
J Autom Reasoning (2015) 55:285–294
DOI 10.1007/s10817-015-9332-6

Automating Boolean Set Operations in Mizar Proof
Checking with the Aid of an External SAT Solver

Adam Naumowicz1

Received: 11 July 2014 / Accepted: 26 May 2015 / Published online: 16 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In this paper we present the results of an experiment with employing an exter-
nal SAT solver to strengthen the notion of obviousness of the MIZAR proof checker.
The presented extension of the MIZAR system is based on a version of MiniSAT, called
Logic2CNF. The SAT-enhanced MIZAR checker is programmed to automatically spawn a
new Logic2CNF process whenever it needs to justify any goal that can be solved by reduc-
ing it into a corresponding propositional satisfiability problem (equalities based on Boolean
operations or set inclusion). The external tool is interfaced within the implementation of
MIZAR’s requirements directives.

Keywords Mizar · SAT solvers · Proof assistants · Boolean operations

1 Introduction and Related Work

MIZAR [5, 17] is a proof checker renowned for its large library of formal proofs based on
set theory [20]. Although the MIZAR user input language is being developed to resemble
standard mathematics as much as possible, the de Bruijn factor for typical formalizations is
still too big [12].

To address this problem, several techniques are being currently developed to make the
MIZAR checker stronger (cf. [3, 10, 11]). To avoid interference of the results with other
newly developed techniques, the experiment was conducted using a last stable version of

To the memory of Andrzej Trybulec

� Adam Naumowicz
adamn@mizar.org

1 Institute of Informatics, University of Bialystok, ul. Ciolkowskiego 1M, 15-245 Bialystok, Poland

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10817-015-9332-6-x&domain=pdf
mailto:adamn@mizar.org

286 A. Naumowicz

the MIZAR system from the 7.13 branch (version 7.13.01 accompanied with MML version
4.181.1147). There is also active research on combining MIZAR with external automated
theorem provers [9, 21]. In the present work, however, we do not intend a far departure
from the original MIZAR notion of obviousness. Therefore, in our work we apply the most
widely-used and simplest method of strengthening the capabilities of the MIZAR checker
based on the “requirements” [13, 14], which provide a way to implement specific proce-
dures that make the checker handle certain simple mathematical objects, frequently used in
typical MIZAR texts. This includes special treatment of Boolean operations on sets, com-
plex arithmetic and the like. Since the MIZAR library is built on top of set theory axioms, the
usage of various set-based constructs is ubiquitous in the library. Apart from articles devoted
to sets per se, there are many more abstract ones that heavily use sets for constructing some
models or examples (e.g. in geometry, lattice theory or graph theory).

Therefore the automation of processing sets is beneficial for most of the current library
(enabling to reduce its size) but most importantly for future developments (see the statistics
in Section 4). Hard-coding specific checking of Boolean operations, known as “require-
ments BOOLE”, was implemented quite early in the history of MIZAR development.
Similarly, the set inclusion relation was implemented as part of the “requirements SUB-
SET” directive. The implementations, however, remained quite restricted and not very
efficient [16].

In this paper we present the extension of the MIZAR checker which exploits the natural
correspondence between propositional formulae and Boolean operations on sets in order to
eliminate the need of referencing definitions of these operations and all sorts of lemmas
based on them in MIZAR proofs. An initial version of the extension was presented in the
Systems and Projects track of the CICM2014 conference [15]. The current paper provides
detailed information about the MIZAR extension which deals with the re-implementation of
both “BOOLE” and “SUBSET” requirements directives.

2 Interfacing the SAT Solver

From the number of SAT solvers available today we decided to choose the MiniSAT1 system
developed by Niklas Eén and Niklas Sörensson, which is a minimalistic SAT solver that
supports a standard DIMACS CNF input notation. The system is successfully used in a
number of other projects, because it is relatively easy to modify, well-documented, highly
efficient and designed for integration as a backend to other tools. It is also released under an
open source license which allows it to be coupled with MIZAR without any legal issues [1].

