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Abstract
This paper develops the idea that valid arguments are equivalent to true conditionals
by combining Kripke’s theory of truth with the evidential account of conditionals
offered by Crupi and Iacona. As will be shown, in a first-order language that contains
a naïve truth predicate and a suitable conditional, one can define a validity predicate
in accordance with the thesis that the inference from a conjunction of premises to a
conclusion is valid when the corresponding conditional is true. The validity predicate
so defined significantly increases our expressive resources and provides a coherent
formal treatment of paradoxical arguments.

Keyword Stoic thesis · Naïve truth · Evidential conditional validity · Paradox

1 Introduction

According to a view that goes back to the Stoics — call it the Stoic Thesis — an
argument is valid when the conditional formed by the conjunction of its premises
as antecedent and its conclusion as consequent is true.1 Although this view is not
very widespread among contemporary logicians, the connection it suggests between
arguments and conditionals is rather intriguing. As Iacona has argued, the Stoic Thesis
is appreciably more credible than is usually believed: as long as validity is construed in
a fairly broad sense—which is not limited to deductive reasoning— and it is assumed
that a conditional holds when its antecedent supports its consequent, the equivalence
between valid arguments and true conditionals gains plausibility. More precisely, if
our language includes the symbol � to represent a conditional so understood, ϕ is a

1 The label ‘Stoic Thesis’ comes from [21]. The reference is to Sextus Empiricus, Against the Logicians,
II, 417.
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conjunction of formulae, and ψ is a formula, the validity of the inference from ϕ to
ψ can coherently be defined in the metalanguage in terms of the truth of ϕ � ψ .2

This paper shows how the Stoic Thesis can be accommodated in a consistent formal
theory. Instead of simply providing ametalinguistic definition of validity for a language
endowed with the symbol �, we will use a language which contains, in addition to �,
a truth predicate and a definable validity predicate, so as to give formal expression
to the claim that the inference from ϕ to ψ is valid just in case ϕ � ψ is true. This
equivalence in the object language — which we call the Formalized Stoic Thesis —
has at least two interesting implications. First, it significantly increases our expressive
resources, enabling us to formalize ascriptions of validity to particular arguments or
classes of arguments. Second, it provides a coherent formal treatment of paradoxical
arguments.

In order to obtain the Formalized Stoic Thesis, we will combine two theories that
have been developed for independent reasons. The first is Kripke’s theory of truth.3

As is well known, Kripke suggested a way of formally constructing a partial extension
for a truth predicate Tr while retaining naïveté, the principle according to which any
sentence ϕ is equivalent to its truth predication Tr�ϕ�, where �ϕ� is a closed term
that denotes ϕ. Such extension is partial because there are sentences — e.g. the Liar
sentence λ, which is equivalent to ¬Tr�λ� — such that neither they nor their negation
belong to it. Kripke constructed the extension of Tr in stages indexed by ordinals. At
stage 0, the extension is empty. At stage 1, the extension contains the truth-free literals
that are satisfied in the base model. Once we have stage 1, we can build stage 2, and so
on. More generally, the extension of Tr at stage α + 1 contains the result of applying
a valuation schema to sentences in the extension at stage α. The process of building
more and more extensions for Tr eventually stabilizes because it reaches a fixed point:
there are ordinals δ such that the extension of Tr at δ is identical to the extension of Tr
at δ+1. The stages corresponding to such ordinals provide the proposed interpretation
of Tr.

The second theory is the evidential account of conditionals suggested by Crupi and
Iacona. On this account, ϕ � ψ is true just in case ϕ and ¬ψ are incompatible, where
incompatibility is defined in modal terms by assuming a set of possible worlds and a
relation of comparative distance between them. Crupi and Iacona regard the resulting
definition as a reasonably close approximation to the intuition that a conditional holds
when its antecedent supports its consequent: to say that ϕ � ψ is true is to say that ϕ

provides a reason for ψ , or equivalently that ψ can be inferred from ϕ.4

The theory of validity thatwill be outlined combines the two theories just considered
as it employs a language which contains both the predicate Tr as interpreted by Kripke
and the symbol � as understood by Crupi and Iacona. As is reasonable to expect, this
combination requires adjustments on both sides. On the one hand, since Tr is a partial
predicate framed in terms of a three-valued logic, we need to adjust the definition
of � to such a logic. On the other hand, since � is spelled out in modal terms, this

2 Iacona [21].
3 This theory is outlined in [24].
4 The original formulation of the view is in [4]. Here we will follow the more recent version provided in
[6].
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requires a semantics in which Kripke’s construction is generalized so as to obtain a
set of possible worlds.

The structure of the paper is as follows. Section 2 presents the evidential account of
conditionals. Section 3 introduces the language and provides some initial definitions.
Sections 4 and 5 articulate the Kripkean modal construction that yields a model for
the language. Sections 6 and 7 complete the semantics by providing suitable defini-
tions of truth and logical consequence. Section 8 states the Formalized Stoic Thesis
and discusses some of its implications. Section 9 adds some conclusive remarks and
sketches some prospects for further work.

2 The Evidential Account of Conditionals

On the evidential account of conditionals, ϕ � ψ is true just in case ϕ and ¬ψ are
incompatible in the following sense: either there are no worlds in which ϕ and¬ψ are
both true, because ϕ and ¬ψ exclude each other, or there are worlds in which ϕ and
¬ψ are both true, but such worlds are comparatively remote. The expression ‘because
ϕ and ¬ψ exclude each other’ in the first disjunct is rendered as a conjunction of two
conditions: (a) ϕ is true in some worlds, (b) ψ is false in some worlds. The second
disjunct is spelled out as a conjunction of three conditions: (c) ϕ and ψ have the same
value at least in some of the closest worlds, (d) the worlds in which ϕ and ¬ψ are
both true are more distant than those in which ϕ is true and ¬ψ is false, and (e) the
worlds in which ϕ and ¬ψ are both true are more distant than those in which ¬ψ is
true and ϕ is false. More precisely, the truth conditions of ϕ � ψ relative to a world w

are stated as follows:

Definition 2.1 ϕ � ψ is true in w iff either the conjunction of ϕ and ¬ψ is false in
every world and the following conditions jointly hold:

(a) ϕ is true in some w′
(b) ψ is false in some w′

or the conjunction of ϕ and ¬ψ is true in some world and the following conditions
jointly hold:
(c) ϕ and ψ are either both true or both false in some w′ among the closest worlds;
(d) for every w′ such that ϕ and ¬ψ are both true in w′, some strictly closer w′′ is

such that ϕ and ψ are both true in w′′;
(e) for every w′ such that ϕ and ¬ψ are both true in w′, some strictly closer w′′ is

such that ϕ and ψ are both false in w′′.

When the first disjunct holds, ϕ and ¬ψ are absolutely incompatible, in the sense that
their joint truth is impossible. (a) and (b) guarantee that this impossibility depends on
the relation between ϕ and ¬ψ , as they rule out that it holds merely in virtue of the
impossibility of ϕ or the necessity of ψ . When the second disjunct holds — that is,
(c)-(e) are satisfied— ϕ and¬ψ are relatively incompatible, in that their combination
is comparatively remote. (c) requires that ϕ andψ have the same value— hence ϕ and
¬ψ have different values — in some of the closest worlds. One way to make sense
of this condition is the following: if ϕ and ¬ψ are relatively incompatible, meaning
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that their combination is a remote possibility, ϕ and ψ must be relatively compatible,
meaning that their combination is a near possibility, so it is reasonable to rule out that
ϕ and ψ have different values in all the closest worlds. (d) expresses the Ramsey Test
as understood in the Stalnaker-Lewis account of conditionals, for it implies that¬ψ is
false in the closest worlds in which ϕ is true.5 Note that, given (d), the only interesting
case ruled out by (c) is that in which ϕ is false and ψ is true in the closest worlds. (e)
reverses the Ramsey Test, as it implies that ϕ is false in the closest worlds in which
¬ψ is true, so the incompatibility between ϕ and ¬ψ turns out to be symmetric.

Crupi and Iacona call Chrysippus Test the whole disjunction, and argue that Defini-
tion 2.1 provides a plausible analysis of the idea that ϕ supports ψ . If the first disjunct
holds — that is, ϕ and ¬ψ are absolutely incompatible — ϕ provides a conclusive
reason for acceptingψ . If the second disjunct holds— that is, ϕ and¬ψ are relatively
incompatible — ϕ provides a defeasible reason for accepting ψ .6

When ϕ and ¬ψ are not incompatible in the sense just explained, ϕ � ψ is false,
which means that ϕ does not support ψ . The falsity conditions of ϕ � ψ relative to a
world w are stated as follows:

Definition 2.2 ϕ � ψ is false in w iff either the conjunction of ϕ and ¬ψ is false in
every world and at least one of the following conditions holds:

(-a) ϕ is false in every w′;
(-b) ψ is true in every w′;

or the conjunction of ϕ and ¬ψ is true in some world and at least one of the following
conditions holds:

(-c) for every w′ among the closest worlds, either ϕ is true in w′ and ψ is false in w′,
or ϕ is false in w′ and ψ is true in w′;

(-d) some w′ is such that ϕ and ¬ψ are both true in w′, and no strictly closer w′′ is
such that ϕ and ψ are both true in w′′;

(-e) some w′ is such that ϕ and ¬ψ are both true in w′, and no strictly closer w′′ is
such that ϕ and ψ are both false in w′′.

