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Abstract
We consider the regularity and ergodic properties of the Branching Collision Process with
Immigration (BCIP) in this paper. We establish an easy checking sufficient condition under
which the Feller minimal BCIP is honest. We provide some good conditions under which
the Feller minimal BCIP is positive recurrent and then establish an analytic form of the
generating function of the stationary distribution. The closely associated expected hitting
times are also considered. Examples and numerical calculations are provided to illustrate
our results.

Keywords Markov branching processes · Collision branching processes · Immigration ·
Regularity · Recurrence · Positive recurrence · Stationary distributions
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1 Introduction

Quite a few years ago, Chen et al. (2012) considered an interesting and challenging model,
called Interacting Branching Collision Process (IBCP), which has two strongly interacting
components: the branching and the collision components. The main concern of their paper
focuses on discussing the extinction behaviour of the process due to the fact that there exists
an absorbing state, the state zero, in their model. In particular, the extinction probabilities
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for various situations are analysed and resolved. See also the more recent one, Chen et al.
(2014).

The primary aim of this paper is to consider a new model, which is based on the above
IBCP, but by adding a third component, the so-called immigration. Due to this immigration
effect, the state zero is no longer absorbing. Hence our main interests turn to the ergodic
properties, particularly the most important problem of stationary distributions.

The model we shall discuss in this paper is a continuous time Markov chain defined
on the state space of nonnegative integers Z+ = {0, 1, 2, · · · } that represents the complex
evolution of some interacting particles. More formally we define the model by specifying
its infinitesimal characteristic, i.e., the so-called q-matrix as follows.

Definition 1.1 A q-matrix Q = (qij ; i, j ∈ Z+) is called a branching-collision with
immigration q-matrix (henceforth referred to as a BCI q-matrix), if

qij =
⎧
⎨

⎩

(
i

2

)

cj−i+2 + ibj−i+1 + aj−i , if i ≥ 0, j ≥ i − 2

0, otherwise
(1.1)

where
⎧
⎨

⎩

c0 > 0, cj ≥ 0 (j �= 2),
∑∞

k=3 ck > 0, 0 <
∑

j �=2 cj = −c2 < ∞
b0 > 0, bj ≥ 0 (j �= 1),

∑∞
k=2 bk > 0, 0 <

∑
j �=1 bj = −b1 < ∞

aj ≥ 0 (j �= 0), 0 <
∑

j �=0 aj = −a0 < ∞
(1.2)

together with the conventions that a−2 = a−1 = b−1 = 0 and
(0
2

) = (1
2

) = 0.

Note that in Eq. 1.2 we have added some conditions such as c0 > 0,
∑∞

k=3 ck > 0,
b0 > 0 and

∑∞
k=2 bk > 0 etc. This is solely because we want to exclude discussing some

trivial cases. In particular we have assumed that −a0 > 0 since otherwise we would turn
back to the IBCP which has been already analysed by Chen et al. (2012, 2014) as mentioned
above.

Definition 1.2 A branching-collision with immigration process (henceforth referred to as a
BCIP) is a continuous-time Markov chain on the state space Z+ whose transition function
P(t) = (pij (t); i, j ∈ Z+) satisfies

P ′(t) = P(t)Q (1.3)

where Q is a BCI q-matrix as given in Eqs. 1.1–1.2.

It should be noted that the Markov process considered in the current paper belongs to
the important sub-class of the so-called interacting branching systems which are general-
ization of the ordinary Markov branching processes (MBPs). It should also be noted that
currently there is an increasing and extensive interest in generalizing the MBPs into more
general interacting branching models. Such interest is mainly due to the fact that the basic
property which governs the evolution of an MBP (i.e. different particles act independently)
is not appropriate in many realistic situations. Indeed, in realistic situations, particularly in
biological science, individuals (particles) usually interact with each other.

Note that there exist huge and extensive references for MBPs. The standard and good
ones, amongmany others, are Harris (1963), Athreya and Ney (1983), Asmussen and Hering
(1983), and Athreya and Jagers (1972). Unfortunately, comparing with the huge publica-
tions in the field of MBPs there exist much fewer papers in the literature to discuss the
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interacting branching systems, possibly because the analysis of interacting branching sys-
tems becomes much more difficult. However, although few progresses have been made even
until now, the interacting branching systems have been attracted much attention since many
challenging but important and interesting questions have arisen due to the interaction effect.
The interests toward such systems can be traced back at least to the early sixties of last cen-
tury, see Sevastyanov and Kalinkin (1982) and the references therein. For more recent ones,
see Kalinkin (2002, 2003), Chen et al. (2004, 2010) and (Lange 2007).

It seems that in considering models within the topic of interacting branching systems,
the immigration effect has not been considered so far. However, on the one hand, from the
point of view of applications particularly to biological or ecological processes, the immi-
gration factor is clearly of great importance. On the other hand, from the mathematical
point of view, adding immigration factor sheds light on developing interesting new laws.
In the case of independent Markov branching Processes (MBPs), immigration effect has
attracted much research interests. It seems that considering immigration effect for MBPs
can be traced back at least to Sevastyanov (1957) in earlier fifties of the last century. His
work was then followed by many researchers including, for example, Zubkov (1972), Yang
(1972), Vatutin (1977), Pakes (1975a, b) and Li and Chen (2006). For a more recent one,
see Li et al. (2012). In fact, various modifications of basic Markov branching process with
either state-independent or state-dependent immigrations have been examined extensively.
For a summary and unified development of this topic, see the important reference Rahimov
(1995).

Clearly, introducing immigration factor to the interacting branching systems is even more
of great significance. Indeed, in practical biological populations, for example, different
species are usually interacting with each other and then tend to reach a state of balance with
their environment. However, without immigration, the Collision-Branching processes will,
as revealed by Chen et al. (2004, 2010) , either tend to extinction or to explosion, which is
clearly contrary to the practical behavior of biological populations. This is the main reason
that in the current paper, the immigration component is added to the original Collision-
Branching processes. As will be revealed in this paper, adding immigration component does
result in a balanced state, i.e. the equilibrium distribution under some conditions. Therefore,
considering interacting branching systems with immigration, which is the main purpose of
this paper, is not only crucial for the theoretic development, but also of great importance in
the practical applications.

The structure of this paper is as follows. Some preliminary results are firstly obtained in
Section 2. Uniqueness and regularity criteria are then obtained in Section 3. We show that,
roughly speaking, the BCIP is honest, i.e. the infinitesimal q-matrix Q is regular, if and
only if the mean birth rate is less than or equal to the mean death rate regarding the collision
component only. We also show that there always exists only one BCIP, the Feller minimal
Q-process for a given q-matrix Q. The important question of extinction probability regard-
ing the BCIP stopped at state zero is extensively discussed in Section 4. Discussing this
stopped BCIP is not only important in analysing the ergodic properties of the BCIP, but also
having its own interests. Section 5 concentrates on discussing the ergodic properties of our
BCIP process which is our main interest in this paper. In particular, we provide some easy
checking conditions under which the BCIP is ergodic and then the generating function of the
most important stationary distribution is presented. In Section 6, an example is provided to
illustrate the results obtained in the previous sections. In the final Section 7, numerical com-
puting for 2 concrete example are provided in order to show that our calculation procedure
provided is effective.
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2 Preliminaries

For the reason of analysing our model more effectively, we first introduce the generating
functions of the three known sequences {ck; k ≥ 0}, {bk; k ≥ 0} and {ak; k ≥ 0} as

A(z) =
∞∑

k=0

akz
k, B(z) =

∞∑

k=0

bkz
k and C(z) =

∞∑

k=0

ckz
k . (2.1)

As power series, these three generating functions have convergence radii r−1
a =

lim
n→∞ sup n

√
an, r−1

b = lim
n→∞ sup n

√
bn, and r−1

c = lim
n→∞ sup n

√
cn, respectively, where

1 ≤ ra ≤ +∞, 1 ≤ rb ≤ +∞ and 1 ≤ rc ≤ +∞. We usually view these generating
functions as complex functions. However, in many cases, we shall view them as real-valued
functions. In the following, as a convention, if we want to emphasize that they are viewed
as real-valued functions only, we shall denote them as A(x), B(x), C(x), etc. Same conven-
tion applies to the functions, gk(z), defined below. Anyway, in this paper, we shall freely
interchange the usage of “z” and “x”, which, so long as carefully being noticed, won’t cause
any confusion.

These three functions play extremely important role in our later analysis. It is clear that
A(z), B(z) and C(z) are well defined at least on the closed unit disk {z; |z| ≤ 1}. The
following simple yet important properties of these functions will be constantly used in this
paper and we state them here as a remark for the reason of convenience. Note that the proofs
of the following (i) and (ii) can be seen in Chen et al. (2004) and the proof of (iii) is obvious.