For ease of implementation, the interface needed to interact with the MIZAR proof
checker in a way very similar to the interface previously implemented for Gröbner bases
computation [14]. We therefore decided to use a MiniSAT variant developed by Edd Barrett,
called Logic2CNF.2 Logic2CNF uses a small input language for logic input from file/stdin.
It then converts it to CNF, solves it using built-in MiniSAT and reports the results as

1MiniSAT is available for download at http://minisat.se/.
2Logic2CNF is available for download at http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/wiki/WikiStart.

http://minisat.se/
http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/wiki/WikiStart

Automating Boolean Set Operations in Mizar 287

assignments of input literal names. Logic2CNF is coded in portable C/C++ and it supports
Linux, OpenBSD, Solaris, and OSX. A Windows version was compiled using the Cygwin
environment. This way we were able to support all main platforms for which MIZAR is cur-
rently pre-compiled, so there is no obstacle with the extension should it become part of the
standard MIZAR distribution and be used to perform revision of the MIZAR library using
the standard methodology developed by the MIZAR Library Committee [6–8].

The simple interface works as follows:

– First we construct a formula in which each propositional variable represents equality
classes made up of all available terms.

– If a term represents a Boolean operation, the I/O stream is appended by a corresponding
logical formula (e.g. set intersection yields a conjunction, union yields disjunction, and
similarly for difference and symmetric difference).

– For every positive instance of set inclusion we append the stream with a corresponding
implication.

– For every negated instance of equality (or set inclusion) in a given inference we:

– spawn a new Logic2CNF process through a pipe, and
– check whether the negated formula logically entails the conjunction of all

previously stored formulae by analyzing the Logic2CNF output.

Table 1 presents the symbols used for formula specification in the Logic2CNF input
format:

All the symbols, except for the left implication, have been used in the interface
implementation.

3 Examples

Listing 1 shows a simple MIZAR theorem about the properties of the set-theoretical union
and intersection operations (with a corresponding proof extracted from the XBOOLE 1
article).

Table 1 Logic2CNF’s formula
specification LITERAL Named (defined) literal

. And

+ Or

˜ Not

<=> IFF (Bi-implication)

<= Left implication

=> Right implication

@ Exclusive or

(Left Bracket

) Right Bracket

288 A. Naumowicz

The goal of applying SAT is of course to make the theorem obvious for the checker, so
that the proof can be eliminated. The Logic2CNF input data corresponding to the above
theorem’s statement is presented in Listing 2, where the literals e1 to e4 represent the
equality classes corresponding to different terms in this inference, i.e. X /\ (X \/ Y), X,
X \/ Y, and Y, respectively. The pairs of formulas e1<=>(e2.e3) and e1<=>(e3.e2),
as well as e3<=>(e2+e4) and e3<=>(e4+e2) are the result of the way MIZAR checker
internally handles commutative operations.

From the user’s point of view, the proposed extension works automatically and there
is no need to directly call the external tool. The Mizar verifier (as well as other MIZAR

tools that use its checker) just spawns a new Logic2CNF process whenever it is needed to
justify any goal that involves Boolean operations. This obviously concerns the verifier
program that implements the main checker module, but also other verification-based tools
shipped in the MIZAR distribution package, like: relprem (for eliminating unnecessary
references), reliters (for eliminating unnecessary iterative equations), and trivdemo
(reducing simple proofs to straightforward justifications).

A single run of the tools on the XBOOLE 1 article alowed to detect 191 relprem errors,
86 trivdemo errors, and 58 reliters errors. Please note that in some cases a repeated
application of the tools can be necessary to completely clean a given article (e.g. when
some references are allowed to be removed first and then the checker can justify a whole
proof with a straightforward by justification). In particular, all references to definitions of
the Boolean set operations are found to be superfluous. An example is given in Listing 3,
where we can see a standard reference to be marked by relprem as irrelevant, as well as
a linking reference with the hence keyword.

Automating Boolean Set Operations in Mizar 289

In such cases, where the only references within a proof are those concerning Boolean
operations, the whole proof becomes obvious. In Listing 4 the trivdemo tool reports
proofs which can be changed into a straightforward justification using a collection of labels
references in the proof, so in this case no references are needed.

The next example presented in Listing 5 demonstrates how many intermediate iter-
ative equalities steps are required by the current MIZAR checker to finally accept the

290 A. Naumowicz

statement. As expected, the reliters tool reports that all the intermediate equalities
based on bracket manipulation are not needed and the theorem becomes obvious with the
application of SAT.

However, there are examples of theorems in the XBOOLE 1 article that still need proofs,
even though the SAT-enhanced checker is used. Listing 6 shows three kinds of such
theorems as examples.