In the classical framework adopted by Crupi and Iacona, ϕ � ψ turns out to be either
true or false in every world, so there is no need to provide distinct definitions for truth
conditions and falsity conditions. However, the distinction is necessary here because
we want to extend the evidential account to a three-valued semantics that preserves
the original assignments of truth and falsity.7

Although the evidential account is not the only account of conditionals that can
be combined with a Kripkean theory of truth, its distinctive logical profile makes it
particularly suited to substantiate the Stoic Thesis, which is our ultimate goal. To
illustrate this point, we will explain how � behaves with respect to some well known

5 Stalnaker [36], Lewis [25].
6 Crupi and Iacona [6] provides a detailed explanation of Definition 2.1, and compares it with the original
definition provided in [4].
7 The original valuation clauses for the evidential conditional suggested by Crupi and Iacona are defined
for propositional formulae, while it is part of our project to show that they apply equally well to the classical
fragment of a first-order language endowed with a naïve truth predicate.
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principles of conditional logic. Arguably, the logical properties of � listed below are
desirable on the assumption that � represents a relation of support.

Let us start with three principles that hold for �. The first,Material Implication, says
thatϕ�ψ entailsϕ ⊃ ψ , where the latter is defined in the usualway as¬(ϕ∧¬ψ). This
principle shows that the evidential conditional is stronger than thematerial conditional,
as is reasonable to expect. The second, AND, says that ϕ � ψ and ϕ � χ jointly entail
ϕ � (ψ ∧ χ). Here the rationale is that when ϕ supports ψ and χ taken separately,
it also supports their conjunction. The third, Contraposition, says that ϕ � ψ entails
¬ψ � ¬ϕ. This principle, which characterizes the evidential account as distinct from
other accounts of conditionals, holds in virtue of the symmetry of incompatibility:
whenever ϕ is incompatible with ¬ψ , ¬ψ is incompatible with ϕ, which means that
whenever ϕ supports ψ , ¬ψ supports ¬ϕ.8

Now we will state three principles that do not hold for �. The first, Monotonicity,
says that ϕ � χ entails (ϕ ∧ ψ) � χ for any ψ . This principle characterizes conclusive
reasoning as distinct from defeasible reasoning, so it should fail in any logic that
intends to leave room for the latter. The second, Right Weakening, says that ϕ � ψ

entails ϕ � χ whenever χ logically follows from ψ . Arguably, this principle should
fail as well, for a defeasible evidential connection between ϕ and ψ can be weakened
or lost in the step from ψ to χ . The third, Conjunctive Sufficiency, says that ϕ ∧ ψ

entails ϕ � ψ . This principle is clearly dubious on the intended interpretation of �,
because it cannot be the case that ϕ supports ψ just in virtue of the fact that ϕ and ψ

both hold.
The list of logical properties just provided shows some crucial differences between

the evidential account and other extant accounts of conditionals. For example, the
evidential conditional differs both from the classical strict conditional, which pre-
servesMonotonicity and RightWeakening, and from the Stalnaker-Lewis conditional,
which invalidates Contraposition but preserves Right Weakening and Conjunctive
Sufficiency.9 As explained above, both conditionals are inadequate to capture the
notion of support: one is too strong, the other is too weak. Another example is Rott’s
difference-making account of conditionals, which resembles the evidential account
as far as Material Implication, AND, Monotonicity, Right Weakening, and Conjunc-
tive Sufficiency are concerned, although it does not preserve Contraposition.10 The
difference-making conditional is definitely better than the strict conditional and the
Stalnaker-Lewis conditional as an alternative to the evidential conditional for the pur-
pose of formalizing the Stoic Thesis.

We conclude this sectionwith a remark on Identity, the principle according towhich
ϕ�ϕ is a logical truth. In the formulation of the evidential account adopted here, which
differs from earlier formulations provided by Crupi and Iacona, this principle does not
hold.11 By conditions (a) and (b) in the first disjunct of Definition 2.1, ϕ � ψ is not

8 In the system EC offered in [32], based on the original classical version of the evidential account, Material
Implication, AND, and Contraposition feature as axioms. [4] argues for Contraposition and discuss some
of its implications.
9 Crupi and Iacona [5] provides a detailed comparative study of these three conditionals in a probabilistic
framework.
10 Rott [33, 34].
11 Here we follow [6].
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true when ϕ is impossible or ψ is necessary. For example, the following sentences
turn out to be false:

(1) If 0 = 1, snow is white
(2) If snow is white, 0 = 0

As explained above, the idea behind (a) and (b) is that the incompatibility between ϕ

and¬ψ must be relational, that is, it cannot simply depend on ϕ being impossible orψ
being necessary. So we get that an impossible truth supports nothing, and that nothing
supports a necessary truth, which is quite plausible. When ϕ = ψ , this property of �
generates counterexamples to Identity, as in the following cases:

(3) If 0 = 1, 0 = 1
(4) If 0 = 0, 0 = 0

In order to avoid such counterexamples, one would have to define absolute incompat-
ibility without conditions (a) and (b), thereby treating conditionals with impossible
antecedents or necessary consequents as cases of vacuous truth.12

3 The LanguageLt,�

The presentation of our theory starts from the language. Since we want our model-
theoretic construction to be applicable as widely as possible, we will provide a set of
general conditions on languages rather than specifying a single language.

Definition 3.1 Let Lt,� be a first-order language with the following properties:

1. Lt,� includes ¬,∧,∀ as logical constants;
2. Lt,� includes the unary predicate Tr and the binary connective �;
3. for every formula ϕ of Lt,�, it is possible to define a function �� such that �ϕ� is

a closed term of Lt,�, and �� is representable in Lt,�.

Condition 1 fixes a selection of logical constants. The connectives ∨,⊃,≡, ∃ can be
defined as usual. Condition 2 completes the list of logical constants of Lt,� by adding
Tr and �, the truth predicate, and the symbol for the evidential conditional. Condition
3 is necessary in order to express the function that associates each syntactic object to
exactly one element of the domain. When there is no danger of confusion, we will
identify an expression with its code.

As customary, we assume that Lt,� has at least one countable acceptable modelM
with domain M . We also assume that, for every a ∈ M , there is a constant ca in Lt,�.
These two assumptions are completely harmless, since virtually any language suitable
for the development of theories of truth can easily satisfy them. A full definition of the
acceptability requirement would be too long, but it suffices to say that this requirement
ensures the smooth encoding of syntax that is needed to develop a theory of truth.13 The

12 This is the kind of definition provided in [4, 21, 32].
13 We refer to [27], Chapter 5. The key idea is that M is acceptable when it enables us to define a coding
scheme and a decoding scheme. The former consists in an isomorphic copy of the natural numbers with

123



Naïve Truth and the Evidential Conditional 565

requirement that we have a constant for each element in M simplifies the interpretation
of the quantifiers in the semantic construction of section 4.

Finally, we assume that the requirement for the so-called strong diagonalization
is satisfied, i.e. that for every formula ϕ where a variable x is free, there is a term t
such that M |� t = �(ϕ)t

x�, where (ϕ)t
x is the result of uniformly replacing every

free occurrence of x with t in ϕ. This condition ensures the construction of diagonal
formulae, thus modeling the sentences employed in semantic paradoxes such as the
Liar, or similar self-referential sentences. More specifically, a Liar sentence is of the
form ¬Trtλ whereM |� tλ = �¬Trtλ�. Similarly, a truth-teller sentence has the form
Trtτ whereM |� tτ = �Trtτ�. Following the customary use, we will abbreviate¬Trtλ
as λ and Trtτ as τ .

In the next two sections we will define a model for Lt,� by means of a construction
that integrates the evidential account of conditionals with aKripkean treatment of truth
predications. Before that, it may be useful to provide some methodological remarks.

From a semantic point of view, the two ingredients of our construction have quite
different features. Kripkean truth is extensional in at least two respects. First, in their
original formulation, the satisfaction conditions for a formula that contains the truth
predicate are given in a model without relativization to further coordinates. Second,
the truth predicate enjoys a form of substitutivity salva veritate: for any sentence ϕ,
any sentence that results from ϕ by replacing a sub-sentence ψ with Tr�ψ� or vice
versa receives the same semantic value as ϕ. The evidential conditional, by contrast,
is non-extensional in both respects. First, the truth conditions for ϕ � ψ are given in a
model relative to worlds in such a way that, for each world w, the value of ϕ � ψ in w

depends on the values of ϕ and ψ in other worlds. Second, even if χ and ϕ have the
same value inw, this does not guarantee that the same goes for ϕ�ψ and χ �ψ , unless
χ and ϕ are logically equivalent. Similarly, even if χ and ψ have the same value in
w, this does not guarantee that the same goes for ϕ � ψ and ϕ � χ , unless, again, χ
and ψ are logically equivalent.