Remark 2.1 (i) The equation C(x) = 0 has at most two roots in [0, 1] and exactly one
root in [−1, 0). More specifically, if C′(1) ≤ 0 then C(x) > 0 for all x ∈ [0, 1)
and 1 is the only root of the equation C(x) = 0 in [0, 1], which is simple or with
multiplicity 2 according to C′(1) < 0 or C′(1) = 0, while if 0 < C′(1) ≤ +∞ then
C(x) = 0 has an additional simple root ρc satisfying 0 < ρc < 1 such that C(x) > 0
for x ∈ (0, ρc) and C(x) < 0 for x ∈ (ρc, 1). Also C(x) = 0 has exactly one root,
denoted by ζc, in [−1, 0]. Moreover, C(x) = 0 has no other root in the complex disk
{z; |z| ≤ 1}.

(ii) The equation B(x) = 0 has at most two roots in [0, 1]. More specifically, if B ′(1) ≤ 0
then B(x) > 0 for all x ∈ [0, 1) and 1 is the only root of B(x) = 0 in [0, 1) while
if 0 < B ′(1) ≤ +∞ then B(x) = 0 has an additional root in [0, 1), denoted by ρb,
such that B(x) > 0 for all x ∈ [−1, ρb) and B(x) < 0 for x ∈ (ρb, 1). Moreover,
B(x) = 0 has no other root in the complex disk {z; |z| ≤ 1}.

(iii) A(x) is a strictly increasing and convex function of x ∈ [0, ra). In particular, A(x) <

0 for any 0 ≤ x < 1 and A(x) ↑↑ A(1) = 0 as 0 ≤ x ↑ 1. (For simplicity, throughout
this paper, we shall use “↑” or “↑↑” to denote “increasing” or “strictly increasing”.)

By Remark 2.1, we see that both C(x) = 0 and B(x) = 0 possess a smallest positive
root, denoted by ρc and ρb, respectively. Moreover, if C′(1) ≤ 0, then ρc = 1 while if
0 < C′(1) ≤ +∞, then 0 < ρc < 1. Similarly, if B ′(1) ≤ 0, then ρb = 1 while if
0 < B ′(1) ≤ +∞ then 0 < ρb < 1.

In addition to the three basic functions A(z), B(z) and C(z), we also need to know some
properties of the following family of functions which incorporate these three basic functions
together. This family of functions will play a key role in our later analysis.
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For each non-negative integer k ≥ 0, define

gk(z) = k(k − 1)

2
C(z) + kzB(z) + z2A(z). (2.2)

Hence, in particular, we have that g0(z) = z2A(z) and g1(z) = zB(z) + g0(z). We
see that all gk(z) have the same convergence radius rg = min(ra, rb, rc) except, possibly,
k = 1 or 0. In particular, they are well-defined at least on the closed unit disk {z; |z| ≤ 1}
and are analytic within their convergent radius. Also, except g1(z) and g0(z), which involves
the B(z) and A(z) only, all gk(z)(k ≥ 2) are combinations of the three functions A(z), B(z)

and C(z).
Note that we are less interested in the properties of these functions beyond x > 1 ever if

they may well-defined for x > 1, rather we are mainly interested in the properties of these
functions when x ↑ 1, particularly for large k. Hence, in the following we shall concentrate
on discussing the properties of gk(x) for 0 ≤ x < 1.

Note also that

g′
k(1) = k(k − 1)

2
C′(1) + kB ′(1) + A′(1)

and thus

−∞ < g′
k(1) ≤ +∞.

We then have the following two lemmas regarding the properties of gk(x) (k ≥ 2) which are
very helpful in our later analysis. However, their proofs are lengthy and, also, elementary
and thus are omitted here. As to g0(x) and g1(x), the properties are much simpler and thus
are also omitted here.

Lemma 2.1 For k ≥ 2, the function gk(x) possesses the following properties.

(i) If g′
k(1) ≤ 0, then g′

k(x) has one (and only one) zero on the interval [0,1). That
is that there exists a ξk ∈ (0, 1) such that g′

k(ξk) = 0 and for all 0 ≤ x < ξk ,
g′

k(x) > 0 and for all ξk < x < 1, g′
k(x) < 0. Hence, gk(x) is strictly increasing on

[0, ξk), beginning from the value gk(0) > 0, and is strictly decreasing on (ξk, 1) until
gk(1) = 0 and hence gk(ξk) is the maximal value of gk(x) on the interval [0, 1]. In
particular, gk(x) > 0 for all 0 ≤ x < 1 and thus gk(x) does not have any zero on the
interval [0,1). Therefore, 1 is the only zero of gk(x) on the interval [0, 1].

(ii) If 0 < g′
k(1) ≤ +∞, then g′

k(x) has exactly two zeros on the interval (0, 1). That

is that there exist ξ
(1)
k and ξ

(2)
k with 0 < ξ

(1)
k < ξ

(2)
k < 1 such that g′

k(ξ
(1)
k ) =

g′
k(ξ

(2)
k ) = 0 and that g′

k(x) > 0 for all x ∈ [0, ξ (1)
k ) ∪ (ξ

(2)
k , 1], and g′

k(x) < 0 for all

x ∈ (ξ
(1)
k , ξ

(2)
k ). Hence gk(x) is strictly increasing on the interval [0, ξ (1)

k ), beginning

from the positive value gk(0) until reaching the maximum value gk(ξ
(1)
k ) on [0, 1], and

is strictly decreasing on the interval (ξ
(1)
k , ξ

(2)
k ), until reaching the minimum value

gk(ξ
(2)
k ) on [0, 1], which is strictly negative, and then gk(x) is strictly increasing on

(ξ
(2)
k , 1) by keeping negative values until reaching gk(1) = 0. In particular, there

exists a unique ρ
(k)
g ∈ (ξ

(1)
k , ξ

(2)
k ) ⊂ (0, 1) such that gk(ρ

(k)
g ) = 0 and that gk(x) > 0

for all x ∈ [0, ρ(k)
g ) and gk(x) < 0 for all x ∈ (ρ

(k)
g , 1). Therefore, gk(x) has a unique

zero ρ
(k)
g on the interval [0, 1) and thus gk(x) has exactly two zeros, ρ(k)

g < 1 and 1,

on the interval [0, 1]. Moreover, g′
k(ρ

(k)
g ) < 0.
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Remark 2.2 It follows from Lemma 2.1 that for any k ≥ 2, gk(x) has a smallest positive
zero, denoted by ρ

(k)
g here and thereafter, on the interval [0, 1]. Also, if g′

k(1) ≤ 0, then

ρ
(k)
g = 1 while if 0 < g′

k(1) ≤ +∞, then 0 < ρ
(k)
g < 1.

Lemma 2.2 (i) If C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞, or if C′(1) = 0, B ′(1) < 0
and A′(1) < ∞, then there exists a positive integer m ≥ 2 such that for all k ≥ m

and all x ∈ [0, 1), we have gm+k(x) ↑↑ (k ↑) and that gm(x) > 0. In other words,
in both cases, we can find m ≥ 2 such that for all k ≥ m, ρ(k)

g ≡ 1 and that for all
x ∈ (0, 1),

g0(x) < g1(x) < · · · < gm−1(x) ≤ 0 < gm(x) < gm+1(x) < · · · . (2.3)

(ii) If 0 < C′(1) ≤ +∞, then there exists a positive integer m ≥ 2 such that for each
k ≥ m there exists a real value ρ

(k)
g ∈ (0, 1) so that for all x ∈ (ρ

(k)
g , 1), we have

that gk(x) < 0 and that ρ(k)
g (k ≥ m) is decreasing with k. In particular, there exists

a positive integer m ≥ 2 and a positive value ρg ∈ (0, 1) such that for all x ∈ (ρg, 1)
and for any k ≥ 1, we have

· · · < gm+k+1(x) < gm+k(x) < · · · < gm+1(x) < gm(x) < 0. (2.4)

(iii) If C′(1) ≤ 0 and A′(1) + B ′(1) = +∞ or if C′(1) = 0 and 0 < B ′(1) < +∞, then
for any k ≥ 0 we have ρ

(k)
g < 1 and that ρ

(k)
g ↑ 1 (k ↑ ∞). Moreover, for any fixed

x ∈ (0, 1) there exists a positive integer m ≥ 2 (which does depend on the value of x
and thus should be denoted as m(x) and that m(x) ↑ ∞ as x ↑ 1) such that for all
k ≥ 0,

0 < gm(x) < gm+1(x) < · · · < gm+k(x) < gm+k+1(x) < · · · . (2.5)

3 Regularity

In this section, we consider regularity and uniqueness for BCIPs. We first provide the
following useful conclusion.

Lemma 3.1 Suppose that Q is a BCI q-matrix as defined in Eqs. 1.1–1.2 and let P(t) =
(pij (t); i, j ≥ 0) and �(λ) = (φij (λ); i, j ≥ 0) be the Feller minimal Q-function and its
Q-resolvent, respectively. Then for any i ≥ 0, t ≥ 0, λ > 0 and |x| < 1, we have

∂Fi(t, x)

∂t
= C(x)

2
· ∂2Fi(t, x)

∂x2
+ B(x) · ∂Fi(t, x)

∂x
+ A(x)Fi(t, x) (3.1)

or equivalently,

λ�i(λ, x) − xi = C(x)

2
· ∂2�i(λ, x)

∂x2
+ B(x) · ∂�i(λ, x)

∂x
+ A(x)�i(λ, x) (3.2)

where Fi(t, x) = ∑∞
j=0 pij (t)x

j and �i(λ, x) = ∑∞
j=0 φij (λ)xj .