In the first case, the theorem contains a generally quantified formula inside, so it can-
not be simply interpreted in terms of propositional logic. The two latter examples involve
two predicates which are not currently available in the set of MIZAR requirements, i.e. the

Automating Boolean Set Operations in Mizar 291

misses and c< predicates. However, it would be quite straightforward to implement their
interpretation as a propositional formula. In total there are 43 theorems (out of 117) that
are not obvious. Please note that with the initial implementation (without set inclusion)
presented in [15] only 32 out of 117 theorems were obvious for the checker.

Applying extra editing tools, namely chklab (detecting unused labels) and inacc
(removing unused text fragments) the XBOOLE 1 article’s text size can be reduced by
60 %. Again, there is a clear improvement, since removing the unnecessary proofs using
the restricted SAT interface implementation enabled only 35 % size reduction of the same
article.

4 Library Statistics

Running the SAT-enhanced MIZAR on the whole library generated a certain run-time
overhead. The details are presented in Table 2.

The overhead is noticable, but on the other hand it is not that significant, so it should
not have a big impact on user interaction experience. Evidently, the process of developing
articles containing many facts on Boolean operations of sets can be significantly reduced.
It is worthwile to observe that in the case of the trivdemo tool, the total run-time is even
smaller than the original. It might appear somewhat strange, but if we consider the number
of proofs that were reduced to single statements, the result is not very surprising. Irrelevant
references and proofs were detected all over the MIZAR library. Here are the statistics:

– 15862 relprem errors in 812 articles,
– 1178 reliters errors in 173 files,
– 224 trivdemo errors in 66 files.

Most prominent examples of articles with a big number of unnecessary items detected,
which are not directly related to Boolean operations on sets are listed below:

– TOPREAL2 (simple closed curves on the Euclidean plane) 591 relprem errors, 289
reliters errors,

– BCIIDEAL (ideals of BCI algebras) 19 trivdemo errors,
– PDIFF 5 (partial differentiation of real ternary functions) 18 trivdemo errors.

5 Some Technical Aspects of the Experiment

The run-times were measured on a Linux machine equipped with an Intel(R) Core(TM)2
Quad CPU running at 2.83GHz. The experiment was conducted on the MIZAR version
7.13.01 accompanied with MML version 4.181.1147.

Table 2 Run-times on the whole MIZAR library

Tool name: SAT-enhanced run-time: Standard run-time: Overhead:

verifier 21954 sec. 19143 sec. +15 %

relprem 142397 sec. 124727 sec. +14 %

trivdemo 241649 sec. 244550 sec. −1 %

reliters 10786 sec. 10598 sec. +2 %

292 A. Naumowicz

To enable the extended implementation of requirements BOOLE with the notion of
set inclusion currently being part of requirements SUBSET, two corresponding inter-
nal library files had to be changed. Namely, line 12 (representing the inclusion predicate
with constructor number 3, internally specified in the MIZAR source code as requirement
number 8) from the file subset.dre had to be moved into boole.dre, as showed in
Listing 7.

Moving the line into the boole.dre file required a change in its environment part (the
signatures of used articles). Line 5 in Listing 8 declares the extra TARSKI signature needed
to import the inclusion constructor. In consequence, reordering of constructor numbers from
the original requirements specification was needed. Listing 8 shows the final contents of the
boole.dre file, where line 14 represents line 12 moved from Listing 7.

Please note that apart from the change in the internal library representation, the
environment part of some MML articles also had to be changed in order to use the
new requirements. This means importing missing constructors from the TARSKI article

Automating Boolean Set Operations in Mizar 293

into GATE 2, FDIFF 10, INTEGR13, INTEGR14, TOPS 4, or adding the require-
ments directive into the articles that did not used it previously: ARYTM 1, BCIALG 3,
BVFUNC 6, CONMETR, CONMETR1, DECOMP 1, ROBBINS1, SETLIM 2, and SIN COS4
articles.

It is also worth noting that when MIZAR is to be used as a didactic tool, purposefully
switching off the requirements might be useful for the students to learn writing the basic
proofs themselves before they could use the system’s capabilities in full.