How can these two notions be combined within a coherent and well-defined seman-
tics? Our idea is to construct a model for Lt,� in such a way that its set of worlds is
akin to a set of Kripkean fixed points, so that a formula ϕ � ψ can be evaluated in the
model relative to such worlds by applying the Chrysippus Test as illustrated in section
2. Of course, fixed points must be suitably defined, otherwise there is no guarantee
that ϕ �ψ belongs to a worldw when it is true inw according to Definition 2.1, or that
¬(ϕ � ψ) belongs to w when it is false in w according to Definition 2.2. Moreover,
naïveté must be validated, in the sense that the value of ϕ � ψ in w must correspond
to the value of Tr�ϕ � ψ� in w.

In order to combine Kripke’s truth-theoretic construction with a semantics for a
conditional, there are at least two main routes, which correspond to well-known

their associated ordering, and an injective mapping from finite sequences (of any length, including 0) of
elements of M to M itself. The latter consists in the set of finite sequences, the function that associates with
each finite sequence its length, and the projection function that associates with each sequence s and each
natural number n, the element occupying the n-th place in s. Since the elements of the syntax (alphabet,
terms, formulae) are strings of symbols, if we associate each component of such strings to an element of
M , by the acceptability requirement we can also associate strings of such elements (and hence complex
syntactic objects such as terms and formulae) to elements of M .
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approaches in the literature. The first is the revision-theoretic route. One starts by
building Kripkean fixed points for Lt,� where conditionals are interpreted arbitrar-
ily. Then, one implements a modal valuation clause which revises the value of the
conditional. Now conditionals have a new value, but truth predications involving con-
ditionals and their compounds cannot be suitably interpreted. Therefore, one builds
another Kripkean fixed point, starting from the revised values of the conditionals, and
so on, until the revision procedure converges on stable values or (as is more often the
case) the revision values start cycling. This idea has been systematically pursued by
Yablo and Field in order to integrate logically strong conditionals and naïve truth.14

The second route calls for a modification of Kripke’s construction where the valuation
clauses for the modal notions (in our case Definitions 2.1 and 2.2) are internalized.
This approach has been adopted by Halbach, Leitgeb, Welch, and Stern in order to
provide Kripke-style fixed-point semantics for necessity and possibility predicates.15

Here we will take the second route, leaving to future investigation the question of
whether the first one is feasible.

4 The Evidential Kripke Construction

Let L be the fragment of Lt,� that contains neither � nor Tr. A literal is an atomic
or negated atomic sentence of L. Our construction starts from a set of base worlds
defined as follows:16

Definition 4.1 W is a countable set of base worlds, that is, maximal consistent sets of
literals.

In order to represent the relation of comparative distance that is required for the truth
conditions of the evidential conditional, our base worlds are assumed to be ordered.

Definition 4.2 For everyw ∈ W , let�w be a binary relation that satisfies the following
conditions:

(i) for every w′, w′′, w′′′ ∈ W , if w′ �w w′′ and w′′ �w w′′′, then w′ �w w′′′;
(ii) for every w′, w′′ ∈ W , either w′ �w w′′ or w′′ �w w′;
(iii) for every w′ ∈ W , w �w w′.
Let S(�) be the set of all such relations.

Informally speaking, w′ �w w′′ means that, from the point of view of w, w′ is at least
as close as w′′. Accordingly, its negation, w′ �w w′′ means that, from the point of
view of w, w′′ is strictly closer than w′. (i) says that �w is transitive. (ii) says that
�w is strongly connected. (iii) says that �w includes w at its minimum, although it
may not be the only world in that position. We will call w-minimal any w′ such that
w′ �w w′′ for every w′′.17

14 Yablo [40], Field [9–14].
15 Halbach et al. [19, 20], and Stern [37, 38].
16 The requirement that W is countable can be relaxed, but we keep it for simplicity.
17 Crupi and Iacona [4] employs centered systems of spheres,where centering is stronger thanw-minimality
as required by (iii). But (i)-(iii) will suffice for our purposes.
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Now we have a set of base worlds W and a binary relation on them. But base
worlds are just sets of literals, which do not include complex formulae nor truth
predications. As anticipated above, we need to provide a model-theoretic construction
that gradually completes, as it were, each of the base worlds with complex formulae
and truth predications. More precisely, given the set W , our construction will build
a set W + such that, for each wi ∈ W , W + includes a set w+

i that includes wi , and
also contains complex formulae and truth predications based on the literals in W . The
set w+

i is a world stage, i.e. the first stage based on wi . This process of progressively
addingworld stages— Wα , Wα+1, . . .—eventually leads to full worlds, that is, worlds
that include all sentences that can be included, given the base worlds and the valuation
clauses for the vocabulary. Full worlds, therefore, behave as fixed points: iterating the
process of adding world stages to full worlds results in the very same full worlds. Full
worlds include base worlds as subsets, but also contain (codes of) sentences of the full
language Lt,�.

How do we go from a world stage to the next? For sentences whose main logical
operator is ¬,∧,∀, as well as truth predications, determining which sentences are in
w+

i only requires one to move down vertically, as it were, and look at the formulae
in wi . By contrast, in order to determine whether ϕ � ψ is in w+

i , one needs to move
not only vertically (i.e. seeing whether ϕ and/or ψ (and/or their negation) are in wi ),
but horizontally as well, i.e. seeing what happens to ϕ and ψ in the other worlds.
This figurative talk of ‘vertical’ and ‘horizontal’ movement can be made precise:
vertical shifts concern different ordinal stages of the same world, while horizontal
shifts concern different worlds at the same ordinal stage.

Note that the horizontal movement will also employ information about the compar-
ative distance holding not just amongst base worlds, but also amongst world stages.
We assume that the ordering on base worlds is preserved across all world stages.
The rationale for this assumption is that the comparative distance between worlds is
uniquely determined by non-semantic, atomic facts. In particular, this means that the
properties of such ordering, specified in Definition 4.2 — and notably, w-minimality
— are preserved across every stage of the construction.

From a technical point of view, the construction requires that the step from Wα to
Wα+1 is ruled by a positive elementary definition, which yields amonotonic jump, thus
ensuring the required fixed-point properties of full worlds.18 Since we need to refer to
all the elements of the set of world stages Wα in order to define Wα+1, it is convenient
to define our jump on functions that assign world stages to natural numbers.19 More
specifically, consider the function Fb : ω 
−→ P(M) such that Fb[ω] = W . In other
words, for every i ∈ ω, Fb(i) = wi . The intended jump from W to W + is then
modelled as a jump on such a function Fb, i.e. as a function that yields a function F+

b
such that (1) for every i ∈ ω, Fb(i) ⊆ F+

b (i), i.e. for every index i , F+
b yields world

stages that include the base worlds yielded by Fb, and (2) F
+
b (i) also includes complex

sentences and truth predications, which follow the strong Kleene schema for ¬, ∧,
18 For the general theory of inductive definitions, see [27]. For their application to Kripkean theories of
truth, see e.g. [26], Chapter 5.
19 This is because W is assumed to be countable, and so is each Wα and the set of full worlds. If W is taken
to be uncountable, the domain of the function is an appropriately sized index set.
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∀, the naïveté intuition for Tr, and Definitions 2.1 and 2.2 for �. The process is then
iterated until one reaches a fixed point Fδ

b such that, for every i ∈ ω, Fδ
b(i) is a full

world. For the sake of generality, however, the jump is not defined only for the specific
function Fb that yields the base worlds, but on an arbitrary function F : ω 
−→ P(M).
The resulting set of fixed points makes it then easily possible to specify Fδ

b and other
functions delivering extensionally different full worlds.

Definition 4.3 Let F be a function from ω to P(M). The function F+ is defined so
that, for every i ∈ ω and ϕ ∈ Lt,�, ϕ ∈ F+(i) if:

1. ϕ ∈ F(i), or
2. ϕ is a literal ψ and ψ ∈ wi , or
3. ϕ is ¬¬ψ and ψ ∈ F(i), or
3. ϕ is ψ ∧ χ and ψ ∈ F(i) and χ ∈ F(i), or
4. ϕ is ¬(ψ ∧ χ) and ¬ψ ∈ F(i) or ¬χ ∈ F(i), or
5. ϕ is ∀xψ and for every closed term t , (ψ)t

x ∈ F(i), or
6. ϕ is ¬∀xψ and for some closed term t , ¬(ψ)t

x ∈ F(i), or
7. ϕ is Tr�ψ� and ψ ∈ F(i), or
8. ϕ is ¬Tr�ψ� and ¬ψ ∈ F(i), or
9. ϕ is ψ � χ and either for every j ∈ ω, ¬(ψ ∧ ¬χ) ∈ F( j) and the following

conditions hold:

(a) for some j ∈ ω, ψ ∈ F( j);
(b) for some j ∈ ω, ¬χ ∈ F( j);
or some j ∈ ω is such that ψ ∧ ¬χ ∈ F( j) and the following conditions hold:

(c) for some j ∈ ω, F( j) is F(i)-minimal and either ψ, χ ∈ F( j) or ¬ψ,¬χ ∈
F( j);