Proof It follows from the Kolmogorov forward equation that for any i, j ≥ 0,

p′
ij (t) =

j+2∑

k=2

pik(t)

(
k

2

)

cj−k+2 +
j+1∑

k=1

pik(t)kbj−k+1 +
j∑

k=0

pik(t)aj−k .
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Multiplying xj on both sides of the above equality and summing over Z+ we immediately
obtain (3.1). Taking Laplace transform on both sides of (3.1) then yields (3.2).

Noting that using gk(x) defined in (2.2), the form (3.1) can be rewritten as for 0 < x < 1,
∞∑

k=0

p′
ik(t)x

k =
∞∑

k=0

gk(x)pik(t)x
k−2 (i ≥ 0). (3.3)

The form (3.3) is not only simple, but also informative which, in fact, reveals some deep
properties of the corresponding process. For more details, see later.

Similarly, Eq. 3.2 can be rewritten as for 0 < x < 1,

λ

∞∑

k=0

φik(λ)xk − xi =
∞∑

k=0

gk(x)φik(λ)xk−2. (3.4)

Theorem 3.1 Let Q be a BCI q-matrix as defined in Eqs. 1.1–1.2. If C′(1) ≤ 0 and
B ′(1) ≤ 0, then Q is regular.

Proof Since C′(1) ≤ 0 and B ′(1) ≤ 0 and thus by Remark 2.1 we know that for all
x ∈ [0, 1), we have C(x) > 0 and B(x) > 0. Hence by Eq. 3.2 we have for all x ∈ (0, 1)

λ

∞∑

j=0

φij (λ)xj − xi ≥ A(x)

∞∑

j=0

φij (λ)xj . (3.5)

Now letting x ↑ 1 in Eq. 3.5 yields

λ

∞∑

j=0

φij (λ) − 1 ≥ lim
x↑1 A(x)

∞∑

j=0

φij (λ)xj . (3.6)

However,

lim
x↑1

∞∑

j=0

φij (λ)xj =
∞∑

j=0

φij (λ) ≤ 1

λ
< ∞

and limx↑1 A(x) = 0. It then follows from (3.6) that λ
∑∞

j=0 φij (λ) ≥ 1. But we always
have λ

∑∞
j=0 φij (λ) ≤ 1, and hence λ

∑∞
j=0 φij (λ) = 1. That is that the Feller minimal

Q-function is honest and thus Q is regular.

Remark 3.1 By the proof we can see that if C′(1) ≤ 0 and B ′(1) ≤ 0, then Q is regular
even if A′(1) = +∞.

Theorem 3.2 If C′(1) ≤ 0 and 0 < B ′(1) < ∞, then Q is regular.

Proof We consider three different cases separately since the methods used to prove the
conclusions are different.

First assume thatC′(1) < 0, 0 < B ′(1) < ∞ andA′(1) < ∞. Then by (i) of Lemma 2.2,
there exists a positive integer m such that the expression (3.4) can be rewritten as for 0 <

x < 1

λ

∞∑

k=0

φik(λ)xk − xi =
m−1∑

k=0

gk(x)φik(λ)xk−2 +
∞∑

k=m

gk(x)φik(λ)xk−2
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here, for all k ≥ m, gk(x) > 0. It follows from this fact that

λ

∞∑

k=0

φik(λ)xk − xi ≥
m−1∑

k=0

gk(x)φik(λ)xk−2 (0 < x < 1).

Letting x ↑ 1 in the above immediately yields, in noting that for 0 ≤ k ≤ m−1, lim
x↑1 gk(x) =

0, that λ
∞∑

j=0
φij (λ) ≤ 1, which, then again implies that for all i ≥ 0, λ

∞∑
j=0

φij (λ) = 1

which shows that Q is regular.
Secondly, for the case of C′(1) < 0, 0 < B ′(1) < ∞ and A′(1) = +∞, the Q is still

regular. Indeed, first note that the proven (3.2) in Lemma 3.1 can be written as

λ

∞∑

j=0

φij (λ)xj −xi =
∞∑

j=1

[j (j − 1)

2
C(x)+jxB(x)]φij (λ)xj−2 + A(x)

∞∑

j=0

φij (λ)xj (3.7)

Now, consider the function Wj(x) = j (j−1)
2 C(x) + jxB(x). Note that Wj(x) =

j [ j−1
2 C(x) + xB(x)] and thus W ′

j (1) = j [ j−1
2 C′(1) + B ′(1)]. Since C′(1) < 0 and

0 < B ′(1) < +∞ we can definitely find an m ≥ 2 such that for all j ≥ m we have
W ′

j (1) ≤ 0. However, it is easily seen that for a fixed j , the function Wj(x) shares the simi-
lar properties of gk(x) as revealed in Lemma 2.2. In particular, we can get that for all j ≥ m

and all x ∈ (0, 1) we have Wj(x) > 0 (j ≥ m). It then follows from (3.7) that

λ

∞∑

j=0

φij (λ)xj − xi ≥
m∑

j=1

Wj(x)φij (λ)xj−2 + A(x)

∞∑

j=0

φij (λ)xj . (3.8)

Now letting x ↑ 1 in Eq. 3.8 and noting that for each 1 ≤ j ≤ m, Wj(x) → 0 as x → 1

and that lim
x→1

A(x) = 0 and
∞∑

j=0
φij (λ) ≤ 1

λ
, immediately yields λ

∞∑
j=0

φij (λ) ≥ 1 and thus

λ
∞∑

j=0
φij (λ) = 1 and hence the Q is still regular.

Finally, we consider the case that C′(1) = 0 and 0 < B ′(1) < ∞. For this case, first
note that Q is regular if and only if for some λ > 0 (and hence for all λ > 0), we have
λ

∑∞
j=0 φij (λ) = 1. In the following proof we assume the λ = λ0 > 0 is fixed. Now

suppose Q is not regular and thus for this fixed λ0, we have

λ0

∞∑

j=0

φij (λ0) < 1. (3.9)

In the following, let δ(λ0) = 1−λ0
∑∞

j=0 φij (λ0)

2 . Recall C′(1) = 0 and thus by Remark 2.1
we know that C(x) > 0 for all x ∈ [0, 1) and here we still have, by using Eq. 3.2,

λ0

∞∑

j=0

φij (λ0)x
j − xi ≥ A(x)

∞∑

j=0

φij (λ0)x
j + B(x)

∞∑

j=0

jφij (λ0)x
j−1

which can be written as

− B(x)

∞∑

j=0

jφij (λ0)x
j−1 ≥ xi − λ0

∞∑

j=0

φij (λ0)x
j + A(x)

∞∑

j=0

φij (λ0)x
j . (3.10)
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Since 0 < B ′(1) < +∞ then by Remark 2.1 we know that there exists a ρb ∈ (0, 1) such
that B(x) < 0 for all x ∈ (ρb, 1) and then for all x ∈ (ρb, 1) we have

∞∑

j=0

jφij (λ0)x
j−1 ≥ xi − λ0

∑∞
j=0 φij (λ0)x

j

−B(x)
+ A(x)

−B(x)

∞∑

j=0

φij (λ0)x
j . (3.11)

But due to Eq. 3.9 and the property of A(x) as revealed in Remark 2.1 we know that

lim
x→1

⎛

⎝xi − λ0

∞∑

j=0

φij (λ0)x
j

⎞

⎠ = 2δ(λ0) > 0

and
A(x) ↑ A(1) = 0 as x ↑ 1.

Therefore, we could find x0 ∈ (0, 1) such that for all x ∈ (x0, 1)

xi − λ0

∞∑

j=0

φij (λ0)x
j > δ(λ0) > 0

and

A(x) ≥ −λ0δ(λ0)

2
.

Without loss of generality, we may assume that ρb < x0 < 1 and thus by using Eq. 3.11
and noting that −B(x) > 0 we obtain that for all x ∈ (x0, 1)

∞∑

j=1

jφij (λ0)x
j−1 ≥ δ(λ0)

−B(x)
+ A(x)

−B(x)

∞∑

j=0

φij (λ0)x
j .

Integrating the above with x between (x0, 1) yields
∞∑

j=1

φij (λ0)(1 − x
j

0 ) ≥
∫ 1

x0

δ(λ0)

−B(x)
dx +

∫ 1

x0

A(x)

−B(x)

∞∑

j=0

φij (λ0)x
j dx. (3.12)

It follows from Eq. 3.12 together with noting that

A(x) ·
∞∑

j=0

φij (λ0)x
j ≥ −δ(λ0)

2
· λ0

∞∑

j=0

φij (λ0)x
j ≥ −δ(λ0)

2

for x ∈ [x0, 1], we can get that
∞∑

j=1

φij (λ0)(1 − x
j

0 ) ≥ 1

2

∫ 1

x0

δ(λ0)

−B(x)
dx. (3.13)

However, δ(λ0) is independent of x and thus, by also noting that B(1) = 0 and 0 <

B ′(1) < ∞, we get that
∫ 1

x0

δ(λ0)

−B(x)
dx = +∞. (3.14)

Hence
∑∞

j=1 φij (λ0) = +∞ which is a contradiction. This ends the proof.