6 Conclusions

The integration of SAT and SMT solvers with proof assistants such as e.g. Coq [2], Isabelle
or HOL [22] shows that there is a big potential in integrating solvers and proof assistants.
The application of a SAT solver to MIZAR demonstrated in this article also proved quite
useful in strengthening the MIZAR checker’s processing of Boolean operations on sets. In
particular, the automation in processing of inclusions and equalities as compared to the ini-
tial implementation of Boolean operations only [15] resulted in a significant improvement.
SAT solver techniques might also be considered as a means of strengthening the automa-
tion of reasoning about concepts that are more general than sets, e.g. rough sets or fuzzy
sets [4]. However, this integration can not only be beneficial for strengthening the checker,
but also on other levels of proof checking. This can include the reimplementation of the
prechecker module responsible for calculating propositional relations between atomic for-
mulae used in inference steps. The huge MIZAR library also opens another possible future
research direction, namely to apply SAT-based techniques in the process of refactoring the
library for better legibility and organization (cf. [18, 19]).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar
mathematical library. In: Lecture Notes in Computer Science of MKM’11, vol. 6824, pp. 149–163.
Springer, Berlin (2011)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of
SAT/SMT solvers to Coq through proof witnesses. In: Lecture Notes in Computer Science, vol. 7086,
pp. 135–150. Springer, Berlin (2011)

3. Caminati, M.B., Rosolini, G.: Custom automations in Mizar. J. Autom. Reason. 50(2), 147–160 (2013)
4. Adam Grabowski: Automated discovery of properties of rough sets. Fundamenta Informaticae 128(1–2),

65–79 (2013)
5. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reason. 3(2), 153–

245 (2010)
6. Grabowski, A., Schwarzweller, C.: Translating mathematical vernacular into knowledge repositories. In:

Proceedings of the 4th International Conference on Mathematical Knowledge Management MKM’05,
pp. 49–64. Springer, Berlin (2006)

7. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathematical repositories.
In: Calculemus ’07 /MKM ’07, pp. 235–249. Springer, Berlin (2007)

8. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathematical knowledge. In:
Proceedings of Federated Conference on Computer Science and Information Systems – FedCSIS 2012,
9–12 September, pp. 63–68, Wroclaw (2012)

http://creativecommons.org/licenses/by/4.0/

294 A. Naumowicz

9. Kaliszyk, C., Urban, J.: Mizar 40 for Mizar 40. CoRR (2013). arXiv:1310.2805
10. Korniłowicz, A.: Tentative experiments with ellipsis in Mizar, vol. 7362, pp. 453–457. Springer (2012)
11. Korniłowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210 (2013)
12. Naumowicz, A.: An example of formalizing recent mathematical results in Mizar. J. Appl. Log. 4(4),

396–413 (2006)
13. Naumowicz, A.: Evaluating prospective built-in elements of computer algebra in Mizar. Studies in Logic,

Grammar and Rhetoric 10(23), 191–200 (2007)
14. Naumowicz, A.: Interfacing external CA systems for Gröbner bases computation in Mizar proof

checking. Int. J. Comput. Math. 87(1), 1–11 (2010)
15. Naumowicz, A.: SAT-enhanced Mizar proof checking. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,

Sojka, P., Urban, J. (eds.) CICM of Lecture Notes in Computer Science, vol. 8543, pp. 449–452. Springer
(2014)

16. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Lecture Notes
in Computer Science of MKM’04, vol. 3119, pp. 290–301 (2004)

17. Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Lecture Notes in Computer Science of
TPHOLs’09, vol. 5674, pp. 67–72. Springer, Berlin (2009)

18. Pa̧k, K.: Improving legibility of natural deduction proofs is not trivial. Logical Methods in Computer
Science 10(3), 1–30 (2014)

19. Pa̧k, K.: Methods of lemma extraction in natural deduction proofs. J. Autom. Reason. 50(2), 217–228
(2013)

20. Trybulec, A., Korniłowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics for mathematicians.
J. Autom. Reason. 50(2), 119–121 (2013)

21. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom.
Reason. 50(2), 229–241 (2013)

22. Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. In: Proceedings of the 3rd Inter-
national Workshop on Pragmatical Aspects of Decision Procedures in Automated Reasoning PDPAR
2005 (2005)

http://arXiv.org/abs/1310.2805

	Automating Boolean Set Operations in Mizar
	Abstract
	Introduction and Related Work
	Interfacing the SAT Solver
	Examples
	Library Statistics
	Some Technical Aspects of the Experiment
	Conclusions
	Open Access
	References