(d) for every j ∈ ω, either (¬ψ ∈ F( j) or χ ∈ F( j)), or there is a k ∈ ω such
that F( j) �F(i) F(k) and ψ, χ ∈ F(k);

(e) for every j ∈ ω, either (¬ψ ∈ F( j) or χ ∈ F( j)), or there is a k ∈ ω such
that F( j) �F(i) F(k) and ¬ψ,¬χ ∈ F(k); or

10. ϕ is ¬(ψ � χ) and either for every j ∈ ω, ¬(ψ ∧ ¬χ) ∈ F( j) and at least one of
the following conditions hold:

(−a) for every j ∈ ω, ¬ψ ∈ F( j);
(−b) for every j ∈ ω, χ ∈ F( j);

or there is a j ∈ ω such that ψ ∧ ¬χ ∈ F( j) and one of the following conditions
holds:

(−c) for every F(i)-minimal F( j), either ψ,¬χ ∈ F( j) or ¬ψ, χ ∈ F( j);
(−d) for some j ∈ ω, ψ,¬χ ∈ F( j) and for every k ∈ ω, either F( j) �F(i) F(k),

or ¬ψ,¬χ ∈ F(k), or ψ,¬χ ∈ F(k), or ¬ψ, χ ∈ F(k);
(−e) for some j ∈ ω, ψ,¬χ ∈ F( j) and for every k ∈ ω, either F( j) �F(i) F(k),

or ψ, χ ∈ F(k), or ψ,¬χ ∈ F(k), or ¬ψ, χ ∈ F(k).
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Clauses 1-8 are as in Kripke’s standard construction: they define the jump for
¬,∧,∀, and Tr.20 Clauses 9 and 10 define the jump for �. Clause 9 reproduces the
truth conditions of ψ � χ as given in Definition 2.1. The first disjunct expresses the
idea that ψ and ¬χ are absolutely incompatible, that is, their joint truth is impossible
in spite of the fact thatψ is not impossible and χ is not necessary. The second disjunct
expresses the idea that ψ and ¬χ are relatively incompatible, in the sense specified
by conditions (c)-(e). In particular, (d), in the context of the above definition, might be
more naturally spelled out as follows: ‘for every j ∈ ω such that ψ,¬χ ∈ F( j), there
is k ∈ ω such that . . .’, but this would make membership in F appear in the antecedent
of a material conditional (in the meta-language in which Definition 4.3 is given),
thereby violating the positive elementary nature of the definition. In order to avoid
this, we have ‘internalized’ the negation. Similar considerations hold for (e).21 Clause
10 reproduces in similar way the falsity conditions ofψ �χ as given in Definition 2.2.

5 Full Worlds as Fixed Points

Now it has to be shown how a set of full worlds is obtained from W . Let us start with
a fundamental property of Definition 4.3.

Lemma 5.1 Definition 4.3 is positive elementary in the relations �w∈ S(�), with
parameters in W .

Proof Clauses 1-8 are immediately seen to be positive elementary, as they mimic
those of Kripke’s original construction, with parameters in W . Clauses 9 and 10,
which concern �, are also positive elementary: membership in F never appears in the
scope of an odd number of negation symbols. Moreover, Definition 4.3 is positive
elementary in the relations �w∈ S(�), which justifies their negative occurrence in
9 and 10. Finally, the w-minimality condition is also positive, as it is formalized as
∀w′(w′ �w w′′). ��

Definition 4.3 characterizes a function that associates an input function F : ω 
−→
P(M)with an output function F+ : ω 
−→ P(M). Sincewe are interested in iterations
of this function, for notational convenience we now associate an operator acting on
tuples of subsets of M with Definition 4.3. Let ζ(n, F) abbreviate the right-hand side
of Definition 4.3, and let [ω → P(M)] denote the function space between ω and
P(M).

20 Strictly speaking, they are a variant of Kripke’s original construction, from [16], Definition 15.5, but the
difference is inessential.
21 Note first that the non-positive clause ‘for every j ∈ ω such that ψ, ¬χ ∈ F( j), there is k ∈ ω such
that . . .’ is equivalent to the (non-positive) ‘for every j ∈ ω (either ψ, ¬χ /∈ F( j), or there is k ∈ ω such
that . . .)’. The first disjunct above is a negated conjunction: ‘ψ /∈ F( j) and ¬χ /∈ F( j)’. It is therefore
equivalent to ‘notψ /∈ F( j) or not¬χ /∈ F( j).’ But, now, we can ‘internalize’ themeta-linguistic negation,
and apply it to the formulae ψ and ¬χ respectively, obtaining our item (d). Of course, the ‘internalized’
clause is not equivalent to the negative clause, but it yields (unlike the latter) only positive occurrences of
membership in F . It is, therefore, the ‘positive’ version of condition (d) of Definition 2.1, and no difference
arises from its non-positive counterpart when only classical values are involved.
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Definition 5.2 Let � : [ω → P(M)] 
−→ [ω → P(M)] be the operator such that
�(F) := {n ∈ M | ζ(n, F)} (n codes ϕ in Definition 4.3).

Call � the evidential Kripke jump. We now state two basic properties of �, namely,
that it is inclusive and monotone:

Lemma 5.3 For every F, F ′ ∈ [ω → P(M)]:
(i) F ≤ �(F);

(i i) If F ≤ F ′, then �(F) ≤ �(F ′)
where F ≤ F ′ means that, for every i ∈ ω, F(i) ⊆ F ′(i).
Proof Disjunct 1 of Definition 4.3 guarantees (i). (ii) follows from Lemma 5.1, as
positive elementary definitions yield monotone operators.22 ��

The monotonicity of � ensures that it has fixed points, i.e. that there are functions
F ∈ [ω → P(M)] such that �(F) = F , and that such fixed points form a lattice
(Knaster-Tarski Theorem). Therefore, in particular, there is a least fixed point of �,
call it F�, such that for every fixed point F , F� ≤ F .

The least fixed point I� can be more informatively described via iterations of �

along the ordinals, as per the next definition.

Definition 5.4 For every ordinal α and every F ∈ [ω → P(M)], let the α-th iteration
of� on F be defined by transfinite induction as follows.23 For every successor ordinal
α + 1:

�α+1(F) = �(�α(F))

For every limit ordinal δ:
�δ(F) =

⋃

β<δ

�β(F)

It is also convenient to isolate the stages that result from iterated applications of �.
For every ordinal α, put Fα := �α(F). We say that Fα is the α-th stage of F .

Finally, we can define the result of all possible iterations of �, i.e. the result of
iterating � along all the ordinals:

F�(F) :=
⋃

α ∈Ord

�α(F).

Let F∅ be the function from ω to P(M) such that, for every i ∈ ω, F∅(i) = ∅. It
is easy to see that

F� =
⋃

α ∈Ord

�α(F∅),

thus obtaining a description of the least fixed point via all the possible iterations of �

on the function F∅ that treats every possible world as empty.
This characterization of I� is useful to prove the next result. Let’s say that a fixed

point F is consistent if there is no i ∈ ω and ϕ ∈ Lt,� such that ϕ ∈ F(i) and
¬ϕ ∈ F(i).

22 See [27], Chapter 1.
23 We employ a class-formulation of transfinite induction; see, e.g., [22], Chapter 2.
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Proposition 5.5 F� is consistent.

Proof Let Fα
� = �α(F∅)We show by transfinite induction that there is no least ordinal

α such that Fα
� is inconsistent, which entails that F� is consistent.

Basis: α = 0 or α = 1. In the first case, for every i ∈ ω, F0�(i) = F∅(i) = ∅. In
the second, by clause 2 of Definition 4.3, for every i ∈ ω, F1�(i) = wi . By Definition
4.1, eachwi is a maximally consistent set of literals. So in both cases the claim is true.

Successor case: α = α0 + 1 (α0 ≥ 1) and assume as inductive hypothesis that the
claim holds up to α0. Suppose that α is the least ordinal such that Fα

� is inconsistent.
Then, there is an i ∈ ω and a ϕ ∈ Lt,� such that ϕ ∈ Fα

�(i) and ¬ϕ ∈ Fα
�(i).

Moreover, Fα
� = �(Fα0

� ) and by α’s minimality, Fα0
� is consistent. We now show how

this supposition leads to absurdity.
We only consider the case inwhichϕ has the formψ�χ (the other cases are routine).