Note that the method in proving Part (iii) can also be applied to Parts (i) and (ii). However,
we enjoy the simple proof given in Parts (i) and (ii).

Theorems 3.1 and 3.2 show that if C′(1) ≤ 0, then the Q is regular provided that B ′(1) <

+∞ (but A′(1) can be either finite or infinite). Now how about if C′(1) > 0? We shall show
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that if C′(1) > 0, then the ABI-q-matrix Q is not regular. In order to discuss the regularity
and uniqueness for this case, we need the following result.

Lemma 3.2 Suppose that Q = (qij ; i, j ≥ 0) is a conservative q-matrix and k̄ ≥ 1 is an
integer. Define a new matrix Q∗ = (q∗

ij ; i, j ≥ 0) as

q∗
ij =

{
qij , if i > k̄

0, otherwise.

Then Q∗ is also a a conservative q-matrix. Moreover, if Q is regular then so is Q∗.

Proof We only need to prove the last conclusion. Suppose that Q∗ is not regular, then By
Theorem 2.2.7 of Anderson (1991) we know that the equation

Q∗Y ≥ λY

has a nontrivial nonnegative and bounded solution for some λ > 0, denoted by Y = (yi; i ≥
0). It is easily seen that yi = 0 for i ≤ k̄. We now claim that Y = (yi; i ≥ 0) is also a
solution of

QY ≥ λY .

Indeed, for i ≤ k̄,

(QY)i =
∞∑

j=0

qij yj =
∞∑

j=k̄+1

qij yj ≥ 0 = λyi

since yi = 0 for all i ≤ k̄. For i > k̄,

(QY)i = (Q∗Y )i ≥ λyi .

Therefore, Q is not regular. The proof is finished.

Theorem 3.3 If C′(1) > 0 (including C′(1) = +∞), then Q is not regular.

Proof Suppose that C′(1) > 0. By a similar argument as in Chen et al. (2004), we could
find two constants a∗ and b∗ such that

2c0 + c1 < a∗ < b∗ <

∞∑

j=1

jcj+2 (3.15)

and
∞∑

j=1

cj+2

j∑

k=1

(
a∗

b∗

)k−1

> b∗. (3.16)

Now, we choose an ε ∈ (0, b∗ − a∗) and let i0 = [ 2b0
ε

] + 1 and then define a q-matrix

Q̃ = (q̃ij ; i, j ≥ 0) as

q̃ij =
⎧
⎨

⎩

(
i

2

)

cj−i+2 + ibj−i+1 + aj−i , if i > i0, j ≥ i − 2

0, otherwise.

where we still use the conventions that b−1 = a−2 = a−1 = 0.
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By Lemma 3.2, we only need to prove that Q̃ is not regular. For this purpose, we define
a q-matrix Q∗ = (q∗

ij ; i, j ∈ Z+) as follows

q∗
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i

2

)

b∗ if i > i0, j = i + 1, i ≥ 2

(
i

2

)

(a∗ + ε) if i > i0, j = i − 1, i ≥ 2

−
(

i

2

)

(b∗ + a∗ + ε) if j = i > i0

0 otherwise.

Clearly, Q∗ is a conservative birth-death q-matrix.

Now since b∗ > a∗ + ε > 0 and
∑∞

i=2

(
i

2

)−1

< +∞, it is easy to see that Q∗ is not

regular. Hence, the equation

(λI − Q∗)U∗(λ) = 0 (λ > 0) (3.17)

has a non-trivial (non-negative) bounded solution, denoted by U∗ = (ui; i ≥ 0), here we
have ignored the constant λ > 0 ( we may let λ = 1, if necessary).

Clearly ui > 0 for all i > i0. It is also easy to see that u0 = · · · = ui0 = 0 and

b∗(ui+1 − ui) = (a∗ + ε)(ui − ui−1) + λui

(
i

2

)−1

, i > i0. (3.18)

In particular, for i = i0 + 1 we have b∗(ui0+2 − ui0+1) = (a∗ + ε + λ)ui0+1 (> 0) which
implies that (ui; i > i0) is strictly increasing in i. From Eq. 3.18 it is easily seen that, for
all k ≥ 1 and i > i0,

ui+k − ui+k−1 ≥
(

a∗ + ε

b∗

)k−1

(ui+1 − ui) >

(
a∗

b∗

)k−1

(ui+1 − ui) (3.19)

and

ui−1 − ui−2 ≤
(

b∗

a∗ + ε

)

(ui − ui−1) <

(
b∗

a∗

)

(ui − ui−1). (3.20)

Now, for i > i0, we have

(Q̃u)i =
(

i

2

)
⎛

⎝c0(ui−2 − ui) + c1(ui−1 − ui) +
∞∑

j=i+1

cj−i+2(uj − ui)

⎞

⎠

+i[b0(ui−1 − ui) +
∞∑

j=i+1

bj−i+1(uj − ui)] +
∞∑

j=i+1

aj−i (uj − ui)

=
(

i

2

)

(−Id + Ib) + i(−Jd + Jb) + Rb

where Id , Ib, Jd , Jb and Rb should be self-explained by the above.
Now by Eqs. 3.18 and 3.19, we get that

Ib ≥
∞∑

j=1

cj+2

j∑

k=1

(
a∗

b∗

)k−1

(ui+1 − ui) > b∗(ui+1 − ui)
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and that

Jb ≥
∞∑

j=1

bj+1

j∑

k=1

(
a∗

b∗

)k−1

(ui+1 − ui) = b̃(ui+1 − ui)

where b̃ = ∑∞
j=1 bj+1

∑j

k=1

(
a∗
b∗

)k−1
.

Also, by Eq. 3.19, we have

Rb ≥
∞∑

j=1

aj

j∑

k=1

(
a∗

b∗

)k−1

(ui+1 − ui) = b+(ui+1 − ui)

where b+ = ∑∞
j=1 bj+1

∑j

k=1

(
a∗
b∗

)k−1
.

Similarly, by Eq. 3.20 we have

Id ≤
(

c0

(
b∗

a∗

)

+ (c0 + c1)

)

(ui − ui−1) < a∗(ui − ui−1) (3.21)

and Jd = b0(ui − ui−1). Therefore,
(

i

2

)

Ib + iJb + Rb ≥
(

i

2

)

b∗(ui+1 − ui) + ib̃(ui+1 − ui) + b+(ui+1 − ui)

and
(

i

2

)

Id + iJd ≤
(

i

2

)

a∗(ui+1 − ui) + ib0(ui+1 − ui)

=
(

i

2

)

(a∗ + ε)(ui − ui−1) − [
(

i

2

)

ε − ib0](ui − ui−1).

Therefore, U∗ = (ui; i ≥ 0) satisfies

Q̃U∗ ≥ λU∗. (3.22)

Indeed, Eq. 3.22 is obvious true for i ≤ i0. As to i > i0, by using Eqs. 3.20–3.21 and 3.17,
we can easily obtain that

(Q̃u)i ≥ λui +
[(

i

2

)

ε − ib0

]

(ui − ui−1) ≥ λui .

Thus Q̃ is not regular and hence by Lemma 3.2, Q is not regular. The proof is complete.

We now turn to consider the uniqueness problem of Q-functions which satisfy the
Kolmogorov forward equations.

Theorem 3.4 There always exists exactly one Q-function that satisfies the Kolmogorov
forward equation. That is that there always exists only one IBCP which is the Feller minimal
process for any given Q.

Proof By Theorems 3.1 and 3.2 we only need to consider the case that C′(1) > 0. By
Theorem 2.2.8 of Anderson (1991), we only need to show that the equation

λY = YQ, Y ≥ 0, Y · 1 < +∞ (3.23)

has no nontrivial solution for some (and then for all) λ > 0, where Y · 1 denotes the inner
product of Y and the vector 1 where 1 denotes the column vector whose components are all
1.
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Suppose that Y = (yk; k ≥ 0) is a nontrivial solution of Eq. 3.23 with λ = 1. Then
y0 > 0 and, if we let Y (x) = ∑∞

k=0 ykx
k , then by using Eq. 3.23 together with some easy

algebras, we can get that

Y (x) = C(x)

2
Y ′′(x) + B(x)Y ′(x) + A(x)Y (x), |x| < 1. (3.24)

Recall we have assumed that C′(1) > 0. Now if we further assume that B ′(1) > 0 then
for all x ∈ (ρc ∨ ρb, 1) we have that both C(x) < 0 and B(x) < 0. Recall we always have
that A(x) < 0 for all x ∈ (0, 1). It follows that for all x ∈ (ρc ∨ ρb, 1), the right hand side
of Eq. 3.24 is negative. However, the left hand side is obviously positive for all x ∈ (0, 1),
which thus causes a contradiction. If, on the other hand, we further assume that B ′(1) ≤ 0,
then by, again, noting that A(x) < 0 for all x ∈ (0, 1) and C(x) < 0 for all x ∈ (ρc, 1),
then Eq. 3.24 yields that

Y (x) ≤ B(x)Y ′(x), x ∈ (ρc, 1).

