifier is better than chance (Cohen
1960), does not take uncertainty or probability into account, binarizing all probabil-
ities before computation (e.g. 49% probability of correct is treated the same as 0%
probability of correct, and 49% is treated as being the same distance from 51% as from
100%). As such, kappa has lower sensitivity to uncertainty, and can often give overly
pessimistic estimates of an assessment’s goodness, especially when used in a fail-soft
or cost-sensitive fashion. In addition, kappa varies substantially based on changes in
the proportion in the original data labels (DiEugenio and Glass 2004), an issue when
student performance is not close to 50%. Accuracy is a very simple measure, which
divides agreements by all possible agreements. As such, accuracy does not take base
rates into account. For instance, if a student gets 95% of answers correct, a system with
an accuracy of 90% appears successful, but actually performs worse than a system
which always guesses that the student will be correct.

An alternate metric is the Bayesian Information Criterion (BiC) (Raftery 1995). BiC
takes both the degree of model fit and the model size into account, in order to account
for the potential over-fit stemming from creating a model with too many parameters.
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BiC values can be compared for statistical significance between models in the same
data set (Raftery 1995).

Another way to control for over-fitting is to use k-fold cross-validation (Efrong
and Gong 1983) along with a metric such as A′. Within k-fold cross-validation, the
data set is split into k groups (“folds”), and for each set of k − 1 groups, a model is
trained, and then tested on the kth group. A variant, with subtly different properties
but which is generally considered equally acceptable, is Leave-Out-One-Cross-Val-
idation, where k is set equal to the number of data points. Cross-validation typi-
cally controls for over-fitting, at least at the level which cross-validation is conducted.
As such, the level of cross-validation is key. For instance, one common error with
learner data is to cross-validate at the level of individual actions. Cross-validating at
the action level results in most students being represented in both training and test folds.
As such, cross-validating at this level validates that the model will predict new data
from the same students. The goal of learner modeling is typically to develop models
that will be accurate for new students who use the software after modeling efforts have
completed, rather than generating models only usable for a specific group of students.
It is possible to estimate a model’s goodness for entirely new students by cross-vali-
dating at the student level, ensuring that each student in represented in only one data
fold. This type of method is not currently explicitly supported in data mining/machine
learning packages, but can be achieved using (for instance) Batch Cross-Validation
in RapidMiner (Mierswa et al. 2006). Cross-validation can also be conducted at the
level of units/lessons (a sub-segment of curriculum with a distinct user interface and
set of skills), to validate that the model will be accurate for new curricular materials
(cf. Baker et al. 2008b), and at the level of schools, to validate that the model will
generalize to new populations.

As mentioned earlier, another approach to validation is to validate assessments with
external measures, such as post-tests of knowledge. The logic behind doing so is that
learner behavior may be over-fit to the learning environment in some subtle fashion.
For instance, the student may learn the cues associated with a correct answer, rather
than learning a skill that will generalize outside of the learning environment, leading
to overly high predictions of student skill. Corbett and Anderson (1995), for instance,
found that Bayesian Knowledge Tracing in some cases predicted higher degrees of
knowledge for slower learners than were borne out by post-test scores. By using an
external post-test, it is possible to control for this possibility. In other cases, where
direct assessment is not possible within the student’s actions within the software (e.g.
assessments of gaming the system), model predictions can be compared to outside
assessments of behavior or self-report measures.

7 Other key areas in student modeling

7.1 Affect, motivation, and disengagement

In recent years, learner modeling has been extended to consider a broader range
of aspects of the student. Researchers have begun to consider how to model key
aspects of students’ meta-cognition, motivation, and affect, towards providing adaptive
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scaffolding which can address individual differences in these areas. One key motiva-
tion for this development is the increasing awareness that it is difficult to address gaps
in the student’s knowledge, if the student is fundamentally unmotivated, and not taking
the learning system seriously. Disengaged students experience much lower learning,
across forms of disengagement (cf. Baker et al. 2004; Baker 2007).