Suppose thatψ �χ ∈ Fα
�(i) and¬(ψ �χ) ∈ Fα

�(i). By α’s minimality,ψ �χ /∈ Fα0
� (i)

or ¬(ψ �χ) /∈ Fα0
� (i). Suppose (without loss of generality) that ψ �χ /∈ Fα0

� (i). Then,
by α’s minimality, α is the least ordinal such that ψ � χ ∈ Fα

�(i), and hence clause 9
of Definition 4.3 applies to Fα0

� (i). Clause 9 is a disjunction, so there are two cases.
Case 1: the first disjunct holds. In this case, for every j ∈ ω, ¬(ψ ∧¬χ) ∈ Fα0

� ( j),
and (a) and (b) hold, i.e. there is a k ∈ ω such that ψ ∈ Fα0

� (k) and there is an l ∈ ω

such that ¬χ ∈ Fα0
� (l). Since ¬(ψ � χ) ∈ Fα0

� (i), there is an ordinal δ + 1 ≤ α0 such
that ¬(ψ � χ) /∈ Fδ

�(i) but ¬(ψ � χ) ∈ Fδ+1
� (i). So, two cases must be considered,

which correspond respectively to the first and to the second disjunct of clause 10 of
Definition 4.3. If the first disjunct holds, for every j ∈ ω,¬(ψ ∧¬χ) ∈ Fδ

�( j) and (-a)
or (-b) applies, that is, for every k ∈ ω, ¬ψ ∈ Fδ

�(k) or for every l ∈ ω, χ ∈ Fδ
�(l).

In this case, since � is inclusive (Lemma 5.3), we get that either ¬ψ ∈ Fα0
� (k), which

contradicts α’s minimality by (a), or that χ ∈ Fα0
� (l), which contradicts α’s minimality

by (b). If the second disjunct holds, there is a k ∈ ω such that ψ ∧¬χ ∈ Fδ
�(k). Since

� is inclusive, Fδ
�(k) ⊆ Fδ+1

� (k) ⊆ Fα0
� (k), and henceψ ∧¬χ ∈ Fα0

� (k). By our initial
assumption, ¬(ψ ∧ ¬χ) ∈ Fα0

� (k), thus contradicting again α’s minimality.
Case 2: for some j ∈ ω, ψ ∧ ¬χ ∈ Fα0

� ( j) and clauses (c)-(e) hold. In this case,
the following holds:

(1) by (c), for some j ∈ ω, Fα0
� ( j) is Fα0

� (i)-minimal andψ, χ ∈ Fα0
� ( j) or¬ψ,¬χ ∈

Fα0
� ( j),

(2) by (d), for every j ∈ ω, either ¬ψ ∈ Fα0
� ( j) or χ ∈ Fα0

� ( j), or there is a k ∈ ω

such that Fα0
� ( j) �F

α0
� (i) F

α0
� (k) and ψ, χ ∈ Fα0

� (k),

(3) by (e), for every j ∈ ω, either ¬ψ ∈ Fα0
� ( j) or χ ∈ Fα0

� ( j), or there is a k ∈ ω

such that Fα0
� ( j) �F

α0
� (i) F

α0
� (k) and ¬ψ,¬χ ∈ Fα0

� (k).

Since ¬(ψ � χ) ∈ Fα0
� (i), there is an ordinal δ + 1 ≤ α0 such that ¬(ψ � χ) /∈ Fδ

�(i)
but ¬(ψ � χ) ∈ Fδ+1

� (i). Given that for some j ∈ ω, ψ ∧ ¬χ ∈ Fα0
� ( j), and � is

inclusive, the first disjunct of clause 10 of Definition 4.3 is excluded, and therefore
the second one must hold, that is, there is a k ∈ ω such that ψ ∧ ¬χ ∈ Fδ

�(k) and one
of (-c), (-d), and (-e) holds. We consider these cases in turn:

(4) For every Fδ
�(i)-minimal Fδ

�(m), either ψ,¬χ ∈ Fδ
�(m) or ¬ψ, χ ∈ Fδ

�(m).
Since � is inclusive and δ < α0, either ψ,¬χ ∈ Fα0

� (m) or ¬ψ, χ ∈ Fα0
� (m).
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But the ordering is constant throughout world stages and therefore, by (1) above,
Fα0
� ( j) is Fα0

� (i)-minimal, and either ψ and ¬ψ ∈ Fα0
� (i) or χ and ¬χ ∈ Fα0

� (i),
against α’s minimality.

(5) Both the following hold:

(5.1) for some m ∈ ω, ψ,¬χ ∈ Fδ
�(m), and

(5.2) for every n ∈ ω, ¬ψ,¬χ ∈ Fδ
�(n), or ψ,¬χ ∈ Fδ

�(n), or ¬ψ, χ ∈ Fδ
�(n), or

Fδ
�(m) �Fδ

�(i) F
δ
�(n).

Again, since � is inclusive, δ < α0, and the ordering is constant, we can ‘lift’
(5.1) and (5.2) to α0, i.e.:

(5.3) ψ,¬χ ∈ Fα0
� (m), and

(5.4) for every n ∈ ω, ¬ψ,¬χ ∈ Fα0
� (n), or ψ,¬χ ∈ Fα0

� (n), or ¬ψ, χ ∈ Fα0
� (n),

or Fα0
� (m) �F

α0
� ( j) F

α0
� (n).

However, by (2):

(2.1) for every m ∈ ω, either ¬ψ ∈ Fα0
� (m) or χ ∈ Fα0

� (m), or
(2.2) for some n ∈ ω, Fα0

� (m) �F
α0
� (i) F

α0
� (n) and ψ, χ ∈ Fα0

� (n).

Both (5.3)-(2.1) and (5.4)-(2.2) contradict α’s minimality.
(6) A contradiction obtains in a similar way (with (e)).

Limit case. This is immediate from the successor case. ��
Paradoxical sentences such as the Liar yield a partial test for the inconsistency of

fixed points that are obtained via iterations that take unions at limit stages:

Proposition 5.6 For every F ∈ [ω → P(M)], if for some j ∈ ω and some ordinal α,
either λ or ¬λ ∈ Fα( j) , then F�(F) is inconsistent.

Proof Suppose that λ ∈ Fα( j). Then, by clause 7 of Definition 4.3, Tr�λ� ∈ Fα+1( j).
But since λ is equivalent to ¬Tr�λ�, by clause 1 we also get that ¬Tr�λ� ∈ Fα+1( j),
and Fα+1( j) inconsistent. The case for ¬λ is similar. ��
Corollary 5.7 For every j ∈ ω, neither λ nor ¬λ is in F�( j).

Proof Directly from Propositions 5.5 and 5.6. ��
Since F� yields no inconsistent sets of sentences, we can take this function to

provide full worlds.

Definition 5.8 The setW� of full worlds is provided by all the values of F�, i.e.

W� := F�[ω]

Since � is inclusive, iterations of F� extend each base world w to exactly one full
world w�. For every i ∈ ω:

wi = F1�(i) ⊆ . . . ⊆ F�(i) = w�
i .
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This makes precise our earlier informal claim that full worlds are “completions” of
base worlds. Full worlds are the worlds we need in our combined theory of naïve truth
and the evidential conditional. Since from now on we will only consider full worlds,
in order to avoid notational cluttering, we will indicate them simply as w.

We conclude this section with a remark on the classification of “problematic” sen-
tences. Kripke employed fixed points to define different kinds of such sentences. In
particular, he called ϕ ungrounded when neither ϕ nor ¬ϕ is in the least fixed point,
and he called ψ paradoxical when neither ψ nor ¬ψ is in any consistent fixed point.
Since the least fixed point is consistent, it follows that every paradoxical sentence is
ungrounded. For example, λ is both paradoxical and ungrounded. However, the con-
verse does not hold: τ is ungrounded but not paradoxical, as there are non-minimal,
consistent fixed points which include either τ or ¬τ .

It is easy to see that our framework inherits the Kripkean taxonomy, as there are
paradoxical and ungrounded sentences of Lt,� which can be isolated by looking at
non-minimal fixed points of the evidential Kripke construction, i.e. fixed points which
strictly include full worlds. A simple example is the fixed point F�(Fτ ), where Fτ is
the function from ω to P(M) such that, for every i ∈ ω, F0(i) = {τ }. F�(Fτ ) can be
shown to be consistent, and to include both τ and τ � τ in the sets it generates.

6 Evidential Kripke Frames and Valuations

Having shown how a set of full worlds can be obtained from our initial set of base
worlds by means of an inductive definition, we are finally in a position to give a proper
formulation of the semantics of Lt,�. Let us start with frames:

Definition 6.1 A frame for Lt,� is a triple 〈M,W�, S(�)〉, where M is a countable
acceptable model ofL,W� is the set of full worlds, and S(�) is the set of comparative
distance relations between full worlds.

With each frame F , one can associate a valuation function that assigns semantic
values to sentences relative to full worlds.

Definition 6.2 For any frame F , let v be a function from ordered pairs of elements of
W� and sentences of Lt,� to the set {1, 1/2, 0} such that, for every w ∈ W� and every
ϕ ∈ Lt,�,

v(w, ϕ) =

⎧
⎪⎨

⎪⎩

1, if ϕ ∈ w

0, if ¬ϕ ∈ w

1/2, otherwise

We call v the valuation induced by F . Now we will state three important facts about
valuations so defined.