Hence

lnY (1) − lnY (ρc) ≥
∫ 1

ρc

dx

B(x)
= +∞

which contradicts with 0 < Y(1) < ∞. This ends the proof.

4 Branching Collision Process with Immigration Stopped at State Zero

In order to consider the ergodic properties of the BCIP which will be fully discussed in
the next section, we first consider a closely linked process, the BCIP process stopped at
state zero, or, more briefly, the Absorbing Branching Collision Process with immigration,
denoted by ABCI thereafter. Revealing the properties of this ABCI process will be essen-
tial in analysing the ergodic properties of BCIP, see next section. On the other hand, the
properties of the ABCI process are of interests for its own right.

To this end, for each BCI q-matrix Q = {qij ; i, j ∈ Z+} defined in Eqs. 1.1 and 1.2,

we define an associated matrix Q(0) = {q(0)
ij ; i, j ∈ Z+}, called an absorbing branching-

collision with immigration q-matrix (henceforth referred to as an ABCI q-matrix), as
follows,

q
(0)
ij =

{
qij , if i > 0,
0, if i = 0.

(4.1)

In other words, the BCI q-matrix Q and the ABCI q-matrix Q(0) are identical except for
the first row. Hence, different from the original BCI q-matrix Q where the state zero is not
absorbing, Q(0) possesses an absorbing state zero. We shall see that the ergodic properties
of the BCI Q-process have a very close link with the extinction properties of the associated
Q(0)-process. In fact, to use this close link is one of the main methods of this paper.

Moreover, we define an absorbing branching-collision with immigration process (hence-
forth referred to as an ABCIP) as a continuous-time Markov chain on the state space Z+
whose transition function P(t) = (pij (t); i, j ∈ Z+) satisfies

P ′(t) = P(t)Q(0) (4.2)

where Q(0) is an ABCI q-matrix given in Eq. 4.1 in associated with Eqs. 1.1–1.2.
For the given ABCI-q-matrix Q(0) as defined in Eq. 4.1, denote the Feller minimal

Q(0)-function and Q(0)-resolvent as F (0)(t) = {f (0)
ij (t); i, j ∈ Z+} and �(0)(λ) =
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{�(0)
ij (λ); i, j ∈ Z+}, respectively. Then by using the Kolmogorov forward equation, we

can immediately obtain the following conclusion.

Lemma 4.1 Suppose Q(0) is defined as in Eq. 4.1. Then for the Feller minimal Q(0)-
function and Q(0)-resolvent, we have that for any i ≥ 1 and x ∈ [0, 1),

∞∑
j=0

df
(0)
ij (t)

dt
xj = A(x)

∞∑
j=1

f
(0)
ij (t)xj + B(x)

∞∑
j=1

jf
(0)
ij (t)xj−1

+C(x)
2

∞∑
j=2

j (j − 1)f (0)
ij (t)xj−2

(4.3)

together with the fact that f (0)
0j (t) = δ0j . Also, for any i ≥ 1 and x ∈ [0, 1)

λ
∞∑

j=0
�

(0)
ij (λ)xj − xi = A(x)

∞∑
j=1

�
(0)
ij (λ)xj + B(x)

∑∞
j=1 j�

(0)
ij (λ)xj−1

+C(x)
2

∞∑
j=2

j (j − 1)�(0)
ij (λ)xj−2

(4.4)

together with the fact that �(0)
0j (λ) = 1

λ
δ0j .

Proof Using the Kolmogorov forward equations, we can immediately prove all the conclu-
sions stated here.

Remark 4.1 By comparing Eq. 4.3 with Eq. 3.1, we immediately see that they are exactly
the same except for i = 0. Similarly, Eqs. 4.4 and 3.2 are also exactly the same except for
i = 0. It follows that by using the same arguments used in the last section, we may rewrite
Eqs. 4.4 and 4.3 as follows. For 0 < x < 1,

∞∑

k=0

df
(0)
ik (t)

dt
xk =

∞∑

k=1

gk(x)f
(0)
ik (t)xk−2 (i ≥ 1) (4.5)

and

λ

∞∑

k=0

�
(0)
ik (λ)xk − xi =

∞∑

k=1

gk(x)�
(0)
ik (λ)xk−2 (i ≥ 1). (4.6)

Lemma 4.2 Suppose that Q(0) is a ABCI q-matrix as defined in Eq. 4.1. Let F (0)(t) =
(f

(0)
ij (t); i, j ≥ 0) be the Feller minimal Q(0)-function. Then

(i)
∫ ∞
0 f

(0)
ij (t)dt < +∞ (i, j ≥ 1) and thus lim

t→∞ f
(0)
ij (t) = 0 (i, j ≥ 1). Moreover, the

limits lim
t→∞ f

(0)
i0 (t) (i ≥ 1) exist, denoted by vi , and that 0 ≤ vi ≤ 1.

(ii) For any i ≥ 1 and x ∈ [0, 1),
∞∑

j=1

(∫ ∞

0
f

(0)
ij (t)dt

)

· xj < +∞. (4.7)

Proof First note that each positive state is transient. Indeed, since the state zero is absorbing
and all positive states form an irreducible class which leads to state zero with a positive
probability and thus is a transient class and then (i) immediately follows. This simple fact
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can also be easily proved analytically, but we shall not do so here. The last fact, i.e.the limits
lim

t→∞ f
(0)
i0 (t) = vi (i ≥ 1) exist and the fact that 0 ≤ vi ≤ 1, are obvious.

We now prove Eq. 4.7. Integrating Eq. 4.5 with respect to t ∈ [0,∞) and using the just
proven facts stated in (i) above together with denoting

βik =
∫ ∞

0
f

(0)
ik (t)dt (i ≥ 1, k ≥ 1)

we immediately obtain
∞∑

k=1

βikgk(x)xk−2 = vi − xi (i ≥ 1, 0 < x < 1) (4.8)

and hence the left-hand side of the above (4.8) is finite.
Now, firstly if C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞ or if C′(1) = 0, B ′(1) < 0 then

by using condition (2.3) in (i) of Lemma 2.2, together with using Eq. 4.8 we can get that for
any 0 < x < 1,

vi − xi −
m−1∑

k=1

βikgk(x)xk−2 ≥ gm(x)

∞∑

k=m

gk(x)xk−2. (4.9)

The left-hand side of the above (4.9) is obvious finite for any x ∈ (0, 1) and thus so is the

right-hand side of Eq. 4.9. However, since gm(x) > 0 and that
∞∑

k=m

gk(x)xk−2 is definitely

positive, and thus
∞∑

k=m

gk(x)xk−2 < ∞which, by also use Eq. 4.6, shows that Eq. 4.7 is true.

Secondly, if 0 < C′(1) ≤ +∞, then by using Eq. 2.4 in (ii) of Lemma 2.2, we can get
from Eq. 4.8 that

vi − xi −
m−1∑

k=1

βikgk(x)xk−2 ≤ gm(x)

∞∑

k=m

gk(x)xk−2.

However, this time since gm(x) < 0 we can still obtain that 0 <
∞∑

k=m

gk(x)xk−2 < +∞
which, again, shows that Eq. 4.7 is true. Finally, for all other cases, we can use Eq. 2.5 in
(iii) of Lemma 2.2 to get the same conclusion as in Eq. 4.9 and thus Eq. 4.7 follows. The
proof is complete.

It is worth noting that, by the above two lemmas, if we denote the Feller minimal Q(0)-
function as F (0)(t) = {f (0)

ij (t); i, j ∈ Z+}, then we have that limt→∞ f
(0)
ik (t) = 0 (∀i ≥

0, k ≥ 1) and that the limits limt→∞ f
(0)
i0 (t) = vi (i ≥ 0) do exist.

We note that the quantities vi(i ≥ 1) are nothing but just the extinction probabilities of
the Q(0)-process starting from the state i ≥ 1 together with the obvious fact that v0 = 1.
In fact, the quantities vi(i ≥ 1) will be our main interest in this section. Furthermore, if we
denote, as above, βik = ∫ ∞

0 f
(0)
ik (t)dt (i ≥ 1, k ≥ 1) then by Lemma 4.2 we know that

0 < βik < ∞ and that
∞∑

k=1

βikx
k < ∞ (i ≥ 0, 0 ≤ x < 1). (4.10)

Our first conclusion regarding the Q(0)-process is the following satisfactory uniqueness
criterion.
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Theorem 4.1 For any given ABCI q-matrix Q(0) as given in Eq. 4.1, the ABCI-process is
always unique which is just the Feller minimal Q(0)-process. Moreover, this Feller minimal
Q(0)-process is honest, i.e. the Q(0) is regular, if and only if C′(1) ≤ 0 provided B ′(1) < ∞
and A′(1) < ∞.

Proof The proof is similar as the ones in showing Theorem 3.1 to Theorem 3.2 regarding
the BCI-processes.