Affect has perhaps been the area which has received the greatest interest within
learner modeling. A range of affective variables have been assessed within inter-
active learning environments, from relatively direct constructs such as emotional
valence (positive or negative emotions), to Ekman’s basic emotions (Ekman et al.
1987) such as anger, happiness, and fear, to the more cognitively complex OCC (Or-
tony, Clore and Collins) model (Ortony et al. 1988) which includes states such as
joy and shame, and recently to more cognitive-affective states that are more spe-
cific to the educational domain such as boredom, frustration, and uncertainty (cf.
Forbes-Riley and Litman 2004; D’Mello et al. 2007). There has been considerable
work towards deploying affect detection in educational software in the last decade.
Conati’s pioneering work in affect detection in educational software focused on a
subset of the OCC model, and used a combination of physical sensors (electromyo-
gram, heart rate, skin conductance) and distilled aspects of log files to detect stu-
dent emotions as they played an educational game, PrimeClimb, in both laboratory
settings and school settings (Conati et al. 2003; Conati and Maclaren 2009). Mota
and Picard (2003) developed a model that could infer a student’s interest from their
posture. Forbes-Riley and Litman (2004) have developed software that can detect
uncertainty from audio data. D’Mello et al. (2007) have developed models that use
a combination of physical sensors (posture sensors, camera) and distilled aspects
of log files to detect a range of cognitive-affective states thought to be particularly
relevant for learning. Chaouachi and Frasson (2010) use affect detection based on
EEG sensors to study student attention in educational software. In general, the com-
mon usage of physical sensors within this body of research has led to interesting
findings and possibilities, but has limited the current applicability for large-scale
deployment. Towards addressing this concern, D’Mello et al. (2008) have developed
a variant of their affect detection software that uses no sensors. Arroyo et al. (2009)
have created a relatively inexpensive suite of sensors (webcam, conductance brace-
let, pressure mouse, posture analysis seat), and have succeeded in deploying detec-
tors of confidence, frustration, excitement, and interest to entire classrooms at one
time.

Motivation has been modeled by multiple efforts. de Vicente and Pain (2002) devel-
oped a model that could detect several aspects of motivation, including desire for con-
trol, challenge, and independence. Similarly, Rebolledo-Mendez et al. (2006) modeled
effort, confidence, and independence within a vygotskyan intelligent tutor. Conati and
Maclaren (2009) modeled learner goals within PrimeClimb, by correlating student
responses on goal-orientation questionnaires with their interactive behaviors within
the game. Conati and Maclaren’s framework integrated prediction of student goals with
prediction of student affect, and even prediction of student personality characteristics,
towards developing complete learner models within their game.

Other research has focused on modeling behaviors associated with disengagement.
For example, automated detectors of gaming the system (attempting to succeed in an
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educational task by systematically taking advantage of properties and regularities in
the system used to complete that task, rather than by thinking through the material)
have been developed for several learning systems (Baker et al. 2008b, 2010; Baker and
de Carvalho 2008; Beal et al. 2006; Beck 2005; Johns and Woolf 2006; Muldner et al.
2010; Walonoski and Heffernan 2006), and have been used as the basis of automated
interventions that reduced gaming and improved learning (Arroyo et al. 2007; Baker
et al. 2006). Detectors of off-task behavior (Baker 2007; Cetintas et al. 2009) have
also been developed and validated.

7.2 Meta-cognition and self-regulated learning

Meta-cognition, “active monitoring and consequent regulation and orchestration of
cognitive processes to achieve cognitive goals” (Hacker 1999), has received interest
in learner modeling in recent years. Aleven et al. (2006) developed a meta-cogni-
tive model which unified several different constructs related to help-seeking and help
avoidance behavior in a single model. This model, developed for CT, was embedded
into a CT and used to provide meta-cognitive feedback (Roll et al. 2009). Biswas
et al. (2010) developed a self-regulated learning model that can identify a range of
behaviors in the space of self-regulated learning/meta-cognition, including monitor-
ing through explanation, self-assessment, and setting learning goals. Montalvo et al.
(2010) presented models that could detect two forms of planning behavior in Science
Microworlds. Shih et al. (2008) developed a model that can infer whether a student is
self-explaining within an intelligent tutor.

7.3 Open learner modeling

An open learner model “makes a machine’s representation of the learner avail-
able as an important means of support for learning” (Bull and Kay 2010). Though
open learner models are outside the main scope of this review, they are an impor-
tant ongoing area of learner modeling, often applying to the context of skill mod-
els, while interacting in interesting fashions with meta-cognitive modeling. Bull and
Kay (2007) have identified several areas of potential contribution for open learner
models, including (but not limited to): promoting meta-cognitive activities, encour-
aging learner independence, promoting collaboration and competition, and increas-
ing learner knowledge about the learning system and trust in the learning system.
One major ongoing question in open learner modeling is how much learner con-
trol should be allowed, with considerable ongoing research in how to best support
and leverage negotiation and persuasion between learners and open learner models
(Bull and Pain 1995; Dimitrova 2003; Mabbott and Bull 2006), towards improv-
ing model accuracy, effectiveness, and student trust in the learner model. While
the systems we have discussed in this paper do not open their learner models to
the degree proposed by Bull and co-workers, many of these systems allow stu-
dents to see the system’s assessments of their learning, for instance through “skill
bars” (Koedinger et al. 1997) indicating the probability that the student knows each
skill.
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7.4 Group and collaborative learner modeling