Proposition 6.3 For every frame F , the valuation v induced by F is a strong Kleene
valuation. That is, for every w ∈ W�, ϕ,ψ ∈ Lt,�, and closed term t,

(i) v(w,¬ϕ) = 1 − v(w, ϕ)
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(ii) v(w, ϕ ∧ ψ) = min[v(w, ϕ), v(w, ϕ)]
(iii) v(w,∀xψ) = min[v(w, (ψ)t

x )]

Proof The claim is immediate by inspection (the clauses of Definition 4.3 re-write the
valuation clauses of strong Kleene semantics). ��
Proposition 6.4 For every frame F , the induced valuation v satisfies the intersubsti-
tutivity of truth, i.e. for every w ∈ W� and ϕ ∈ Lt,�, if ϕt is a formula resulting from
ϕ by substituting (possibly non-uniformly) a sub-sentence ψ of ϕ with Tr�ψ�, or vice
versa, then v(w, ϕ) = v(w, ϕt).

Proof First, note that for every frame F , the induced valuation v satisfies naïveté, i.e.
for every w ∈ W� and every ϕ ∈ Lt,�, v(w, ϕ) = v(w, Tr�ϕ�). This is immediate
from clause 7 ofDefinition 4.3 andDefinition 5.8, by the fixed-point property of�. The
result now follows by an easy induction, by the above claim and the compositionality
of the clauses of Definition 4.3. ��

As Propositions 6.3-6.4 show, our valuations interpret the standard logical vocabu-
lary ¬, ∧, ∀ as in strong Kleene semantics and treat the truth predicate in accordance
with naïveté and intersubstitutivity of truth. Now it remains to be shown that they
respect the truth and falsity conditions of the evidential conditional:

Proposition 6.5 For every frame F , the induced valuation v is such that, for every
w ∈ W� and every ϕ,ψ ∈ Lt,�,

– v(w, ϕ � ψ) = 1 iff either every w′ is such that v(w′, ϕ ∧ ¬ψ) = 0 and the
following conditions hold:

(a) v(w′, ϕ) = 1 for some w′;
(b) v(w′, ψ) = 0 for some w′;
or some w′ is such that v(w′, ϕ ∧ ¬ψ) = 1 and the following conditions hold:

(c) either v(w′, ϕ) = v(w′, ψ) = 1 or v(w′, ϕ) = v(w′, ψ) = 0 for some w-
minimal w′;

(d) for every w′ such that v(w′, ϕ) = v(w′,¬ψ) = 1, some strictly closer w′′ is
such that v(w′′, ϕ) = v(w′′, ψ) = 1;

(e) for every w′ such that v(w′, ϕ) = v(w′,¬ψ) = 1, some strictly closer w′′ is
such that v(w′′, ϕ) = v(w′′, ψ) = 0.

– v(w, ϕ � ψ) = 0, iff either every w′ is such that v(w′, ϕ ∧ ¬ψ) = 0 and at least
one of the following conditions hold:

(-a) v(w′, ϕ) = 0 for every w′;
(-b) v(w′, ψ) = 1 for every w′;
or there is w′ such that v(w′, ϕ ∧ ¬ψ) = 1 and at least one of the following
conditions holds:

(-c) v(w′, ϕ) = 1 and v(w′, ψ) = 0, or v(w′, ϕ) = 0 and v(w′, ψ) = 1 for every
w-minimal w′;
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(-d) some w′ is such that v(w′, ϕ) = v(w′,¬ψ) = 1 and no strictly closer w′′ is
such that v(w′′, ϕ) = v(w′′, ψ) = 1;

(-e) some w′ is such that v(w′, ϕ) = v(w′,¬ψ) = 1 and no strictly closer w′′ is
such that v(w′′, ϕ) = v(w′′, ψ) = 0.

- v(w, ϕ � ψ) = 1/2, otherwise.

Proof The claim directly follows from Definitions 4.3 and 6.2. The cases in which
v(w, ϕ � ψ) = 1 are those in which ϕ � ψ ∈ w by clause 9 of Definition 4.3. The
cases in which v(w, ϕ � ψ) = 0 are those in which ¬(ϕ � ψ) ∈ w by clause 10 of
Definition 4.3. Finally, the case in which v(w, ϕ �ψ) = 1/2 is that in which ϕ �ψ /∈ w

and ¬(ϕ � ψ) /∈ w. ��

Proposition 6.5 shows that, as far as the values 1 and 0 are concerned, the semantics of
Lt,� agrees with the truth and falsity conditions for the evidential conditional stated in
section 1, namely, with Definitions 2.1 and 2.2. This result provides an extension of a
well-known property of strong Kleene semantics, namely, that their valuation clauses
are exactly as in classical logic — only, they are applied on the value space {1, 1/2, 0}
rather than {1, 0} —and therefore when applied to formulae that have classical values
yield the same result as the corresponding classical valuations.

A final remark concerns Identity. As explained in section 2, this principle fails
for reasons that are independent of any consideration concerning paradoxical or
ungrounded sentences, and can be expressed in the bivalent framework adopted
by Crupi and Iacona. However, when the semantics is extended to the value space
{1, 1/2, 0} in order to deal with paradoxical and ungrounded sentences, there is a fur-
ther argument to the effect that Identity should fail. The key assumption of the argument
— call it Non-Triviality — is that any minimally interesting interpretation of � rules
out the possibility that, for some sentences ϕ andψ , the following four conditionals are
all true: ϕ �ψ,¬ϕ �ψ, ϕ �¬ψ,¬ϕ �¬ψ . Having all of them true would entirely trivi-
alize the notion of support, because it would imply that any member of the pair ϕ,¬ϕ

is a reason for any member of the pair ψ,¬ψ , thus depriving the word ‘reason’ of its
intuitive meaning. In our semantic framework, Non-Triviality is at odds with Identity.
As it turns out from Propostition 5.7, λ always gets value 1/2, and the same goes for
¬λ. By clauses 9 and 10 of Definition 4.3 this entails that λ�λ also gets value 1/2, and
the same goes for ¬λ � λ, λ � ¬λ,¬λ � ¬λ. All these formulae are ungrounded (and,
indeed, paradoxical). Now if Identity were valid, λ � λ,¬λ � λ, λ �¬λ,¬λ � λ would
all be valid, against Non-Triviality. We regard this as a further reason for thinking that
Identity should not hold unrestrictedly.

7 Logical Consequence

As is well known, strong Kleene valuations are compatible with different definitions
of logical consequence, because there are different ways to extend the classical idea
of truth preservation in every valuation to the value space {1, 1/2, 0}. In particular, a
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distinction can be drawn between being strictly true, which amounts to having value
1, and being tolerantly true, which amounts to having value 1 or 1/2.24

Definition 7.1 For every set 
 of Lt,�-sentences and frame F = 〈M,W�, S(�)〉, the
valuation v induced by F makes 
 strictly true at w if it assigns 1 to every sentence
in 
 at w, and it makes 
 tolerantly true at w if it assigns 1 or 1/2 to every sentence in

 at w.

There are four direct ways to combine the notions of strict and tolerant truth into
a definition of logical consequence, which yields four distinct logics: SS, TT, ST, TS.
In the list below, these four combinations are applied to the semantics set out in the
previous section, that is, the intended quantification is over sentences and sets of
sentences of Lt,�, frames of the kind defined, and the valuations they induce.

Definition 7.2


 |�ss ϕ iff for any w, if 
 is strictly true in w, ϕ is strictly true in w;

 |�t t ϕ iff, for any w, if 
 is tolerantly true in w, ϕ is tolerantly true in w;

 |�ts ϕ iff, for any w, if 
 is tolerantly true in w, ϕ is strictly true in w;

 |�st ϕ iff, for any w, if 
 is strictly true in w, ϕ is tolerantly true in w.

Each of the four consequence relations so defined has its own distinctive features, and
its theoretical advantages or disadvantages can be measured by different standards.
However, we are not interested in comparing them. Here we will rely on SS, also
known as Strong Klenee Logic or K3, to show that the logical properties of � stated in
section 2 turn out to be preserved.25 But similar results can be obtained by adopting
TT, ST, or TS.

Proposition 7.3 ϕ � ψ |�ss ϕ ⊃ ψ (Material Implication �)

Proof Assume that v(w, ϕ � ψ) = 1. By Proposition 6.5 this means that either every
w′ is such that v(w′, ϕ ∧¬ψ) = 0 and conditions (a) and (b) are satisfied, or some w′
is such that v(w′, ϕ ∧ ¬ψ) = 1 and conditions (c)-(e) are satisfied. In the first case,
v(w, ϕ ∧ ¬ψ) = 0, so v(w, ϕ ⊃ ψ) = 1. In the second case, given condition (iii)
of Definition 4.2, it is not the case that v(w, ϕ) = 1 and v(w,ψ) = 0, which yields
again that v(w, ϕ ⊃ ψ) = 1. ��
Proposition 7.4 ϕ � ψ, ϕ � χ |�ss ϕ � (ψ ∧ χ) (AND �)

Proof Assume that v(w, ϕ�ψ) = v(w, ϕ�χ) = 1. Since each of the two conditionals
can be true in virtue of each of the disjuncts stated in Proposition 6.5, four cases are
to be considered.