From now on until the end of this section, we shall assume C′(1) ≤ 0, B ′(1) < ∞ and
A′(1) < ∞ and thus by Theorem 4.1, the Feller minimal Q(0)-process is honest.

Let {X(t); t ≥ 0} be the honest absorbing branching-collision process with the given
BCI q-matrix Q(0) as defined in Eq. 4.1. Let

τ0 = inf{t > 0; X(t) = 0}
and

vi = P(τ0 < ∞|X(0) = i), i ≥ 1,

be the extinction time and extinction probability, respectively. We see that vi (i ≥ 1) are the
same as given in (i) of Lemma 4.2.

Denote

Gi(x) =
∞∑

k=1

βikx
k, i ≥ 1. (4.11)

Then by Eq. 4.10 we know that Gi(x) is well-defined for all |x| < 1.
We are mostly interested in finding the conditions under which all vi (i ≥ 1) equal

1. Before getting these conditions we first provide the following simple yet important
conclusion.

Theorem 4.2 Let vi = P {τ0 < ∞|X0 = i} be the extinction probabilities, starting from
state i ≥ 1, of the Feller minimal Q(0)-process. Then for any |x| < 1, we have

C(x)

2
· G′′

i (x) + B(x) · G′
i (x) + A(x)Gi(x) = vi − xi (i ≥ 1) (4.12)

or, equivalently, if we use the notations introduced in Eqs. 4.8 and 2.2,

∞∑

k=1

βikgk(x)xk−2 = vi − xi (i ≥ 1, 0 < x < 1). (4.13)

Proof Integrating (4.3) with respect to t ∈ [0, ∞) and using the facts stated in Lemma 4.2
immediately yields (4.12). Also, it is obvious that Eqs. 4.12 and 4.13 are equivalent.

We are now ready to consider the extinction probability of the ABCI process. The
following conclusion is one of the key results we obtain in this paper.

Theorem 4.3 If C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞, or if C′(1) = 0, B ′(1) < 0 and
A′(1) < ∞ then vi = 1 (i ≥ 1).
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Proof For the first case, by using (i) of Lemma 2.2, we know that, under the conditions of
this theorem, there exists a positive integer m ≥ 2 such that for all k > m and all 0 < x < 1,
we have gk(x) > 0. It then follows from Eq. 4.13 that

vi − xi ≥
m∑

k=1

βikgk(x)xk−2 (i ≥ 1, 0 < x < 1). (4.14)

Now letting x ↑ 1 in the above (4.14) and noting that for each fixed 1 ≤ k ≤ m, 0 < βik <

∞, immediately yields that vi ≥ 1. However, vi ≤ 1 is always true and thus vi = 1 for all
i ≥ 1. For the second case, the conclusion follows immediately from (i) of Lemma 2.2 and
the proof of Theorem 4.3.

By Theorem 4.3, we know that either the conditionsC′(1) < 0, B ′(1) < ∞ andA′(1) <

∞ or the conditions C′(1) = 0, B ′(1) < 0 and A′(1) < ∞ are sufficient for vi = 1
for all i ≥ 1. Of course, these conditions may not be necessary. However, we shall not
consider these more subtle cases, since, interestingly, the conditions given in Theorem 4.3
also guarantee that the mean extinction time is finite. Considering this question is more
essential, we now turn to consider this more important question. To this end, let Ei(τ0) be
the mean extinction time starting from state i ≥ 1.

Theorem 4.4 If C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞ or if C′(1) = 0, B ′(1) < 0 and
A′(1) < ∞, then we have Ei(τ0) < ∞ for all i ≥ 1.

Proof By the proven Theorem 4.3, we see that under the given conditions we have that
vi = 1 for all i ≥ 1. Hence Eq. 4.13 reads

1 − xi =
∞∑

k=1

βikgk(x)xk−2. (4.15)

By Theorem 3.1, we know that the right-hand side of the above equality (4.15) can be written
as

∑m−1
k=1 βikgk(x)xk−2 + ∑∞

k=m βikgk(x)xk−2 where for all k ≥ m and all x ∈ (0, 1), we
have gk(x) ≥ gm(x) > 0. Therefore by Eq. 4.15 we have

1 − xi ≥
m−1∑

k=1

βikgk(x)xk−2 + gm(x)

∞∑

k=m

βikx
k−2.

But by Remark 2.1, we know that the condition C′(1) < 0 implies that C(x) > 0 for all
0 ≤ x < 1 and therefore we can get from the above inequality that

1 − xi

C(x)
≥

m−1∑

k=1

βik

gk(x)

C(x)
xk−2 + gm(x)

C(x)

∞∑

k=m

βikx
k−2. (4.16)

Now letting x ↑ 1 in the above (4.16), we obtain that the left hand side of the above (4.16)
tends to

lim
x↑1

1 − xi

C(x)
= −i

C′(1)
which is a finite positive value sinceC′(1) < 0. However, the first term in the right hand side

tends to
∑m−1

k=1 βik
g′
k(1)

C′(1) which is a finite value. Indeed, by the same Theorem 4.3, we know

that for each 1 ≤ k ≤ m − 1, g′
k(1) = k(k−1)

2 C′(1) + kB ′(1) + A′(1) which is finite, hence
g′
k(1)

C′(1) (1 ≤ k ≤ m − 1) is also a finite value and thus, so is the finite sum
∑m−1

k=1 βik
g′
k(1)

C′(1) .
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Therefore, when x ↑ 1, the first term in the right-hand side of Eq. 4.16 is finite and thus,

so is the second term in the right-hand side of Eq. 4.16. But lim
x↑1

gm(x)
C(x)

= g′
m(1)

C′(1) is finite

which then implies that
∑∞

k=m βik < ∞. This, of course, implies that
∑∞

k=1 βik < ∞, i.e.
∑∞

k=1(
∫ ∞
0 f

(0)
ij (t)dt) < ∞ or equivalently

∫ ∞
0 (1 − f

(0)
i0 (t))dt < ∞ by using the honest

property of the Feller minimal Q(0)-function. But
∫ ∞
0 (1 − f

(0)
i0 (t))dt is nothing but just

Ei(τ0) and hence the conclusion follows.
Now, if C′(1) = 0, B ′(1) < 0 and A′(1) < ∞, then by (i) of Lemma 2.2, we know that

under the conditions stated in this theorem, Eq. 4.13 can still be written as

1 − xi =
m−1∑

k=1

βikgk(x)xk−2 +
∞∑

k=m

βikgk(x)xk−2 (0 ≤ x < 1)

where

0 < gm(x) < gm+1(x) < · · · < gm+k(x) < gm+k+1(x) < · · · (0 ≤ x < 1).

Hence we still have

1 − xi ≥
m−1∑

k=1

βikgk(x)xk−2 + gm(x)

∞∑

k=m

βikx
k−2 (0 ≤ x < 1).

But B ′(1) < 0 implies that ∀0 ≤ x < 1, B(x) > 0 and thus for all 0 ≤ x < 1, we have

1 − xi

B(x)
≥

m−1∑

k=1

βik

gk(x)

B(x)
xk−2 + gm(x)

B(x)

∞∑

k=m

βikx
k−2. (4.17)

If we let x ↑ 1 in Eq. 4.17, then the left-hand side of Eq. 4.17 tends to (−i)
B ′(1) which is a

finite positive value due to the fact that B ′(1) < 0. Then by Eq. 4.17 we know that the
right-hand side of Eq. 4.17 also tends to a finite positive value when x ↑ 1. However, it is

easy to see that the first term in the right hand side of Eq. 4.17 tends to
m−1∑

k=1
βik

g′
k(1)

B ′(1) which

is a finite value when x ↑ 1. Therefore the second term in the right-hand side of Eq. 4.17
also tends to a finite positive value. But note that for all 0 < x < 1, gm(x) > 0 and

B(x) > 0, and thus lim
x↑1

gm(x)
B(x)

= g′
m(1)

B ′(1) which is also a finite positive value. Hence we must

have
∑∞

k=m βik < +∞ which implies Ei(τ0) < ∞. This ends the proof.

Corollary 4.5 If C′(1) < 0, B ′(1) < 0 and A′(1) < ∞, then for any i ≥ 1, both
∫ ∞
0

( ∞∑
k=1

kf
(0)
ik (t)

)

dt < ∞ and
∫ ∞
0

( ∞∑
k=1

k2f
(0)
ik (t)

)

dt < ∞ (Of course, the latter implies

the former).

Proof Note that by Eq. 4.12, we have

C(x)

2
· G′′

i (x) + B(x) · G′
i (x) + A(x)Gi(x) = 1 − xi

and thus we have for 0 ≤ x < 1

1 − xi

C(x)
= 1

2
· G′′

i (x) + B(x)

C(x)
· G′

i (x) + A(x)

C(x)
Gi(x). (4.18)
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Now by the proof and conclusion obtained in Theorem 4.4, we see that if C′(1) <

0, B ′(1) < ∞ and A′(1) < ∞, then lim
x↑1 Gi(x) = Gi(1) < ∞ which means the last term

in the right hand side of Eq. 4.18 tends to a finite (but negative) value A′(1)
C′(1)Gi(1). But the

left-hand side of Eq. 4.18 tends to a positive finite value (−i)
C′(1) . It follows that the sum of

the first two terms in the right-hand side of Eq. 4.18 must be a finite positive value when
x ↑ 1. Since we have further assumed that B ′(1) < 0, and thus lim

x↑1
B(x)
C(x)

= B ′(1)
C′(1) which

is a positive finite value and thus both G′
i (1) and G′′

i (1) must be finite. However, it is easy

to see G′
i (1) = ∫ ∞

0

( ∞∑
k=1

kf
(0)
ik (t)

)

dt and G′′
i (1) = ∫ ∞

0

( ∞∑
k=1

k(k − 1)f (0)
ik (t)

)

dt and thus

the conclusion follows.