Although much of learner modeling has taken place in the context of individual learn-
ing, a great deal of learning, both online and off-line, takes place in the context of
groups and collaborations. Kay et al. (2006) and Perera et al. (2009) have developed
models of teamwork strategies and individual behaviors in group learning, studying
which behaviors of teams and individuals lead to successful group-work in educa-
tional settings. Walker et al. (2010) have developed models of helping behaviors in
computer-mediated peer tutoring, towards improving peer tutor help. Rosé and col-
leagues have developed automated detection of insults and other off-topic behaviors
(Kumar et al. 2007; Prata et al. 2009). Vassileva and colleagues have developed sys-
tems for identifying which student in a population is best suited for supporting the
learning of another, struggling student (Vassileva et al. 2003). Bull et al. (1997) have
developed models of how student models can be shared to create in-the-moment peer
tutoring episodes.

7.5 Long-term learner modeling

One limitation present in many widely used learning environments is the isolated
nature of their learner models. Incredibly rich representations of students’ knowledge
are created, refined, and then discarded at the end of the school year, although this
information could be extremely useful in future learning (both immediately, such as in
the next school year, and in life-long learning), and also in other classes occurring at
the same time. As education increasingly moves online, a student may encounter over-
lapping content multiple times during their learner trajectory—shared learner models
could prevent boring and time-consuming redundancy (correspondingly, these models
could also enable more multi-pronged response to a student difficulty or misconcep-
tion).

Coordinating the sharing and interoperability of learner models across learning
environments is an area which has been the subject of considerable research in recent
years. Several repositories of open educational resources have been created (Hatala
et al. 2004; Alrifai et al. 2006), as well as standards for interoperability of learner
models and learning environments (Friesen 2005). Models have been articulated for
how to represent learner information in an interoperable fashion (Aroyo et al. 2006),
for how to import learner models into a new learning environment (Dolog and Schäfer
2005), and for how to exchange information between learner models using ontolo-
gies (Brusilovsky et al. 2005). A compelling “ecological” vision for how information
of general value can be captured, shared, and used among learning environments is
presented by McCalla (2004). A vision for how this type of support could eventually
scaffold life-long learning is suggested by Koper et al. (2005). The potential of this
approach is supported by recent empirical work by Pardos and Heffernan (2010b),
in improving individualization through developing and utilizing student-level assess-
ments when the student encounters new material.

However, despite the increasing sophistication of practice and theory in this area,
sharing of data between learner environments has not yet emerged into the most widely
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used learning environments, such as those detailed within this paper. One key chal-
lenge is that ontologies need to be aligned across learning systems; mis-alignments
may actually cause students to miss needed content. A second issue is that using
information from a different learning environment presents some risk to a content
developer—if the other system’s model is inaccurate, then the system using that infor-
mation may act incorrectly through no fault of its own. Privacy issues also may limit
the degree of information-sharing. Nonetheless, as these obstacles are addressed, it
can be anticipated that sharing of information between learner models will become
more widespread, leading to improvements in education.

8 Conclusion

In the last decade, intelligent learning environments based on sophisticated learner
models have emerged into much wider use than seen previously, with the most widely-
used systems being used by tens or hundreds of thousands of learners a year. These
systems embed learner models that effectively deal with uncertainty and partial evi-
dence. Recent advances increasingly allow them to adapt not just based on which
skills students know, but also based on assessments of complex meta-cognitive, moti-
vational, and affective constructs. These environments increasingly can adapt not just
to a single learner but can also support collaborative and group learning. As well
as adapting, these systems often open their learner models to at least some degree,
supporting students in learning more about their own learning progress.

One direction that is becoming of increasing prominence in learner modeling is
the use of educational data mining techniques. As discussed in this article, data min-
ing methods have supported the emergence of both automated domain model search
and models of meta-cognition, motivation, and affect. As more and more learner data
becomes available, and methods for exploiting that data improve, the potential is pres-
ent for better and better learner models.

Learner models are often developed using a combination of methods, including
data mining as well as knowledge engineering carried out by domain experts; increas-
ingly, effective learner models are therefore developed by inter-disciplinary teams.
One trend is that these teams often carry out their tasks separately, even though their
efforts are eventually integrated into a single learner model. Hence, one group may
use knowledge-engineering to develop a domain model, and then another group may
use data mining to parameterize a Knowledge Tracing model that operates on that
domain model.

Among the difficult challenges that remain is the sharing of learner models across
learning systems, as discussed earlier. However, in the long-term, this trend may lead
to a more integrated and effective educational experience for students, across their
life-time of learning.

In the long-term, as the field gets better at developing, refining, and exploiting
sophisticated multi-dimensional models of learners, there is improved potential for
tailoring each student’s learning experiences to their educational needs. At the current
rate of progress, we look forward to transformative progress in learner modeling by
the time of the 30th anniversary issue of UMUAI!
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