Case 1: both ϕ �ψ and ϕ �χ are true in virtue of the first disjunct. In this case every
w′ is such that v(w′, ϕ∧¬ψ) = v(w′, ϕ∧¬χ) = 0, somew′ is such that v(w′, ϕ) = 1,
some w′ is such that v(w′, ψ) = 0, and some w′ is such that v(w′, χ) = 0. It follows

24 We take this distinction and its uses from [2].
25 This logic is commonly adopted as a starting point for the interpretation of the standard connectives, see
[9, 11, 12, 24].
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that everyw′ is such that v(w′, ϕ∧¬(ψ ∧χ)) = 0, somew′ is such that v(w′, ϕ) = 1,
and some w′ is such that v(w′, ψ ∧ χ) = 0. Therefore, v(w, ϕ � (ψ ∧ χ)) = 1.

Case 2: the first disjunct holds only for ϕ �ψ . In this case (c)-(e) hold for ϕ �χ . (c)
entails that, for some w-minimal w′, either v(w′, ϕ) = v(w′, χ) = 1 or v(w′, ϕ) =
v(w′, χ) = 0. If v(w′, ϕ) = v(w′, χ) = 1, then v(w′, ϕ) = v(w′, ψ ∧ χ) = 1, given
that v(w′, ϕ∧¬ψ) = 0. If v(w′, ϕ) = v(w′, χ) = 0, then v(w′, ϕ) = v(w′, ψ ∧χ) =
0. (d) entails that, for every w′ such that v(w′, ϕ) = v(¬χ) = 1, some strictly closer
w′′ is such that v(w′′, ϕ) = v(w′′, χ) = 1. Given the initial assumption about ϕ � ψ ,
this yields that, for every w′ such that v(w′, ϕ) = v(w′,¬(ψ ∧χ)) = 1, some strictly
closer w′′ is such that v(w′′, ϕ) = v(w′′, ψ ∧ χ) = 1. Moreover, from (e) we get that
that, for every w′ such that v(w′, ϕ) = v(w′,¬χ) = 1, some strictly closer w′′ is
such that v(w′′, ϕ) = v(χ) = 0 which entails that, for every w′ such that v(w′, ϕ) =
v(w′,¬(ψ ∧ χ)) = 1, some strictly closer w′′ is such that v(w′′ϕ) = v(ψ ∧ χ) = 0.
Therefore, v(w, ϕ � (ψ ∧ χ)) = 1.

Case 3: the first disjunct holds only for ϕ � χ . This case is analogous to case 2.
Case 4: the first disjunct holds neither for ϕ � ψ nor for ϕ � χ . In this case (c)-

(e) hold for both conditionals. From (c) we get that some w-minimal w′ is such
that either v(w′, ϕ) = v(w′, ψ) = 1 or v(w′, ϕ) = v(w′, ψ) = 0, and some w-
minimal w′′ is such that either v(w′′, ϕ) = v(w′′, χ) = 1 or v(w′′, ϕ) = v(w′′, χ) =
0. If either v(w′, ϕ) = v(w′, ψ) = 0 or v(w′′, ϕ) = v(w′′, χ) = 0, then either
v(w′, ϕ) = v(w′, ψ ∧ χ) = 0 or v(w′′, ϕ) = v(w′′, ψ ∧ χ) = 0. If v(w′, ϕ) =
v(w′, ψ) = 1 and v(w′′, ϕ) = v(w′′, χ) = 1, then v(w′, ϕ) = v(w′, ψ ∧ χ) = 1
and v(w′′, ϕ) = v(w′′, ψ ∧ χ) = 1 given (d). Moreover, from (d) we get that, for
every w′ such that v(w′, ϕ) = v(w′,¬(ψ ∧ χ)) = 1, some strictly closer w′′ is such
that v(w′′, ϕ) = v(w′′, ψ ∧ χ) = 1. Finally, (e) yields that for every w′ such that
v(w′, ϕ) = v(w′,¬(ψ ∧ χ)) = 1, some strictly closer w′′ is such that v(w′′, ϕ) =
v(w′′, ψ ∧ χ) = 0. ��
Proposition 7.5 ϕ � ψ |�ss ¬ψ � ¬ϕ (Contraposition �)

Proof Assume that v(w, ϕ � ψ) = 1. By Proposition 6.5 this means that either every
w′ is such that v(w′, ϕ ∧¬ψ) = 0 and conditions (a) and (b) are satisfied, or some w′
is such that v(w′, ϕ ∧ ¬ψ) = 1 and conditions (c)-(e) are statisfied. In the first case,
everyw′ is such that v(w′,¬ψ ∧¬¬ϕ) = 0, somew′ is such that v(w′,¬ψ) = 1, and
some w′ is such that v(w′,¬ϕ) = 0. Therefore, v(w′,¬ψ � ¬φ) = 1. In the second
we get that (c)-(e) hold for ¬ψ � ¬ϕ as well. So, again, v(w′,¬ψ � ¬φ) = 1. ��
Proposition 7.6 ϕ � χ �|�ss (ϕ ∧ ψ) � χ (Monotonicity ×)

Proof Let W = {w,w′, w′′}, w′ �w w, w′′ �w w′, and
v(w, ϕ) = 1, v(w,ψ) = 0, v(w, χ) = 1
v(w′, ϕ) = 0, v(w′, ψ) = 0, v(w′, χ) = 0
v(w′′ϕ) = 1, v(w′′, ψ) = 1, v(w′′χ) = 0

By Proposition 6.5, v(w, ϕ � χ) = 1 because (c)-(e) are satisfied. Instead, v(w, (ϕ ∧
ψ) � χ) = 0, given that neither (c) nor (d) are satisfied. ��
Proposition 7.7 Not: ϕ � ψ |�ss ϕ � χ whenever ψ |� χ (Right Weakening ×)
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Proof Let W = {w,w′, w′′}, w′ �w w, w′′ �w w′, and
v(w, ϕ) = 1, v(w,ψ) = 1, v(w, χ) = 1
v(w′, ϕ) = 0, v(w′, ψ) = 1, v(w′, χ) = 0
v(w′′, ϕ) = 1, v(w′′, ψ) = 0, v(w′′, χ) = 1

By Proposition 6.5, v(w, ϕ � (ψ ∧ χ)) = 1 because (c)-(e) are satisfied. However,
v(w, ϕ � ψ) = 0 in spite of the fact that ψ ∧ χ |� ψ . The reason is that (e) does not
hold. ��
Proposition 7.8 ϕ ∧ ψ �|�ss ϕ � ψ (Conjunctive Sufficiency ×)

Proof Let W = {w,w′}, w′ �w w, and

1. v(w, ϕ) = 1, v(w,ψ) = 1
2. v(w′, ϕ) = 1, v(w′, ψ) = 0

In this case v(w, ϕ∧ψ) = 1. However, by Proposition 6.5 we get that v(w, ϕ�ψ) = 0
because (e) does not hold. ��
Proposition 7.9 �|�ss ϕ � ϕ (Identity ×)

Proof Directly from Proposition 6.5, given that v(w, ϕ �ϕ) = 0 whenever v(w′, ϕ) =
0 for every w′ or v(w′, ϕ) = 1 for every w′. ��

Note that the proofs of Propositions 7.3-7.9 can easily be adapted to ST, given
that strict truth suffices for tolerant truth. In order to provide analogous results in TT,
instead, one should also reason under the hypothesis that the premises have the value
1/2. Finally, although Propositions 7.3-7.9 are not provable in TS, where one cannot
assume that the premises are strictly true in order to show that the conclusion is strictly
true, in TS one can prove a meta-inferential version of these results. For example, in
the case of Material Implication one can prove that if 
 |� ϕ � ψ , then 
 |� ϕ ⊃ ψ ,
and similar formulations hold for the other facts about �. So, as far as the key logical
properties of � are concerned, there is no substantive difference between SS, TT, ST,
and TS.

8 Validity and Paradox

Now we can provide a proper formulation of the Formalized Stoic Thesis. Let the
two-place predicate Val be defined as follows, where f� is a term for the recursive
function such that, whenever x and y denote the (codes of) sentences ϕ and ψ , f�
returns the (code of the) sentence ϕ � ψ :

Definition 8.1 Valxy ≡def Tr f�(x, y)

Whenever x and y are replaced by closed terms �ϕ� and �ψ� (denoting the codes of
ϕ and ψ , respectively), the formula Val�ϕ��ψ� expresses the claim that the inference
from ϕ to ψ is valid, which turns out to be equivalent to the claim that the conditional
ϕ � ψ is true. In this section we illustrate some direct consequences of Definition 8.1
and discuss some of its implications.
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Given Definition 8.1, validity inherits the logical properties of the evidential con-
ditional. Consider Material Implication. From Proposition 7.3 we get that Val�ϕ��ψ�
entails ϕ ⊃ ψ . As is reasonable to expect, the claim that the inference from ϕ to ψ is
valid is stronger than the mere negation of ϕ ∧ ¬ψ . Similar considerations hold for
the other properties of � proved in section 7. From Propositions 7.4 and 7.5 we get
that Val preserves AND and Contraposition. The case of Contraposition is particularly
interesting here, since Crupi and Iacona regard Contraposition as a basic principle that
holds independently of the distinction between conclusive and defeasible reasons. For
example, consider the following arguments:

(5) Sophie can read French; therefore, she can read
(6) Sophie cannot read; therefore, she cannot read French
(7) Sophie is French; therefore, she can read French
(8) Sophie cannot read French; therefore, she is not French

While the reason stated by the premise of (5) is conclusive, in that it rules out the falsity
of its conclusion, the reason stated by the premise of (7) is defeasible. But according
to Crupi and Iacona an important analogy remains, in that in both cases it is plausible
to expect that, if ϕ supports ψ , then ¬ψ supports ¬ϕ. Thus, (6) and (8) seem no less
compelling than (5) and (7) respectively.