Note that the intuitive meaning of Corollary 4.5 is that if C′(1) < 0, B ′(1) < 0 and
A′(1) < ∞, then the mean and variance in staying at all positive states of the Feller minimal
Q(0)-process are both finite. That is that, if both collision and branching components tend
to extinction (C′(1) < 0 and B ′(1) < 0), then the process will tend to extinction “strongly”
and “quickly” unless the immigration effect is extraordinary strong (i.e. A′(1) = ∞).

Remark 4.2 Intuitively speaking, the conclusions stated in Theorems 4.3 and 4.4 are clear.
Indeed, it is just saying that the collision component dominates the branching and immi-
gration components. This is no wonder since collision component is in quadratic form
which is, stochastically speaking, “stronger” or more effective than the branching compo-
nent (which is in a linear form) and “Immigration” component (which is in a “constant”
form). In particular, Corollary 4.5 tells us that if both collision and branching components
tend to extinction, then the effect of immigration component which tends to rescue the pro-
cess from the extinction takes little effect unless the immigration is extremely strong (i.e. if
A′(1) = ∞).

Remark 4.3 Note that in proving Theorems 4.4, we have used Eq. 4.13. However, Eqs. 4.13
and 4.12 are equivalent and therefore we could use Eq. 4.12 to get the same result. In
particular, if C′(1) < 0 and B ′(1) < 0, then both G′

i (1) and G′′
i (1) are finite. Hence in

letting x ↑ 1 in Eq. 4.12, we may get that

(−i)

C′(1)
= 1

2
G′′

i (1) + B ′(1)
C′(1)

G′
i (1) + A′(1)

C′(1)
Ei(τ0). (4.19)

Although Eq. 4.19 does not give the value of Ei(τ0), it does provide some information about
the value of Ei(τ0).

5 Ergodicity and EquilibriumDistribution

We now turn back to the branching collision processes with immigration. By the results we
obtained in the previous section, we immediately obtain the following important conclusion.

Theorem 5.1 If C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞ or if C′(1) = 0, B ′(1) < 0 and
A′(1) < ∞, then the Feller minimal Branching Collision with Immigration Process (BCIP)
is not only recurrent but also positive recurrent.
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Proof This is clear. In fact, it is well-known that there exists a close relationship between
the BCIP and the Feller minimal Q(0)-process discussed in the previous section. Indeed,
since the BCI-q-matrix is irreducible, we know that the BCIP is recurrent if and only if
the extinction probability of the Q(0)-process is 1 for all i ≥ 1. Furthermore, the BCIP is
positive recurrent if and only if the mean extinction times Ei(τ0) (∀i ≥ 1) are all finite
(which, by irreducibility, is equivalent to a particular i0 ≥ 1 such thatEi0(τ0) < ∞) together
with the fact that the mean return time from zero to all positive states are finite. However,
this latter condition is guaranteed by A′(1) < ∞, which we have assumed. Therefore,
Theorem 5.1 follows from Theorems 4.3 and 4.4. This completes the proof.

Theorem 5.1 guarantees that under the given conditions, there exists a unique equilibrium
distribution {πi; i ≥ 0}. We are now interested to find this equilibrium distribution. Now, let


(x) =
∞∑

j=0

πjx
j (|x| ≤ 1). (5.1)

Theorem 5.1 guarantees that 
(x) is well-defined and that for all j ≥ 0, we have that
πj > 0 and that 
(1) = ∑∞

j=0 πj = 1.

Theorem 5.2 If C′(1) < 0, B ′(1) < ∞ and A′(1) < ∞ or if C′(1) = 0, B ′(1) < 0 and
A′(1) < ∞, then the equilibrium distribution � = {πi; i ≥ 0}, say, exists and also unique.
Moreover, the generating function of �, i.e. 
(x) as defined in Eq. 5.1 can be obtained by
solving the second order ordinary differential equation

C(x)
′′(x) + 2B(x)
′(x) + 2A(x)
(x) = 0. (5.2)

Proof It is well-known that under the positive recurrence conditions, as given by Theo-
rem 5.1, the equilibrium distribution can be obtained by solving the equation

�Q = 0 (5.3)

where Q is given in Eqs. 1.1–1.2. Now, in component form, Eq. 5.3 reads as
∞∑

i=0

πiqij = 0 (∀j ≥ 0). (5.4)

Substituting Eqs. 1.1–1.2 into Eq. 5.4 and noting that the conventions that a−2 = a−1 =
b−1 = (0

2

) = (1
2

) = 0, then Eq. 5.4 reads as

π0a0 + π1b0 + π2c0 = 0 (j = 0) (5.5)

π0a1 + π1(a0 + b1) + π2(c1 + 2b0) + π33c0 = 0 (j = 1) (5.6)

and for j ≥ 2

j∑

i=0

πiaj−i +
j+1∑

i=1

iπibj−i+1 +
j+2∑

i=2

(
i

2

)

πicj−i+2 = 0. (5.7)

Multiply xj in Eqs. 5.5, 5.6 and 5.7 and then sum over j from 0 to +∞ yields

∞∑

j=0

⎛

⎝
j∑

i=0

πiaj−i

⎞

⎠ xj +
∞∑

j=0

⎛

⎝
j+1∑

i=1

iπibj−i+1

⎞

⎠ xj +
∞∑

j=0

⎛

⎝
j+2∑

i=2

(
i

2

)

πicj−i+2

⎞

⎠ xj = 0 (5.8)
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or, in a self-explained notation form as

Ia(x) + Ib(x) + Ic(x) = 0. (5.9)

However, a simple algebra yields

Ia(x) ≡
∞∑

j=0

⎛

⎝
j∑

i=0

πiaj−i

⎞

⎠ xj (5.10)

=
( ∞∑

i=0

πix
i

)

·
⎛

⎝
∞∑

j=0

ajx
j

⎞

⎠ (5.11)

= 
(x)A(x). (5.12)

Similarly, a little further algebra yields

Ib(x) = 
′(x)B(x) (5.13)

and

2Ic(x) = 
′′(x)C(x). (5.14)

Now Eq. 5.2 immediately follows which ends the proof.

By Eq. 5.2 if we let y to denote 
 and let p(x) = 2B(x)
C(x)

and q(x) = 2A(x)
C(x)

, then Eq. 5.2
can be written as

y′′ + p(x)y′ + q(x)y = 0. (5.15)

Note that under the conditions given in Theorem 5.1, the only singular point of p(x) and
q(x) on the open unit disk {z; |z| < 1} is the negative zero of C(x), ξc, say. Hence both p(x)

and q(x) are analytic functions on the open disk {z; |z| < |ξc|}. Hence the ordinary differ-
ential equation (5.15) can be solved by standard methods, such as transformation method
etc. For more details, see the good reference (Hsieh and Sibuya 1999).

It should be pointed out that the ordinary differential equation (5.15) is a second-order
linear differential equation, to which a huge number of results have been obtained, see the
above mentioned book (Hsieh and Sibuya 1999) and the references therein. By the general
theory of ordinary differential equations, we know that the equation (5.15) has two linear
independent solutions. However, under the conditions provided in our Theorem 5.1, there
is one (and only one) positive and summable solution. After choosing and normalizing this
solution, we could get the solution 
(x) as required.

Alternatively, we may use Eqs. 5.5–5.7 to determine {πi; i ≥ 0} via the following posi-
tive sequence {ui; i ≥ 0} as shown below. For any given u0 > 0 and u1 > 0, then in using
Eqs. 5.5–5.7 we also need further impose the conditions

− a0u0 > b0u1 (5.16)

− (a0 + b1)u1 > a1u0 + (c1 + 2b0)u2 (5.17)

and for all j ≥ 2,

− [a0 + jb1 +
(

j

2

)

c2]uj >

j−1∑

i=0

aj−iui +
j+1∑

i=1
i �=j

ibj−i+1ui +
j+1∑

i=2
i �=j

(
i

2

)

cj−i+2ui . (5.18)

The conditions provided in Theorem 5.1 do guarantee that Eqs. 5.16–5.18 hold true which
also guarantees that all {ui; i ≥ 0} are strictly positive.
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By choosing suitable u0 > 0 and u1 > 0, we can definitely obtain a positive and
summable sequence {uj ; j ≥ 0} and then we can get the required equilibrium distribution
{πj ; j ≥ 0} in terms of {uj ; j ≥ 0}. Also, without loss of generality, we may let u0 = 1 in
the above computations.