Finally, from Propositions 7.6-7.9 we get that Val violates Monotonicity, Right
Weakening, Conjunctive Sufficiency, and Identity. The failure of Monotonicity, in
particular, shows that Val can be used to formally represent defeasible inferential
relations.

A second point to be noted—andwhich is crucial to our project— is that ascriptions
of validity turn out to be gappy in the same sense in which truth ascriptions are gappy.
Since some truth predications involving conditionals receive the intermediate value
1/2 due to semantic paradoxes, the same goes for the corresponding validity claims.
In section 7 we saw that λ � λ always gets value 1/2, so the same goes for Tr�λ � λ�.
Given Definition 8.1, this entails that Val�λ��λ� also gets value 1/2. In other words,
as long as truth is understood as strict truth, one cannot truly claim that the following
argument is valid:

(9) This sentence is not true; therefore, this sentence is not true.

Similarly, one cannot truly claim that (9) is invalid, for¬Val�λ��λ� has the same value
as Val�λ��λ�. More generally, the theory of validity suggested here implies that, due
to semantic paradoxes, some arguments are such that one can truly claim neither that
they are valid nor that they are invalid. These arguments may be called ungrounded,
just like the conditionals to which they correspond.

Note that, in our view, ungrounded arguments such as (9) differ from invalid argu-
ments such as the following:

(10) 1 = 0; therefore, snow is white.
(11) Snow is white; therefore, 0 = 0.

The arguments (10) and (11) are invalid for the same reason for which the conditionals
(1) and (2) are false, namely, that an impossible truth supports nothing, and nothing
supports a necessary truth. The same goes for the following arguments:
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(12) 1 = 0; therefore, this sentence is not true.
(13) This sentence is true; therefore, 0 = 0.

This shows that some arguments that contain ungrounded sentences are not themselves
ungrounded: containing ungrounded sentences is not a sufficient condition for being
ungrounded.

The class of ungrounded arguments include not only arguments in which one or
more sentences are paradoxical (in our sense), but also claims about validity that are
themselves paradoxical. Consider for example the following argument:

(14) The argument from this sentence to 0 �= 0 is valid; therefore, 0 �= 0.

This argument, which can be represented as a formulaπ equivalent toVal�π��0 �= 0�,
has been analyzed byBeall andMurzi under the label v-Curry.26 Beall andMurzi intro-
duce a primitive, naïve notion of validity, formalized as a predicate and characterized
by intuitive introduction and elimination rules (essentially, the introduction and elim-
ination rules for the material conditional, only written for a predicate rather than a
connective), and show that π gives rise to a version of Curry’s Paradox that only
employs structural rules, in addition to the validity rules.27

Although our validity predicate is not primitive, and we cannot obtain π by diago-
nalization from Definition 8.1, it is easy to see how π can be treated in our framework
by means of some minimal adjustments. One option would be to set up a translation
between our language Lt,� and a language Lv defined as L ∪ {Val} using Kleene’s
Second Recursion Theorem, as explained by Halbach.28 This way, π would be defin-
able as the translation of a suitable Lt,�-sentence, which would then turn out to be
ungrounded. Alternatively, we could give our semantics directly for Lv, essentially
formulating clauses 9 and 10 of Definition 4.3 for Val, rather than for �, and define
Tr and � via it. In fact, a similar strategy is pursued, in the context of naïve validity,
by Nicolai and Rossi, but with the semantic clauses for Val matching the valuation
clauses for the material conditional.29 Regardless of which option we choose, π turns
out to be neither true nor false, and (14) turns out to be neither valid nor invalid. It
is therefore clear that our semantics extends the Kripkean idea of ungroundedness to
arguments and their validity.

26 Beall and Murzi [1]. Curry’s Paradox is a conditional variant of the Liar which employs a sentence κ

equivalent to Tr�κ� ⊃ ⊥ (or Tr�κ� � ⊥), see [35].
27 Beall and Murzi argue that their naïve notion of validity is at least as well-motivated as naïve truth. As a
consequence, the paradoxes of naïve validity are at least as urgent as the paradoxes of naïve truth, and the
fact that no fully structural theory can block the v-Curry paradox (for the derivation of 0 �= 0 in it simply
does not use any operational rule) puts pressure on the non-classical theorist to employ a substructural logic.
For more on naïve validity, and the relation between naïve truth-theoretic and validity-theoretic principles
and paradoxes, see [29].
28 Halbach [16], §5.3. An accessible presentation of Kleene’s Second Recursion Theorem and its uses can
be found in [28].
29 Nicolai and Rossi [30, 31].
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9 Conclusions

In this paper we have shown how the idea that valid arguments amount to true condi-
tionals can be accommodated within a consistent formal theory. In order to obtain the
desired equivalence — the Formalized Stoic Thesis — we have combined naïve truth
with the evidential conditional. As highlighted in section 1, the theory so obtained has
at least two interesting implications.

First, the Formalized Stoic Thesis significantly increases our expressive resources,
enabling us to formulate claims about validity that could not be formulated other-
wise. These claims include ascriptions of validity to particular arguments, as in ‘The
argument from ‘James is a bachelor’ to ‘James is unmarried’ is valid’, represented as
Val�Bt�, �Ut�, and generalizations, such as ‘Every argument to the conclusion that
0 = 0 is valid’, i.e. ∀x(Valx�0 = 0�). Interestingly, the claims of the second kind can
be used to express key properties of validity itself, such as ‘Every argument of the form
ϕ ∧ (ϕ ⊃ ψ);ϕ is valid’, which are usually stated in the meta-language. Certainly,
there is a sense in which some such generalizations cannot be validated, since only
their grounded instances are actually part of our theory. However, as we have observed,
this form of partiality is a price worth paying in order to avoid triviality. So, the fact
that our theory retains exactly the acceptable, non-problematic claims about validity,
and express them in the object-language, seems more a virtue than a limitation. Note
also that, in any Kripkean construction, not just in ours, gappy instances of desirable
generalizations might not be validated.

Second, the Formalized Stoic Thesis yields a coherent unified treatment of the
paradoxes of truth and validity, as we pointed out in section 8. Elaborating on our
observations there, we notice that our theory already includes a treatment of naïve
validity. As anticipated above, Nicolai and Rossi develop a Kripke-style semantics for
a primitive validity predicate and interpret it essentially as a predicate version of the
material conditional. As a consequence, the resulting naïve validity predicate obeys
Beall and Murzi’s introduction rules and avoids the v-Curry paradox by treating π

(and all relevantly similar sentences) as ungrounded. Nicolai and Rossi call grounded
validity the resulting theory of validity. It is easy to see that our theory recovers
grounded validity because ϕ � ψ entails ϕ ⊃ ψ (Proposition 7.3), and consequently
Tr�ϕ � ψ� entails Tr�ϕ ⊃ ψ�. By Definition 8.1, Tr�ϕ � ψ� means that the argument
from ϕ to ψ is valid. Tr�ϕ ⊃ ψ�, according to the valuation clauses of Nicolai and
Rossi, just gives the extension of naïve validity (interpreted as grounded validity).
Therefore, re-writing the former as a claim about validity in our sense and the latter
as a claim about naïve validity, we get that validity in our sense entails naïve validity.

We close by pointing out two directions in which our work could be further devel-
oped. The first concerns the formal study of defeasible reasoning. The Formalized
Stoic Thesis allows us to articulate a non-monotonic logic that models defeasible rea-
soning in the context of a first-order language with naïve truth. A distinctive principle
of this logic is Contraposition, which we take to characterize validity broadly under-
stood, as explained in Section 8. This is not a widespread assumption in the literature
on non-monotonic logic, for Contraposition is usually not regarded as an essential
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property of defeasible reasoning.30 But as far as we can see, no compelling reason
has ever been provided for thinking that defeasible reasoning is non-contrapositive. In
this respect, our proposal opens a perspective in which interesting logical results can
be established.31

The second direction concerns the theory of truth. As it usually happens with
Kripke-style constructions, several notions of logical consequence can be associated
with the resulting models. We have focused on a restricted set of options, but there are
still more to be considered. More specifically, supervaluationism and classical conse-
quence (obtained via the so-called closing off of Kripkean fixed points) are cases in
point. In both approaches, the logic would be significantly stronger, but one would lose
the intersubstitutivity of truth. A supervaluational semantics could easily be associated
with our account by adopting the elegant template developed by Stern.32 A classical
version of our theory, instead, would inherit much of the features of classical theo-
ries of Kripkean truth, such as Kripke-Feferman.33 Such a version would be naturally
compared with theories of object-linguistic validity formulated in classical logic.34
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