Note that if C′(1) > 0 (including C′(1) = ∞), then the unique BCIP is dishonest and
thus, trivially, transient.

6 An Example

We now use an example to illustrate our results obtained in the previous sections. We fix
the three sequence {cj }, {bj } and {aj } as follows.

b0 = a > 0, b1 = −(a + b), b2 = b > 0, bj ≡ 0 (∀j ≥ 3) (6.1)

c0 = d > 0, c1 = r ≥ 0, c2 = −(d + r + c), c3 = c > 0, cj ≡ 0 (∀j ≥ 4),
(6.2)

and that
a0 = −α, a1 = α > 0, aj ≡ 0 (∀j ≥ 2). (6.3)

Clearly, for this Q, we have

B(x) = a − (a + b)x + bx2 = a(1 − x)(1 − bx

a
) (6.4)

and
C(x) = d + rx − (d + r + c)x2 + cx3 = c(x − 1)(x − q)(x − ζ ) (6.5)

where q = (d+r)+
√

(d+r)2+4dc

2c and ζ = (d+r)−
√

(d+r)2+4dc

2c < 0. It is easily seen that
C′(1) = c − (2d + r) and B ′(1) = b − a.

Moreover, by Eq. 6.3 we have

A(x) = −α + αx = α(x − 1) (6.6)

and A′(1) = α > 0. Hence for this example, C′(1) < 0 is true if and only if c < 2d + r .
Also, B ′(1) < ∞ and A′(1) < ∞ are automatically satisfied.

A further simple algebra then yields the family of functions {gk(x)} as follows
g0(x) = αx2(x − 1), g1(x) = x(1 − x)(a − bx)

and
gk(x)

1 − x
= k(k − 1)d

2
+ (k − 1)(d + r) + 2a

2
kx − 2α + k(k − 1)c

2
x2 (k ≥ 2) (6.7)

and

g′
k(1) = k(k − 1)

2
[c − (2d + r)] + k(b − a) + α. (6.8)

To find the smallest k such that g′
k(1) ≤ 0, we may need to solve the quadratic inequality

regarding k as

c − (2d + r)

2
k2 + [a − b − c − (2d + r)

2
]k + α ≤ 0 (6.9)

which can be easily solved.
Now, using the results obtained in the previous sections, we can immediately get the

following conclusion.
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Theorem 6.1 For the BCI-q-matrix determined by Eqs. 6.1, 6.2 and 6.3 we have the
following conclusions.

(i) There always exists only one BCIP which is the Feller minimal process and that this
Feller minimal process is honest if and only if c ≤ 2d + r .

(ii) The Feller minimal BCI-process is recurrent if one of the following conditions holds

(a) c < (2d + r),
(b) c = (2d + r) and b < a.

Moreover, if c < 2d + r , then the Feller minimal BCI-process is ergodic.
(iii) If c < (2d + r), then the Feller minimal BCI-process possesses an equilibrium dis-

tribution {πi; i ≥ 0} whose generating function y(x) = ∑∞
i=0 πix

i can be obtained
by resolving the second-order linear differential equation as follows

[d + (d + r)x − cx2]y′′ + 2(a − bx)y′ − 2αy = 0. (6.10)

Proof Easy and thus omitted.

We now rewrite the second-order linear differential equation (6.10) as

y′′ = 2(bx − a)

c(q − x)(x − ξ)
y′ + 2α

c(q − x)(x − ξ)
y = 0 (6.11)

where q = (d+r)+
√

(d+r)2+4dc

2c and ξ = (d+r)−
√

(d+r)2+4dc

2c .
Now, under the ergodic condition that c < 2d + r , we have that

q > 1 and − 1 < ξ < 0. (6.12)

Hence the only singular point of the two coefficient functions of the differential equa-
tion (6.11) inside the unit disk {z; |z| ≤ 1} is just ξ . It follows that the two coefficient
functions, denoted by p(x) and q(x), say, are analytic functions of x within the disk

{z; |z| < |ξ |} where |ξ | =
√

(d+r)2+4cd−(d+r)

2c . The differential equation (6.11) is fairly easy
to be resolved, see, again, Hsieh and Sibuya (1999).

7 Numerical Computing

In this final section, we do some practical computing regarding obtaining equilibrium distri-
butions to illustrate our procedure specified in Section 5 is really workable. For simplicity,
we use the example given in Section 6 to do practical computing. By the procedure stated in
Section 5, we can do the numerical computing by using iteration as follows: for any given
u0 > 0 and u1 > 0, let

u2 = α

d
u0 − a

d
u1 (7.1)

u3 = α + a + b

3d
u1 − α

3d
u0 − r + 2a

3d
u2 (7.2)
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and for j ≥ 2,

uj+2 =
α+j (a+b)+

(
j

2

)

(d+r+c)

(j+2
2 )d

uj

−α+(j−1)b+(j−1
2 )c

(j+2
2 )d

uj−1 − (j+1)a+(j+1
2 )r

(j+2
2 )d

uj+1.

(7.3)

In order to guarantee that we can get the position solution {uj ; j ≥ 0}, we need to impose
the conditions that u0 > 0, u1 > 0 and

u0 >
a

α
u1 (7.4)

u1 >
α

α + a + b
u0 + r + 2a

α + a + b
u2 (7.5)

and for j ≥ 2

uj >
α + (j − 1)b + (

j−1
2

)
c

α + j (a + b) +
(

j

2

)

(d + r + c)

uj−1 + (j + 1)a + (
j+1
2

)
r

α + j (a + b) +
(

j

2

)

(d + r + c)

uj+1.

(7.6)
The condition c < 2d + r guarantees that Eqs. 7.4–7.6 hold true and that, by choosing suit-
able u0 and u1, the sequence {uj ; j ≥ 0} is positive and summable. Then from this positive
and summable sequence {uj ; j ≥ 0}, we can easily get the close form of the equilibrium
distribution {πj ; j ≥ 0}.

We now use two concrete examples to illustrate our procedure. To save time and sources,
we do iterations by 50 steps which are usually enough in practical situations.

Example 1 Let

a = 1 b = 8 c = 12 d = 1 α = 14

and choose

u0 = 9 u1 = 38.

Obviously, the conditions stated in Eq. 7.4 are satisfied. Then by doing the direct calcu-
lations as stated in (6.13), (6.14) and (6.15), we obtain the following result. For simplicity,
only up to the 50th terms are recorded. Now the results up to the 14th term are reported
below with the other terms being bigger that 10 to the 6th.

u2 = 88 u3 = 190.6667 u4 = 425.3333
u5 = 985.6000 u6 = 2360.356 u7 = 5806.044
u8 = 14594.17 u9 = 37337.67 u10 = 96928.71
u11 = 254724.3 u12 = 676378.8 u13 = 1.812081E+06

u14 = 4.892244E+06

in (6.17) and (6.18). In particular, they are all positive values.
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After normalizing of u , we obtain the following (approximating) equilibrium distribu-
tion �: here only the values of 
38 to 
50 are reported with the other being less that 10 to
the minus 6.

π38 = 2.078718E−06 π39 = 6.084311E−06 π40 = 1.724530E−05

π41 = 5.115126E−05 π42 = 1.430136E−04 π43 = 4.337552E−04

π44 = 1.181119E−03 π45 = 3.723381E−03 π46 = 9.648941E−03

π47 = 3.255856E−02 π48 = 7.695007E−02 π49 = 2.929883E−01

π50 = 5.822952E−01.

As the second example, we again do the iteration 50 times.

Example 2 We still let
a = 1 b = 8 c = 12 d = 1

as in Example 1, but this time we let

α = 19,

and in order to satisfy the conditions stated in Eq. 7.4, we choose

u0 = 1 u1 = a

α
u0 + 5.1 = 979

190
.

Then after doing iteration 50 steps, we obtain (similar to Example 1, the results up to the
16th term are reported below with the other terms being bigger that 10 to the 6th)

u2 = 1.384737E+01 u3 = 3.252632E+01 u4 = 7.594474E+01

u5 = 1.810132E+02 u6 = 4.417337E+02 u7 = 1.101188E+03

u8 = 2.795534E+03 u9 = 7.206923E+03 u10 = 1.882261E+04

u11 = 4.970868E+04 u12 = 1.325284E+05 u13 = 3.562737E+05

u14 = 9.646408E+05 u15 = 2.628634E+06 u16 = 7.202664E+06

which satisfy the conditions provided in (6.17) and (6.18).
After normalizing of u , we get the equilibrium distribution � as follows: here only the

values of 
37 to 
50 are reported with the other being less that 10 to the minus 6.

π37 = 1.163038E−06 π38 = 3.217043E−06 π39 = 9.821228E−06

π40 = 2.630451E−05 π41 = 8.416034E−05 π42 = 2.121550E−04

π43 = 7.372818E−04 π44 = 1.659441E−03 π45 = 6.680780E−03

π46 = 1.211500E−02 π47 = 6.364788E−02 π48 = 7.390248E−02

π49 = 6.495510E−01 π50 = 1.913687E−01.

We see that the computing results for both examples are quite satisfactory.
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